
1/9

Malware Analysis - PXRECVOWEIWOEI
mandarnaik016.in/blog/2024-09-21-malware-analysis-pxrecvoweiwoei/

In this post, We will do malware analysis and reverse engineering on a sample called
PXRECVOWEIWOEI (AKA PureLogs Stealer).

The source of the sample is

hxxps[://]bazaar[.]abuse[.]ch/sample/574403dce45be3a5edec18e66f16fef5e013ce99c771347
9ab67c11e6f472330/#intel

Static Analysis

Let’s get the hash of the file first.

SHA256: 574403DCE45BE3A5EDEC18E66F16FEF5E013CE99C7713479AB67C11E6F472330

On VirusTotal, the file is detected as malicious by 25 engines.

The sample opened in notepad++ looks full of long strings assigned to variables with
extremely long names.

https://mandarnaik016.in/blog/2024-09-21-malware-analysis-pxrecvoweiwoei/
https://www.virustotal.com/gui/file/574403dce45be3a5edec18e66f16fef5e013ce99c7713479ab67c11e6f472330/detection

2/9

The variables seem to be added purposely to distract us from the actual investigation point.
The occurrence of variables is only one for each, meaning they are declared with strings but
never used.

After ignoring them, we see some interesting variables that have been used repeatedly.

3/9

Let’s evaluate the variables.

The variables are interconnected. i.e. the variable tonta is used in variable aligulado, inturn
that variable is used in publicista. We are going to focus on the content of publicista. We
can see a base64 string, after decoding it.

4/9

The decoded base64 is a powershell script that is gibberish. Let’s evaluate the script to
make it understandable.

After beautifying the script, we can connect the dots

5/9

The powershell script downloads the DetahNoteJ.txt, loads the content into a variable, then
base64 decodes that content, eventually storing it in a variable called $assembly. The result
of the above script can be accessed via variable $OWjuxD (I.e. base64 decode of
$Codigo).

Finally, the output is executed via a powershell.

Let’s check the content of a file called DetahNoteJ.txt. (PSSS: Shouldn’t the filename be
DeathNote and not DetahNoteJ?)

After base64 decoding and checking the file type

6/9

Now we can check the compiler or packer used to compile or protect the program; we can
use DIE for this.

Dynamic Analysis

The sample is compiled in .NET without any packer or crypter used. we can directly
decompile it using dnSpy

7/9

After a night with tea by my side, I was not able to understand the logic behind few
variables, and was not able to decrypt them either. Let’s directly execute the sample.

8/9

My platform architecture seems incompatible, the program exited with some errors.

Atlast, we get no intel from dynamic analysis.

On VirusTotal, the file DetahNoteJ.txt is detected by 17 engines.

SHA256: 16912B71BDEFBB0B9E0B0E71D85B0095880D4DC250239E7D26E12454F7F6BADF

Whereas the base64 decoded content of DetahNoteJ.txt is a DLL file, detected by 7
engines.

SHA256: 97164081607B6FDB9B095CB01BB0A818FC77DB92DAD38B910B05A90160748756

9/9

We meet next time dissecting another sample or comming up with an evasion technique
until then čau čau

Tags: analysis security
← Previous Post
Next Post →

https://mandarnaik016.in/blog/tags#analysis
https://mandarnaik016.in/blog/tags#security
https://mandarnaik016.in/blog/2024-09-07-malware-analysis-kms/
https://mandarnaik016.in/blog/2024-10-05-malware-analysis-lumma-stealer/

