
1/37

Mandiant

UNC1860 and the Temple of Oats: Iran’s Hidden Hand in
Middle Eastern Networks

cloud.google.com/blog/topics/threat-intelligence/unc1860-iran-middle-eastern-networks

Written by: Stav Shulman, Matan Mimran, Sarah Bock, Mark Lechtik

Executive Summary

UNC1860 is a persistent and opportunistic Iranian state-sponsored threat actor that is likely
affiliated with Iran’s Ministry of Intelligence and Security (MOIS). A key feature of UNC1860
is its collection of specialized tooling and passive backdoors that Mandiant believes supports
several objectives, including its role as a probable initial access provider and its ability to
gain persistent access to high-priority networks, such as those in the government and
telecommunications space throughout the Middle East.

UNC1860’s tradecraft and targeting parallels with Shrouded Snooper, Scarred Manticore,
and Storm-0861, Iran-based threat actors publicly reported to have targeted the
telecommunications and government sectors in the Middle East. These groups have also
reportedly provided initial access for destructive and disruptive operations that targeted Israel
in late October 2023 with BABYWIPER and Albania in 2022 using ROADSWEEP. Mandiant
cannot independently corroborate that UNC1860 was involved in providing initial access for
these operations. However, we identified specialized UNC1860 tooling including GUI-
operated malware controllers, which are likely designed to facilitate hand-off operations,
further supporting the initial access role played by UNC1860.

UNC1860 additionally maintains an arsenal of utilities and collection of “main-stage” passive
backdoors designed to gain strong footholds into victim networks and establish persistent,
long-term access. Among these main-stage backdoors includes a Windows kernel mode
driver repurposed from a legitimate Iranian anti-virus software filter driver, reflecting the
group’s reverse engineering capabilities of Windows kernel components and detection
evasion capabilities. These capabilities demonstrate that UNC1860 is a formidable threat
actor that likely supports various objectives ranging from espionage to network attack
operations. As tensions continue to ebb and flow in the Middle East, we believe this actor’s
adeptness in gaining initial access to target environments represents a valuable asset for the
Iranian cyber ecosystem that can be exploited to answer evolving objectives as needs shift.

Teamwork Makes the Dream Work: UNC1860’s Role as an Initial
Access Provider

https://cloud.google.com/blog/topics/threat-intelligence/unc1860-iran-middle-eastern-networks?hl=en
https://blog.talosintelligence.com/introducing-shrouded-snooper/
https://research.checkpoint.com/2023/from-albania-to-the-middle-east-the-scarred-manticore-is-listening/
https://www.microsoft.com/en-us/security/blog/2022/09/08/microsoft-investigates-iranian-attacks-against-the-albanian-government/
https://www.microsoft.com/en-us/security/security-insider/intelligence-reports/iran-surges-cyber-enabled-influence-operations-in-support-of-hamas
https://research.checkpoint.com/2024/bad-karma-no-justice-void-manticore-destructive-activities-in-israel/
https://cloud.google.com/blog/topics/threat-intelligence/likely-iranian-threat-actor-conducts-politically-motivated-disruptive-activity-against?e=48754805

2/37

Mandiant identified two custom, GUI-operated malware controllers tracked as TEMPLEPLAY
and VIROGREEN that we assess were used to provide a team outside of UNC1860 remote
access to victim networks. This tooling, coupled with public reporting and evidence
suggesting that the group collaborates with MOIS-affiliated groups such as APT34,
strengthens the assessment that UNC1860 acts as an initial access agent.

Using Sustained Access to Support Initial Access Operations

In 2020, Mandiant responded to an engagement in which UNC1860 used the victim’s
network as a staging area to conduct additional scanning and exploitation operations against
unrelated entities. The actor was observed scanning IP addresses predominantly located in
Saudi Arabia in an attempt to identify exposed vulnerabilities. UNC1860 also used a
command-line tool to validate credentials of accounts and email addresses across multiple
domains belonging to Qatari and Saudi Arabian entities, and later targeted VPN servers of
entities in the region.

UNC1860 Overlaps with APT34

Mandiant responded to several engagements in 2019 and 2020 in which organizations
compromised by suspected APT34 actors were previously compromised by UNC1860.
Similarly, organizations previously compromised by suspected APT34 actors were later
compromised by UNC1860, suggesting the group may play a role in assisting with lateral
movement. Mandiant additionally identified recent indications of operational pivoting to Iraq-
based targets by both APT34-related clusters and UNC1860.

Web Shell and Droppers

UNC1860 web shells and droppers, such as STAYSHANTE and SASHEYAWAY, deployed
and placed on compromised servers by the group after gaining initial access have the
potential to be used in hand-off operations based on their functionality. In March 2024, the
Israeli National Cyber Directorate was alerted to wiper activity targeting Israeli entities across
various sectors in Israel, including managed service providers, local governments, and
academia; technical indicators included the unique STAYSHANTE web shell and the
SASHEYAWAY dropper we attribute to UNC1860.

STAYSHANTE is typically installed using names masquerading as Windows server file
names or dependencies, and is controlled by the VIROGREEN custom framework
described as follows.

SASHEYAWAY has a low detection rate that allows for the smooth execution of full
passive backdoors, such as TEMPLEDOOR, FACEFACE, and SPARKLOAD,
embedded within it.

Custom, GUI-Operated Malware Controllers

https://research.checkpoint.com/2024/bad-karma-no-justice-void-manticore-destructive-activities-in-israel/
https://www.gov.il/he/pages/alert_1721

3/37

UNC1860 GUI-operated malware controllers TEMPLEPLAY and VIROGREEN could provide
third-party actors who have no previous knowledge of the target environment the ability to
remotely access infected networks via RDP and to control previously installed malware on
victim networks with ease. These controllers additionally could provide third-party operators
an interface that walks operators through how to deploy custom payloads and perform other
operations such as conducting internal scanning and exploitation within the target network.

4/37

5/37

Figure 1: Illustration of collaborator actor's command and control (C2 or C&C) used to utilize
existing UNC1860 implant infrastructure in compromised network

TEMPLEPLAY Controller

TEMPLEPLAY (MD5: c517519097bff386dc1784d98ad93f9d) is a .NET-based controller for
the TEMPLEDOOR passive backdoor. It is internally named Client Http and consists of
several tabs, each one facilitating control of a separate backdoor command.

The Command Prompt Tab (Figure 2) sends a command line to execute on the target host.
The default command is cmd /c 2 > &1 with parameter whoami.

6/37

7/37

Figure 2: TEMPLEPLAY GUI, Command Prompt Tab

The Upload File Tab (Figure 3) sends a file from a local path to a target path on the remote
machine using a POST request. The default target path is C:\Program Files\Common
Files\Microsoft Shared\Web Server Extensions\15\TEMPLATE\LAYOUTS.

8/37

9/37

Figure 3: Upload File Tab

The Download File Tab (Figure 4) is used to obtain a file from a given path on the infected
machine. The default path on the infected machine is C:\Programdata\1.txt.

10/37

11/37

Figure 4: Download File Tab

The Http Proxy Tab (Figure 5) allows a remote machine infected with TEMPLEDOOR to be
used as a middlebox that forwards data to a chosen target server. It appears that it is
primarily intended to facilitate an RDP connection with the target server, most likely in cases
where the latter is not accessible directly over the internet due to network boundaries (such
as a NAT or a firewall), but may be accessible via the TEMPLEDOOR infected machine.

12/37

13/37

Figure 5: HTTP Proxy Tab

The URLs Tab (Figure 6) includes URL endpoints that are used when connecting to the
infected machine. An endpoint string is chosen at random from the lists defined in this tab.
These endpoints correspond to the ones that are defined in the TEMPLEDOOR sample
(MD5:c57e59314aee7422e626520e495effe0).

14/37

15/37

Figure 6: URLs Tab

The TEMPLEPLAY GUI also includes a Test Backdoor link, which creates a GET request
with the string wOxhuoSBgpGcnLQZxipa as the relative URI and checks for the string
UsEPTIkCRUwarKZfRnyjcG13DFA in the response. This corresponds to an echo \ ping
mechanism that was seen in use in the TEMPLEDOOR samples
(MD5:b219672bcd60ce9a81b900217b3b5864)and MD5:c57e59314aee7422e626520e495effe0).

Additional links include the Explore link that opens a new Explorer window in the host where
the controller runs, and the Http Setting link points to a set of configuration parameters that
pertain to the HTTP requests sent between the controller and the TEMPLEDOOR passive
backdoor.

VIROGREEN Controller

VIROGREEN is a custom framework used to exploit vulnerable SharePoint servers with
CVE-2019-0604 (Figure 7). The framework provides post-exploitation capabilities including
scanning for and exploiting CVE-2019-0604; controlling post-exploitation payloads,

16/37

backdoors (including the STAYSHANTE web shell and the BASEWALK backdoor) and
tasking; controlling a compatible agent regardless of how the agent has been implanted; and
executing commands and uploading/downloading files.

Additional details on TEMPLEPLAY and VIROGREEN can be found in the Technical Annex.

https://services.google.com/fh/files/misc/unc1860-technical-annex.pdf

17/37

Figure 7: VIROGREEN GUI

18/37

UNC1860 Malware: Gaining Persistent Access

UNC1860 gains initial access to victim environments in an opportunistic manner via the
exploitation of vulnerable internet-facing servers leading to web shell deployment. After
obtaining an initial foothold, the group typically deploys additional utilities and a selective
suite of passive implants that are designed to be stealthier than common backdoors. These
provide a higher degree of operational security by removing the dependency for classic C2
infrastructure, making detection more difficult for network defenders. Cisco and Check Point
have provided extensive analysis on UNC1860’s passive implants that correspond to
OATBOAT, a loader that loads and executes shellcode payloads; Fortinet additionally
provided analysis regarding the Windows kernel driver, WINTAPIX, which has similar code to
a malicious driver we track as TOFUDRV (Figure 8 and Figure 9).

A key feature of UNC1860 includes its maintenance of this diverse collection of
passive/listener-based utilities that support the group’s initial access and lateral movement
goals. We believe the group additionally maintains a smaller collection of “main-stage”
backdoors that have greater capabilities than the usual web shells and small .NET utilities
that may be deployed for select high-priority victims in the telecommunications sector. These
implants demonstrate the group’s keen understanding of the Windows operating system
(OS) and network detection solutions, reverse engineering capabilities of Windows kernel
components, and detection evasion capabilities.

Passive implants do not initiate outbound traffic from the victim network to a C2 server.
Further, the inbound traffic containing commands or payloads can arrive from any
volatile source (e.g., VPN nodes within the target country, from another victim, or even
internally from another part of the victim network). This makes network monitoring more
difficult. Web shells and passive implants leverage HTTPS-encrypted traffic so
commands/payloads cannot be extracted from captured network traffic.

Both passive implants TOFUDRV and TOFULOAD leverage undocumented
Input/Output Control commands for communication, which requires knowledge of the
OS and can lower the chances of this traffic being detected by endpoint detection and
response (EDR) solutions.

Loading drivers is a "high risk / high reward" situation as loading them without creating
a critical error screen requires extensive knowledge both of the OS internals and victim
environments; however, using them promises lower detection rates and possibilities
akin to filtering drivers, which act as middlemen allowing for the inspection,
modification, or blocking of network traffic before it reaches the device or application,
as well as assets like file system objects and registry entries.

https://blog.talosintelligence.com/introducing-shrouded-snooper/
https://research.checkpoint.com/2023/from-albania-to-the-middle-east-the-scarred-manticore-is-listening/
https://www.fortinet.com/blog/threat-research/wintapix-kernal-driver-middle-east-countries

19/37

The passive backdoor TEMPLEDROP repurposed an Iranian AV software Windows file
system filter driver named Sheed AV (MD5: 0c93cac9854831da5f761ee98bb40c37) for
the purpose of protecting some of the files it deploys as well as its own file from
modification.

A .NET-based utility for defense evasion tracked as TEMPLELOCK was observed
being implemented in both foothold utilities such as ROTPIPE and more complex
passive implants such as TEMPLEDROP. TEMPLELOCK is capable of terminating
threats associated with the Windows Event Log service and restarting the service’s
operation on demand.

20/37

Figure 8: Driver file protection logic in WINTAPIX (MD5:
286bd9c2670215d3cb4790aac4552f22)

21/37

22/37

Figure 9: Driver file protection logic in TOFUDRV (MD5:
b4b1e285b9f666ae7304a456da01545e)

UNC1860 Unique Artifacts Suggest Consistent Development Support

In addition to the previous observations, we identified the following recurring artifacts related
to the group’s independent implementation of Base64 encoding/decoding and XOR
encryption/decryption in .NET code, despite these functions being available in build-in .NET
code.

The intent of the independent implementation of these functions is not entirely clear.
Nevertheless, it is highly likely that using such custom libraries bypasses common detections
by EDRs and other security tools—detections designed to identify usage combinations of
functions commonly seen in malware. Additionally, using these custom libraries may allow

23/37

better compatibility if any of the built-in functions change in a specific version of a .NET
control to ensure the group’s tooling is always compatible with its encryption and encoding
schemes and/or to better help evade detection.

We observed the same encoding method using the Base64 algorithm to encode and
decode data sent between controllers and proxy servers. In several cases, we
identified the reuse of a seemingly misspelled Base64 DLL using the name “bsae64” in
both foothold utilities deployed via SASHEYAWAY and passive implants including
TEMPLEDOOR.

We observed the same rolling encryption module, XORO (MD5:
57cd8e220465aa8030755d4009d0117c),dropped by the TANKSHELL utility;
TUNNELBOI network tunneller capable of establishing a connection with a remote
host, managing web shells on the network, and creating RDP connections; and the
TEMPLEPLAY controller.

Foothold Utilities and Backdoors and Malware Use for Longer Term
Persistence

Mandiant is tracking multiple foothold utilities and backdoors used in UNC1860 initial access
operations. These generally use custom obfuscation methods that can lower detection rates
and make analysis more difficult by renaming strings and function names. Additionally, we
are tracking numerous code families that we consider to be UNC1860 “main-stage” implants
that further increase the group’s persistence in victim environments.

Please see the Technical Annex for more information.

Additional Protection Information for Google Cloud Customers

For Google SecOps Enterprise+ customers, SecOps rules have been released to the
Emerging Threats rule pack, and IOCs listed in this blog post are available for prioritization
with Applied Threat Intelligence.

Indicators of Compromise (IOCs)

A Google Threat Intelligence Collection featuring IOCs related to the activity described in this
post is now available for registered users.

MD5 Hashes

1176381da7dea356f3377a59a6f0e799 41f4732ed369f2224a422752860b0bc5

https://services.google.com/fh/files/misc/unc1860-technical-annex.pdf
https://cloud.google.com/chronicle/docs/preview/curated-detections/windows-threats-category
https://cloud.google.com/chronicle/docs/detection
https://www.virustotal.com/gui/collection/bf73231856c4c981eb42fb4bd9cad60fddc444e1ec7375c4d3ad46bf18f4db41

24/37

4029bc4a06638bb9ac4b8528523b72f6 126bc1c30fba27f8bf67dce4892b1e8c

0c9ff0db00f04fd4c6a9160bffd85a1d a7693e399602eb79db537c5022dd1e01

d9719f6738dbfaa21be7f184512fe074 17b27e6aa0ab6501f11bb4d2e0f829ff

4dd6250eb2d368f500949952eb013964 69fd67c115349abb4a313230a1692642

7f5f5f290910d256e6b012f898c88bf3 c90ec587e3333dabb647ebc182673460

efe8043e1b4214640c5f7b5ddf737653 a90236e4962620949b720f647a91f101

b26d54b7da7b2bf600104f69da4ea00f d87ca3f830b8b53fde358bb64900f6af

c50ae2c4b76f0d5724ec240568c78c4f 57cd8e220465aa8030755d4009d0117c

4b2c78bb2c439998cff0cc097a14b942 4abcf21b63781a53bbc1aa17bd8d2cbc

a3ea0d13848a104c28d035a9d518acc2 bd6464f12bb6f7f02b6ffebb363d8e5f

f89be788e4adf665acf1a8ef8fcaa133 f292e61774c267c3787fdfcace50ea7b

c11a4e4a2d484513f79bd127a0387b0c 14e54ff4805840e656efb8cd38de4751

3d5d05f230ae702c04098de512d93d48 a038975255d3dda636d86ccd307f7838

31f2369d2e38c78f5b3f2035dba07c08 c21eefc65cda49f17ddd1d243a7bffb5

c8fa0ce3ae6a13af640607ea606c55f9 2cece71e107d12ffd74b2fb24bf339a6

fa1c6f7a5e02374b9d33de2578cb3399 1e896f026246872b2feb4f8e3e093815

57c916da83cc634af22bde0ad44d0db3 07db3058e32fe5f36823dc7092cd7d5b

3dd829fb27353622eff34be1eabb8f18 1e6679cd25d1bb127a0bec665adcf21e

2e803d28809be2a0216f25126efde37b 2398a83f10329a107801d3d23d06f7cb

25/37

73fb0fe5cd96a14a4f85639223aec6a8 85427a8a47c4162b48d8dfb37440665d

a500561c0b374816972094c2aa90da2a a65ee1a82975ee4c8d4e70219e1bfff5

ce537dd649a391e52c27a3f88a0a8912 e67687b4443f58d2b0a465e3af3caffe

b34883fb1630db43e06a38cebfa0bce2 46804472541ed61cc904cd14be18fe1d

4de802f7e61cb8c820a02e042b58b215 929b12bc9f9e5f8e854de1d46ebf40d9

f0dfb7bf01c0412891da8fa2702f4c7b b219672bcd60ce9a81b900217b3b5864

fc90907e70f18c7f6a6b9d9599b6f97c d1e45afbfd3424612b4a4218cc7357ef

da0085a97c38ead734885e5cced1847f 490590bfdeeedf44b3ae306409bb0d03

e86e885e6c96ac72482741d8696c17fb ca3f0d25f7da0e8cde8e1f367451c77a

7b2fa099d51fa3885766f6d60d768748 6626dbe74acd15d06ff6900071ef240c

YARA Rules

rule M_Autopatt_DropperMemonly_WINTAPIX_1 {
 meta:
 author = Mandiant
 description = "wintapix malware family"
 created = "06/26/2023"
 modified = "06/26/2023"
 version = "1.0"

 strings:
 $p00_0 = {84ec5ff5f84863f6e9[4]66458b65??4981c5[4]4d0faccf}
 $p00_1 = {0f16c00f11014c03c14883c1??
4883e1??4c2bc14d8bc849c1e9??74}
 condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and
 (
 ($p00_0 in (660000..690000) and $p00_1 in (9700..20000))
)
}

26/37

import "pe"
rule M_WINTAPIX_StringDecodingMethod_1 {
 meta:
 author = Mandiant
 hash1 = "286bd9c2670215d3cb4790aac4552f22"
 hash2 = "4dd6250eb2d368f500949952eb013964"
 desc = "Detects the byte pattern of a string decoding
method found in the WINTAPIX driver image"
 strings:
 $a1 = { 48 89 54 24 10 48 89 4C 24 08 48 83 EC 18 C7
04 24 00 00 00 00 48 63 04 24 48 8B 4C 24 ?? 0F BE 04 01
48 8B 4C 24 ?? 0F B6 49 ?? 33 C1 48 63 0C 24 48 8B 54 24
?? 88 04 0A 8B 04 24 FF C0 89 04 24 8B 04 24 FF C8 48 98
48 8B 4C 24 ?? 0F B6 04 01 85 C0 75 }
 condition:
 uint16(0) == 0x5A4D and
 filesize < 1MB and
 pe.subsystem == pe.SUBSYSTEM_NATIVE and
 all of them
}

import "pe"
rule M_WINTAPIX_PaddedStrings_1 {
 meta:
 author = Mandiant
 hash1 = "286bd9c2670215d3cb4790aac4552f22"
 hash2 = "4dd6250eb2d368f500949952eb013964"
 desc = "Detects unique strings found in the WINTAPIX
driver image"
 strings:
 $a1 = { CC CC CC CC CC CC CC 4E 74 44 65 6C 61 79
45 78 65 63 75 74 69 6F 6E 00 }
 $a2 = { CC CC CC CC CC 5C 00 }
 $a3 = "InitSafeBootMode" ascii fullword
 condition:
 uint16(0) == 0x5A4D and
 pe.subsystem == pe.SUBSYSTEM_NATIVE and
 filesize < 1MB and
 (
 (
 all of them and
 #a2 == 2
) or
 pe.imphash() == "8d070a93a45ed8ba6dba6bfbe0d084e7"
)
}

27/37

import "dotnet"
rule M_UNC1860_TEMPLEDOOR_Strings_1 {
 meta:
 author = Mandiant
 date = "28/02/2024"
 hash1 = "caffdb648a0a68cd36694f0f0c7699d7"
 desc = "Detects the TEMPLEDOOR family based on
unique strings"
 comment = "Triggers on TUNNELBOI sample
c517519097bff386dc1784d98ad93f9d"
 strings:
 $url = "{0}://+:{1}/{2}/" wide fullword
 $a1 = "+CjxoZWFkPgo8bWV0YSBodHRwLWVxdWl2
PSJDb250ZW50LVR5cGUiIGNvbnRlbnQ9InRleHQvaHRtb
DsgY2hhcnNldD1pc28tODg1OS0xIi8" wide
 $b1 = "Jet" wide fullword
 $b2 = " Ver" wide fullword
 $b3 = "CmD" wide fullword
 $c1 = "Command" wide fullword
 $c2 = "Upload" wide fullword
 $c3 = "Download" wide fullword
 $c4 = "Load" wide fullword
 $c5 = "Rundll" wide fullword
 $c6 = "ERROR" wide fullword

 condition:
 int16(0) == 0x5a4d and
 uint32(uint32(0x3C)) == 0x00004550 and
 dotnet.is_dotnet and
 $url and
 (
 $a1 or
 2 of ($b*) or
 5 of ($c*)
)
}

28/37

import "dotnet"
rule M_UNC1860_TEMPLEDOOR_BytePatterns_1 {
 meta:
 author = Mandiant
 date = "28/02/2024"
 hash1 = "caffdb648a0a68cd36694f0f0c7699d7"
 desc = "Detects the TEMPLEDOOR family based
on unique byte patterns"
 comment = "Triggers on TUNNELBOI sample
c517519097bff386dc1784d98ad93f9d and on WINPAY
sample b219672bcd60ce9a81b900217b3b5864"
 strings:
 $encode_msil = { 7E ?? ?? 00 04 1F 41 1F 61 6F ??
?? 00 0A D2 0A 02 2C 07 02 8E 16 FE 03 2B 01 16 2C 69
16 0B 2B 0F 02 07 02 07 91 06 61 19 58 D2 9C 07 17 58
0B 07 02 8E 69 FE 04 2D E9 02 28 ?? ?? 00 0A } // Packet
encoding method MSIL
 $encryption_key = { 54 62 2d 0c 03 45 49 15 2b 43
59 4a 4e 0c 40 }
 condition:
 int16(0) == 0x5a4d and
 uint32(uint32(0x3C)) == 0x00004550 and
 dotnet.is_dotnet and
 any of them
}

29/37

rule M_OBFUSLAY_UNC1860_1 {
 meta:
 desc = "Detects the UNC1860 OBFUSLAY malware by its
string decryption method"
 rs1 = "b66919a18322aa4ce2ad47d149b7fe38063cd3cfa2
e4062cd1a01ad6b3e47651"
 strings:
 $a1 = {
 FE 09 00 00
 6F ?? 00 00 0A
 FE 0E 00 00
 FE 0C 00 00
 20 02 00 00 00
 5B
 8D ?? 00 00 01
 FE 0E 01 00
 20 00 00 00 00
 FE 0E 04 00
 38 39 00 00 00
 FE 0C 01 00
 FE 0C 04 00
 20 02 00 00 00
 5B
 FE 09 00 00
 FE 0C 04 00
 20 02 00 00 00
 6F ?? 00 00 0A
 20 10 00 00 00
 28 ?? 00 00 0A
 9C
 FE 0C 04 00
 20 02 00 00 00
 58
 FE 0E 04 00
 FE 0C 04 00
 FE 0C 00 00
 3F BA FF FF FF
 FE 0C 01 00
 }
 condition:
 uint16(0) == 0x5A4D and
 all of them
}

30/37

rule M_APT_CRYPTOSLAY_UNC1860_1 {
 meta:
 desc = "Detects the UNC1860 CRYPTOSLAY malware by its
string decryption method"
 rs1 = "3F2FD2DFD27BF3CAFCBF0946E308832E11A1D9C1
D98FB04AC848E023E6720F53"
 rs2 = "5c1a42e9baaec115df337d2f4a9dcce8d73f29375921
827e367fcba8499cdfa2"
 strings:
 $a1 = {
 FE 09 00 00
 6F ?? 00 00 0A
 FE 0E 00 00
 FE 0C 00 00
 20 02 00 00 00
 5B
 8D ?? 00 00 01
 FE 0E 01 00
 20 00 00 00 00
 FE 0E 04 00
 38 39 00 00 00
 FE 0C 01 00
 FE 0C 04 00
 20 02 00 00 00
 5B
 FE 09 00 00
 FE 0C 04 00
 20 02 00 00 00
 6F ?? 00 00 0A
 20 10 00 00 00
 28 ?? 00 00 0A
 9C
 FE 0C 04 00
 20 02 00 00 00
 58
 FE 0E 04 00
 FE 0C 04 00
 FE 0C 00 00
 3F BA FF FF FF
 28 ?? 00 00 0A
 }
 $a2 = {
 FE 09 00 00
 6F ?? 00 00 0A
 FE 0E 00 00
 FE 0C 00 00
 20 02 00 00 00
 5B
 8D ?? 00 00 01
 FE 0E 01 00
 20 00 00 00 00
 FE 0E 06 00

31/37

 38 39 00 00 00
 FE 0C 01 00
 FE 0C 06 00
 20 02 00 00 00
 5B
 FE 09 00 00
 FE 0C 06 00
 20 02 00 00 00
 6F ?? 00 00 0A
 20 10 00 00 00
 28 ?? 00 00 0A
 9C
 FE 0C 06 00
 20 02 00 00 00
 58
 FE 0E 06 00
 FE 0C 06 00
 FE 0C 00 00
 FE 04
 FE 0E 07 00
 FE 0C 07 00
 3A B0 FF FF FF
 }
 condition:
 uint16(0) == 0x5A4D and
 any of them
}

rule M_Autopatt_DropperMemonly_OATBOAT_1 {
 meta:
 author = "autopatt"
 description = "oatboat malware family"
 created = "02/09/2024"
 modified = "02/09/2024"
 version = "1.0"

 strings:
 $p00_0 = {48897c24??55488bec4883ec??488bf9c745[5]33d
bc745[5]488d4d}
 $p00_1 = {443ac975??48ffc64883c3??493bf372??498b42??4885c075}
 condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and
 (
 ($p00_0 in (250..6500) and $p00_1 in (0..6000))
)
}

32/37

rule SASHEYAWAY_Strings_1 {
 meta:
 desc = "Strings observed in the webshell loader"
 rs1 = "2538767f13218503bccf31fccb74e753199
4b69a36a3780b53ba5020d938af20"
 strings:
 $ = "FromBase64String"
 $ = "Page Language=\"C#\""
 $ = "private static System.Reflection.Assembly"
 $ = "Page_Load"
 $ = "System.Reflection.MethodInfo"
 $ = "Activator.CreateInstance"
 $ = "Invoke"
 condition:
 all of them
}

rule M_Hunting_Backdoor_TOFULOAD_1 {
 meta:
 author = Mandiant
 date_created = "2023-08-15"
 date_modified = "2023-08-15"
 description = "This is a hunting rule to look for TOFULOAD
backdoor used by UNC1860"
 md5 = "d1ce3117060e85247145c82005dda985"
 strings:
 $s1 = {66 77 88 99 48 8D [2] C7 [2] 52 74 6C 52}
 // 0x99887766; LEA ??, ??; MOV ??, 'RltR';
 $s2 = {B8 E1 83 0F 3E F7 [1] C1 [1] 03 0F [2] 6B [1] 21}
 // MOV ??, 0x3E0F83E1; MUL ??, ??; SHR ??, 03; MOVZX ??, ??;
IMUL ??, ??, 21;
 $s3 = {FF [1] 40 [2] 43 32 [2] 41 88 [3] 44 8B [1] 4D [2] 7C} //
INC ??; MOV ??, ??; XOR ??, ??; MOV ??, ??; MOV ??, ??; CMP ??, ??; JL
 condition:
 filesize < 50KB and
 any of them
}

33/37

import "dotnet"
rule M_UNC1860_TEMPLEDROP_Strings_2 {
 meta:
 author = Mandiant
 date = "28/02/2024"
 hash1 = "6d3041b89484c273376e5189e190d235"
 desc = "Detects the TEMPELDROP family based on unique strings"
 comment = "Triggers on TEMPLEDOOR controller sample c517519
097bff386dc1784d98ad93f9d"
 strings:
 $a1 = "Nothing changed :D" wide fullword
 $a2 = "Access: KO" wide fullword
 $a3 = "Eventlog stoped." wide fullword
 $b1 = "The Microsoft Exchange Self Protection Driver." wide fullword
 $b2 = "The Microsoft Exchange Filter Driver." wide fullword
 $c1 = "Create RegKey: " wide
 $c2 = "Create Service: " wide
 $c3 = "Test Event lock: " wide
 $c4 = "Test http listner: " wide
 $c5 = "Test IO Changes: " wide
 $c6 = "Test 'Event lock': " wide
 $d1 = "no active http port to listen." wide
 $d2 = "Prefixes.Add Error , " wide
 $d3 = "' driver service created and started." wide
 $d4 = "' service started." wide
 $d5 = "Unhandled exception on create reg key " wide
 $d6 = "Failed to change file 'CreationTime'." wide

 condition:
 int16(0) == 0x5a4d and
 uint32(uint32(0x3C)) == 0x00004550 and
 dotnet.is_dotnet and
 (
 1 of ($a*) or
 1 of ($b*) or
 2 of ($c*) or
 2 of ($d*)
)
}

34/37

rule M_Autopatt_Backdoor_TOFUDRV_1 {
 meta:
 author = Mandiant
 description = "tofudrv malware family"
 created = "11/29/2023"
 modified = "11/29/2023"
 version = "1.0"

 strings:
 $p00_0 = {eb??33c083f8??0f85[4]488b4c24??e8[4]eb??c74424[5]eb}
 $p00_1 =
{f3aa41b8[4]33d2488d4c24??e8[4]488b8424[4]48898424[4]48638424[4]48898424}
 condition:
 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and
 (
 ($p00_0 in (34000..45000) and $p00_1 in (28000..39000))
)
}

import "pe"
rule M_TOFUDRV_Strings_1 {
 meta:
 author = Mandiant
 hash = "b4b1e285b9f666ae7304a456da01545e"
 desc = "Detects cleartext strings that appear in the TOFUDRV image"
 strings:
 $a1 = "\\systemroot\\system32\\drivers" ascii fullword
 $a2 = "\\SafeBoot\\Minimal\\" ascii fullword
 $a3 = "\\REGISTRY\\MACHINE\\SYSTEM\\CurrentControlSet\\Control"
ascii fullword
 $a4 = "\\SafeBoot\\Network\\" ascii fullword
 $a5 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
ascii fullword
 $a6 = "Found" ascii fullword
 condition:
 uint16(0) == 0x5A4D and
 filesize < 500KB and
 pe.subsystem == pe.SUBSYSTEM_NATIVE and
 (
 3 of them or
 pe.imphash() == "ff6f16b00c9f36b32cd60fecd4dfc8e9"
)
}

35/37

import "pe"
rule M_TOFUDRV_RtlSubtreeStackStrings_1 {
 meta:
 author = Mandiant
 hash = "b4b1e285b9f666ae7304a456da01545e"
 desc = "Detects a stack string byte pattern in a function intended
to resolve the memory image base of ntoskrnl.exe in TOFUDRV"
 strings:
 // "RtlSubtreePredecessor"
 $a1 = { C6 44 24 ?? 52 C6 44 24 ?? 74 C6 44 24 ?? 6C C6 44 24 ??
53 C6 44 24 ?? 75 C6 44 24 ?? 62 C6 44 24 ?? 74 C6 44 24 ?? 72 C6 44
24 ?? 65 C6 44 24 ?? 65 C6 44 24 ?? 50 C6 44 24 ?? 72 C6 44 24 ?? 65
C6 44 24 ?? 64 C6 44 24 ?? 65 }
 // "RtlSubtreeSuccessor"
 $a2 = { C6 84 24 ?? 00 00 00 6C C6 84 24 ?? 00 00 00 53 C6 84 24
?? 00 00 00 75 C6 84 24 ?? 00 00 00 62 C6 84 24 ?? 00 00 00 74 C6 84
24 ?? 00 00 00 72 C6 84 24 ?? 00 00 00 65 C6 84 24 ?? 00 00 00 65 C6
84 24 ?? 00 00 00 53 C6 84 24 ?? 00 00 00 75 }
 $KeGetPcr = { 65 48 8B 04 25 18 00 00 00 48 89 44 24 }
 condition:
 uint16(0) == 0x5A4D and
 filesize < 500KB and
 pe.subsystem == pe.SUBSYSTEM_NATIVE and
 $KeGetPcr and
 any of ($a*)
}

rule M_Dropper_MSIL_TEMPLESHOT_1 {
 meta:
 author = Mandiant
 date_created = "2020-05-22"
 date_modified = "2020-05-22"
 md5 = "6d3041b89484c273376e5189e190d235"
 rev = 2
 strings:
 $ss1 = "--install" fullword wide
 $ss2 = "' directory created." fullword wide
 $ss3 = "' file created." fullword wide
 $ss4 = "' service created." fullword wide
 $ss5 = "Nothing changed :D" fullword wide
 $ss6 = "\x00ProtectDriver\x00"
 $ss7 = "\x00WriteAllBytes\x00"
 $ss8 = "\x00CopyTime\x00"
 $ss9 = "T\x00V\x00q\x00Q\x00"
 condition:
 (
 uint16(0) == 0x5A4D and
 uint32(uint32(0x3C)) == 0x00004550
) and
 all of them
}

36/37

rule M_Backdoor_MSIL_TEMPLESHOT_2 {
 meta:
 author = Mandiant
 date_created = "2020-05-22"
 date_modified = "2020-05-22"
 md5 = "a991bdbf1e36d7818d7a340a35a4ea26"
 rev = 2
 strings:
 $sb1 = { 02 7B [2] 00 04 [0-8] FE 03 [0-8] 39 [4-8] 02 7B [2] 00 04
[5] 0? 02 7B [2] 00 04 [5-12] 0C }
 $sb2 = { 7B [2] 00 04 [0-16] 13 ?? 11 [1-8] 17 59 45 04 00 00 00 02
[4-64] 2B ?? 02 [1-2] 7B [2] 00 04 73 [2] 00 06 28 [2] 00 06 0A 2B ?? 02
[1-2] 7B [2] 00 04 73 [2] 00 06 28 [2] 00 06 [0-4] 0A 2B }
 $ss1 = "\x00set_UseShellExecute\x00"
 $ss2 = "\x00HttpListenerRequest\x00"
 $ss3 = "\x00HttpListenerResponse\x00"
 $ss4 = "\x00HttpListener\x00"
 condition:
 (
 uint16(0) == 0x5A4D and
 uint32(uint32(0x3C)) == 0x00004550
) and
 all of them
}

rule M_Backdoor_MSIL_TEMPLESHOT_1 {
 meta:
 author = Mandiant
 date_created = "2020-05-22"
 date_modified = "2020-05-22"
 md5 = "952482949f495fb66e493e441229ae4b"
 rev = 2
 strings:
 $sb1 = { 06 17 7D [4] 06 20 36 01 00 C0 7D [4] DE 00 07
15 3B [4] 07 28 [4-12] 0D [8-64] 11 06 [4-12] 13 07 11 07 39 [4-32]
20 FF FF 1F 00 12 09 [0-12] 11 09 12 0A [4-12] 12 0A 11 07 }
 $ss1 = "\x00GetProcessById\x00"
 $ss2 = "\x00NtOpenThread\x00"
 $ss3 = "\x00NtQueryInformationThread\x00"
 $ss4 = "\x00ReadProcessMemory\x00"
 $ss5 = "\x00NtTerminateProcess\x00"
 $ss6 = "\x00set_UseShellExecute\x00"
 $ss7 = "\x00DESCryptoServiceProvider\x00"
 $ss8 = "\x00GetExecutingAssembly\x00"
 condition:
 (
 uint16(0) == 0x5A4D and
 uint32(uint32(0x3C)) == 0x00004550
) and
 all of them
}

37/37

Posted in
Threat Intelligence

https://cloud.google.com/blog/topics/threat-intelligence

