
1/26

Handala’s Wiper: Threat Analysis and Detections
splunk.com/en_us/blog/security/handalas-wiper-threat-analysis-and-detections.html

Security
September 06, 2024

 |
17 Minute Read

On July 19, 2024, CrowdStrike released configuration updates for its Windows sensor, aiming to
enhance security and performance. Unfortunately, this update inadvertently led to widespread
downtime, manifesting as Blue Screen of Death (BSOD) on millions of machines worldwide. The
BSOD, a critical system error screen, halts all operations, rendering affected systems inoperable
until resolved.

This event was subsequently exploited by threat actors to launch malicious campaigns, one in
particular looking to deploy destructive wiper payloads to targeted hosts and network systems.
Unlike typical cybercrime activities focused on stealing information, these attacks were specifically
designed to cause damage.

https://www.splunk.com/en_us/blog/security/handalas-wiper-threat-analysis-and-detections.html
https://www.splunk.com/en_us/blog/security.html
https://blogs.microsoft.com/blog/2024/07/20/helping-our-customers-through-the-crowdstrike-outage/

2/26

On July 20, 2024, a malware analysis platform shared a phishing attachment and a destructive
wiper payload associated with this campaign. Cisco Talos and others have reported this to be the
Handala Hacking Team, which has been active since at least December 2023.

In this blog, Cisco Talos and the Splunk Threat Research Team provide a comprehensive analysis
that expands on existing coverage and offers unique insights. We’ll cover:

Handala wiper attribution details
An overview of Handala Hacking Team
An in-depth analysis of the campaign's attack chain, including:

Mapping each component of the attack chain to MITRE ATT&CK Tactics and
Techniques to contextualize the threat within the broader cybersecurity landscape
An overview of the simple yet effective batch script obfuscation techniques used by the
attacker to evade detection
An overview of the unconventional use of no-file-extension files in the Nullsoft
Scriptable Install System (NSIS) package, shedding light on lesser-known attack
vectors

Detection strategies using Splunk's out-of-the-box security content, empowering
organizations to protect against this wiper malware
Atomic Red Team simulations for proactive testing and validation of defenses

Handala Wiper Attribution Details

Although the Handala Hacking Team claimed responsibility for the attacks on July 21, 2024, on
their data leak site, there was some overlap with previously observed Handala Hacking Team
activity. The group used a Telegram channel as a command and control (C2) server and used
AutoIT to inject the wiper payload into a new Windows process.

Group Overview

Active since at least December 18, 2023, Handala Hacking Team is a pro-Palestinian hacktivist
group that heavily targets Israeli organizations, including organizations who support or conduct
business within Israel since emerging in the threat landscape. Handala refers to the name of a
character that was created in 1969 by political cartoonist Naji al-Ali that later became a symbol of
identity and defiance of the Palestinian people. The Handala character is used by the hacktivist
group across their social media accounts on Telegram, Tox and X. (1) (2) (3)

The Handala Hacking Team is notable for employing a wide range of sophisticated tactics and
techniques, including data theft, phishing, extortion, website defacement and destructive attacks
leveraging custom wiper malware that targets Windows and Linux environments.

The group also operates a data leak site where data allegedly stolen during attacks is leaked. At
least one organization publicly dismissed claims that the Handala Hacking Team attacked them or
exfiltrated data from their environment. This indicates the group may be exaggerating claims of
attacks, which is commonly observed within the hacktivism landscape.

https://x.com/anyrun_app/status/1814658084460957890
https://blog.talosintelligence.com/
https://www.trellix.com/blogs/research/handalas-wiper-targets-israel/
https://talosintelligence.com/
https://www.splunk.com/en_us/surge/threat-research.html
https://attack.mitre.org/
https://en.wikipedia.org/wiki/Handala
https://www.npr.org/2024/02/06/1228097975/handala-naji-al-ali-cartoon-palestinian-symbol
https://www.nytimes.com/2024/05/17/arts/design/handala-palestinian-cartoon-protest.html
https://hackread.com/hackers-claim-740gb-of-data-viber-messaging-app/?web_view=true

3/26

Handala Hacking Team primarily uses phishing, including SMS, as a means of gaining initial
access for their attacks. Within the phishing messages, the hacktivist group masquerades as
legitimate organizations offering support or solutions to known issues with malicious links or
attachments. The Handala Hacking Team takes advantage of major events and newly disclosed
critical vulnerabilities to opportunistically create phishing campaigns using advanced social
engineering techniques.

Cisco Talos assesses with moderate confidence that at least one member of the group is fluent in
Hebrew due to the well-crafted emails and text messages used within their attacks.

Attack Chain Tactics and Techniques

Spear Phishing Attachment (T1566.001)

The phishing campaign utilizes a .PDF attachment to deceive users. As depicted in Figure 4,
threat actors craft the PDF to entice users by presenting it as a solution to the recent downtime
issue. The document contains a link, which, when clicked, purportedly downloads a fix tool to
resolve the BSOD problem, but actually, this link directs users to malicious software that wipes the
compromised systems. This tactic underscores the social engineering strategies used by threat
actors to exploit issues during crisis events.

Figure 3 is a simple diagram to visually depict the attack chain of this malicious campaign to deliver destructive payload.
 Figure 3: Wiper Execution Flow(For a larger resolution of this diagram visit this link)

https://imgur.com/a/WcPbK1O

4/26

By examining the PDF's URI object, you can identify the malicious URL link designed to download
the fake fix tool or malicious payload.

Command and Scripting Interpreter (T1059)

The phishing campaign leverages a Nullsoft Scriptable Install System (NSIS) installer to help
execute malicious payloads. The following is a breakdown of the NSIS installer:

A user downloads what appears to be a legitimate update file (e.g., update.zip).
Upon extraction, it produces an executable:- a compiled NSIS installer.
Initially, the extracted files may appear as meaningless or blob-like data.
However, the NSIS script controlling the installation process often contains obfuscated
commands and payloads.

The NSIS script can be crafted to implement various malicious activities, e.g.:

Complex evasion techniques to avoid detection
Multi-stage payload delivery
Persistent infection strategies
Silent installation modes for stealthy compromise
Customized user interfaces for convincing social engineering tactics

The dual nature of NSIS highlights an ongoing challenge in cybersecurity: distinguishing between
legitimate software and malicious payloads. Its plug-in system and web installation capabilities,
while beneficial for modular software design and updates, could potentially be misused for
malware distribution or command-and-control communication.

Figure 4: Malicious URL

5/26

The NSIS script contains obfuscated or "garbage" code to hinder static analysis and make it
challenging to analyze the scripts. It also employs stack-based techniques to initialize variables
critical for its operations.

Figure 6 demonstrates how the stack is leveraged to assemble and execute commands that copy
the "Carroll" file to "Carroll.cmd" and subsequently execute it.

cmd /k copy Carroll Carroll.cmd & Carroll.cmd & exit

Figure 5: Preview of NSIS Package Files

6/26

Obfuscated Files or Information (T1027)

The "Carroll" file mentioned above employs a simple yet clever obfuscation technique for Windows
Command Shell scripts, making them challenging to analyze at first glance. This method scatters
garbage or invalid Windows commands among legitimate batch script instructions. Despite the
presence of these invalid commands, the Windows Operating System can still execute the
underlying valid script. This approach effectively masks the true functionality of the script while
allowing it to run as intended, creating a layer of complexity for analysts attempting to understand
its purpose.

Time Based Evasion (T1497.003)

The batch script begins by checking for the presence of two antivirus processes—wrsa.exe
(Webroot Antivirus Component) and opssvc.exe (Quick Heal Antivirus Component)—using the
tasklist command. If these processes are not detected, the script instructs the system to pause
execution for approximately 90 to 180 seconds by using the “ping -n” parameter.

Figure 6: NSIS Script

Figure 7: Obfuscated Batch Script

7/26

The script performs an additional check for the presence of various antivirus processes on the
targeted host, including `avastui.exe` (AVAST), `avgui.exe` (AVG), `bdservicehost.exe`
(Bitdefender), `nswscsvc.exe` (Norton AV), and `sophoshealth.exe` (Sophos). If these processes
are not found, the script creates a directory named `564784` and drops two files within it, which
are the AutoIt components of this malware.

Figure 8 presents code snippets from the de-obfuscated “Carroll” batch script, showing the
purpose of the seemingly random or "garbage" commands shown in Figure 7. The code reveals
that the script searches for the string “locatedflatrendsoperating” in a file from Ukraine, followed by
concatenating several files designated as `AutoIt3.exe` and a `.a3x` file named “L.” This reveals
how the malware obfuscates its actions and components while preparing for execution.

Upon investigating the concatenated files, the Splunk Threat Research Team discovered that they
consist of executable code segments assembled like a puzzle. This is similar to the .a3x file that
contains a malicious compiled AutoIt script responsible for loading the final payload, which is the
wiper. This multi-component approach serves as an effective defense evasion strategy against
Endpoint Detection and Response (EDR) and antivirus (AV) products. By distributing the payload
across several files and utilizing obfuscation, the malware can bypass detection mechanisms that
monitor NSIS components for potentially harmful executables or embedded modules.

Figure 8: De-obfuscated Batch Script

8/26

AutoHotKey & AutoIT (T1059.010)

The decompressed script of the dropped `.a3x` file reveals the use of simple obfuscation
techniques to conceal its strings and AutoIt commands from static analysis and detection. Upon
decoding, the Splunk Threat Research Team observed that this AutoIt component is designed to
load shellcode tailored to the machine's architecture (x32 or x64). This shellcode then uses the
`RtlDecompressFragment()` API to decompress the actual wiper payload and inject it into a
Regasm.exe process. Figures 10 and 11 show screenshots of the decrypted command that we
observed during our analysis.

Figure 9: Multi-executable Code Fragments

9/26

Gather Victim Information (T1590, T1589)

The wiper payload collects network and system information from the targeted or compromised
host, including IP address, hostname, username, domain, and disk space. This information is sent
to a Telegram bot server, which acts as the C2 center for the destructive malware.

Figure 10: Autoit Shellcode Setup

Figure 11: The Snippet of Compressed Wiper Payload Setup

10/26

We also discovered an interesting public IP check web service used to retrieve the public IP
address of the compromised host. Figure 13 shows a screenshot demonstrating how
http[:]//icanhazip[.]com is used to obtain the IP address.

Automated Exfiltration (T1020)

Using the Telegram application, the threat actor created a bot to serve as the C2 for the malware.
This bot is responsible for sending information from the compromised host, including undeleted
files and the victim's details as mentioned earlier.

Figure 12: Gather System Information

Figure 13: GET IP Function

Figure 14: Telegram Bot

https://telegram.org/

11/26

Disk Structure Wipe (T1561.002)

The wiper starts with a deceptive message box, claiming that it will install an update to fix the
issue. However, in reality, it executes a function to wipe or overwrite all the files on the system.

Figure 16 illustrates the function responsible for overwriting files with 4,096 bytes of random data.
This destructive code can render the compromised host unbootable and unrecoverable. If the file
size is less than 4,096 bytes, a new array will be created to overwrite that portion but this time it is
filled with zeroes.

Figure 15: Luring Update MessageBox

12/26

Exploitation for Privilege Escalation BYOVD (T1068)

We also observed that after overwriting a file, the wiper will delete it. Additionally, the wiper
employs a technique known as "Bring Your Own Vulnerable Driver" (BYOVD), utilizing a driver
named ListOpenedFileDrv_32.sys. This driver is loaded as a service by the wiper's .DLL
component, named OpenFileFinder.dll.

It's important to note that this driver is not inherently malicious. Rather, it's a simple tool designed
for a specific memory access task: to access kernel memory and retrieve file names. The driver
accomplishes this by using the DeviceIoControl function to receive a memory address, then
copying the file name from the FILE_OBJECT at that address and returning it as an output
parameter.

This driver may not work with the latest Windows operating systems due to being unsigned and
32-bit. However, it is likely to load properly on older versions of Windows, such as Windows XP,
Windows Vista, and early versions of Windows 7 (32-bit).

Figure 16: Overwrite Files

13/26

We pivoted on the sample shared by VirusTotal
(9e519211947c63d9bf6f4a51bc161f5b9ace596c2935a8eedfce4057f747b961) and found that this
is not the first time this driver has been utilized in campaigns. One artifact that stood out was the
debug artifacts path:
t:\naveen\pgms\cpp\openfilefinder_src_vc8\listfiledrv\objfre_wxp_x86\i386\ListOpenedFileDrv.pdb

This path leads to samples that are both signed and unsigned. At times, based on upload paths of
other samples when pivoting on authentihash or impash, it appears the file is shipped with various
different applications. While investigating the driver and DLL, we found the source which confirms
the driver's simple functionality: "The only thing the driver does is copy the file name in the kernel
memory and pass it to the user mode. Using the function DeviceIoControl, the pAddress is passed
to the driver. The driver accepts this address and copies the file name from FILE_OBJECT, setting
it in the out parameter of the DeviceIoControl function."

Detections

Suspicious Process File Path

The following analytic identifies processes running from file paths not typically associated with
legitimate software. It leverages data from EDR agents, focusing on specific process paths within
the endpoint data model. This activity is significant because adversaries often use unconventional
file paths to execute malicious code without requiring administrative privileges. If confirmed
malicious, this behavior could indicate an attempt to bypass security controls, leading to
unauthorized software execution, potential system compromise, and further malicious activities
within the environment.

Figure 17: Bring Your Own Vulnerable Driver

https://www.virustotal.com/gui/file/9e519211947c63d9bf6f4a51bc161f5b9ace596c2935a8eedfce4057f747b961/detection
https://www.virustotal.com/gui/search/authentihash%253Af120d8a5071f3f7d13e5eb9548012372fc22857812a26d1bf952fbe21f5ecabc/files
https://www.virustotal.com/gui/search/imphash%253Ae587ca1b5c95a961b47ac7ad8f13d539/files
https://www.codeproject.com/Articles/18975/Listing-Used-Files
https://splunkresearch.com/endpoint/9be25988-ad82-11eb-a14f-acde48001122/

14/26

| tstats `security_content_summariesonly` count values(Processes.process_name)
 as process_name values(Processes.process) as process min(_time) as firstTime max(_time)

 as lastTime from datamodel=Endpoint.Processes where Processes.process_path =
"*\\windows\\fonts*"

 OR Processes.process_path = "*\\windows\\temp*" OR Processes.process_path =
"*\\users\\public*"

 OR Processes.process_path = "*\\windows\\debug*" OR Processes.process_path =
"*\\Users\\Administrator\\Music*"

 OR Processes.process_path = "*\\Windows\\servicing*" OR Processes.process_path
 = "*\\Users\\Default*" OR Processes.process_path = "*Recycle.bin*" OR

Processes.process_path
 = "*\\Windows\\Media*" OR Processes.process_path = "\\Windows\\repair*" OR

Processes.process_path
 = "*\\temp*" OR Processes.process_path = "*\\PerfLogs*" by

Processes.parent_process_name
 Processes.parent_process Processes.process_path Processes.dest Processes.user |

 `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`

 | `security_content_ctime(lastTime)`
 | `suspicious_process_file_path_filter`

Executables Or Script Creation In Suspicious Path

The following analytic identifies the creation of executables or scripts in suspicious file paths on
Windows systems. It leverages the Endpoint.Filesystem data model to detect files with specific
extensions (e.g., .exe, .dll, .ps1) created in uncommon directories (e.g., \windows\fonts\,
\users\public). This activity is significant as adversaries often use these paths to evade detection
and maintain persistence. If confirmed malicious, this behavior could allow attackers to execute
unauthorized code, escalate privileges, or persist within the environment, posing a significant
security threat.

Figure 18: Detection for Suspicious Process File Path

https://splunkresearch.com/endpoint/a7e3f0f0-ae42-11eb-b245-acde48001122/

15/26

|tstats `security_content_summariesonly` values(Filesystem.file_path) as
 file_path count min(_time) as firstTime max(_time) as lastTime from
datamodel=Endpoint.Filesystem

 where (Filesystem.file_name = *.exe OR Filesystem.file_name = *.dll OR
Filesystem.file_name

 = *.sys OR Filesystem.file_name = *.com OR Filesystem.file_name = *.vbs OR
Filesystem.file_name

 = *.vbe OR Filesystem.file_name = *.js OR Filesystem.file_name = *.ps1 OR
Filesystem.file_name

 = *.bat OR Filesystem.file_name = *.cmd OR Filesystem.file_name = *.pif) AND (
Filesystem.file_path

 = *\\windows\\fonts* OR Filesystem.file_path = *\\windows\\temp* OR
Filesystem.file_path

 = *\\users\\public* OR Filesystem.file_path = *\\windows\\debug* OR
Filesystem.file_path

 = *\\Users\\Administrator\\Music* OR Filesystem.file_path = *\\Windows\\servicing*
 OR Filesystem.file_path = *\\Users\\Default* OR Filesystem.file_path = *Recycle.bin*
 OR Filesystem.file_path = *\\Windows\\Media* OR Filesystem.file_path =

\\Windows\\repair
 OR Filesystem.file_path = *\\AppData\\Local\\Temp* OR Filesystem.file_path =

\\PerfLogs)
 by Filesystem.file_create_time Filesystem.process_id Filesystem.file_name

Filesystem.user
 | `drop_dm_object_name(Filesystem)`

 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

 | `executables_or_script_creation_in_suspicious_path_filter`

Windows AutoIt3 Execution

The following analytic detects the execution of AutoIt3, a scripting language often used for
automating Windows GUI tasks and general scripting. It identifies instances where AutoIt3 or its
variants are executed by searching for process names or original file names matching
'autoit3.exe'. This activity is significant because attackers frequently use AutoIt3 to automate
malicious actions, such as executing malware. If confirmed malicious, this activity could lead to
unauthorized code execution, system compromise, or further propagation of malware within the
environment.

Figure 19: Detection for Executables Or Script Creation In Suspicious Path

https://splunkresearch.com/endpoint/0ecb40d9-492b-4a57-9f87-515dd742794c/

16/26

| tstats `security_content_summariesonly` count min(_time) as firstTime max(_time)
 as lastTime from datamodel=Endpoint.Processes where Processes.process_name IN
("autoit3.exe",

 "autoit*.exe") OR Processes.original_file_name IN ("autoit3.exe", "autoit*.exe")
 by Processes.dest Processes.user Processes.parent_process_name Processes.process_name

 Processes.original_file_name Processes.process Processes.process_id
Processes.parent_process_id

 | `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`

 | `security_content_ctime(lastTime)`
 | `windows_autoit3_execution_filter`

Windows Gather Victim Network Info Through Ip Check Web Services

The following analytic detects processes attempting to connect to known IP check web services.
This behavior is identified using Sysmon EventCode 22 logs, specifically monitoring DNS queries
to services like "wtfismyip.com" and "ipinfo.io". This activity is significant as it is commonly used by
malware, such as Trickbot, for reconnaissance to determine the infected machine's IP address. If
confirmed malicious, this could allow attackers to gather network information, aiding in further
attacks or lateral movement within the network.

sysmon` EventCode=22 QueryName IN ("*wtfismyip.com", "*checkip.*", "*ipecho.net",
 "*ipinfo.io", "*api.ipify.org", "*icanhazip.com", "*ip.anysrc.com","*api.ip.sb",
 "ident.me", "www.myexternalip.com", "*zen.spamhaus.org", "*cbl.abuseat.org",

"*b.barracudacentral.org",
 "*dnsbl-1.uceprotect.net", "*spam.dnsbl.sorbs.net", "*iplogger.org*", "*ip-api.com*",

 "*geoip.*", "*icanhazip*") | stats min(_time) as firstTime max(_time) as lastTime
count by Image

 ProcessId QueryName QueryStatus QueryResults EventCode Computer | rename Computer
 as dest

 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

Figure 20: Detection for Windows Autoit3 Execution

Figure 21: Detection for Windows Gather Victim Network Info Through Ip Check Web Services

https://splunkresearch.com/endpoint/70f7c952-0758-46d6-9148-d8969c4481d1/

17/26

Detect Regasm with no Command Line Arguments

The following analytic detects instances of regasm.exe running without command line arguments.
This behavior typically indicates process injection, where another process manipulates
regasm.exe. The detection leverages EDR data, focusing on process names and command-line
executions.

| tstats `security_content_summariesonly` count FROM datamodel=Endpoint.Processes where
`process_regasm` by _time span=1h Processes.process_id Processes.process_name
Processes.dest Processes.user Processes.process_path Processes.process
Processes.parent_process_name

 | `drop_dm_object_name(Processes)`
 | `security_content_ctime(firstTime)`

 | `security_content_ctime(lastTime)`
 | regex process="(?i)(regasm\.exe.{0,4}$)"

 | `detect_regasm_with_no_command_line_arguments_filter`

Detect Regasm with Network Connection

The following analytic detects the execution of regasm.exe establishing a network connection to a
public IP address, excluding private IP ranges. This detection leverages Sysmon EventID 3 logs to
identify such behavior. This activity is significant as regasm.exe is a legitimate Microsoft-signed
binary that can be exploited to bypass application control mechanisms.

`sysmon` EventID=3 dest_ip!=10.0.0.0/8 dest_ip!=172.16.0.0/12 dest_ip!=192.168.0.0/16
process_name=regasm.exe

 | stats count min(_time) as firstTime max(_time) as lastTime by dest, user, process_name,
src_ip, dest_ip

 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

 | `detect_regasm_with_network_connection_filter`

Figure 22: Detection for Regasm with No Command Line Arguments

https://research.splunk.com/endpoint/c3bc1430-04e7-4178-835f-047d8e6e97df/
https://research.splunk.com/endpoint/07921114-6db4-4e2e-ae58-3ea8a52ae93f/

18/26

Windows High File Deletion Frequency

The following analytic identifies a high frequency of file deletions by monitoring Sysmon Event ID
23 and 26 for specific file extensions. This detection leverages Sysmon logs to track deleted target
filenames, process names, and process IDs. Such activity is significant as it often indicates
ransomware behavior, where files are encrypted and the originals are deleted.

`sysmon` EventCode IN ("23","26") TargetFilename IN ("*.cmd", "*.ini","*.gif", "*.jpg",
"*.jpeg", "*.db", "*.ps1", "*.doc", "*.docx", "*.xls", "*.xlsx", "*.ppt", "*.pptx",
"*.bmp","*.zip", "*.rar", "*.7z", "*.chm", "*.png", "*.log", "*.vbs", "*.js", "*.vhd",
"*.bak", "*.wbcat", "*.bkf" , "*.backup*", "*.dsk", "*.win") NOT TargetFilename IN
("*\\INetCache\\Content.Outlook*")

 | stats count, values(TargetFilename) as deleted_files, min(_time) as firstTime,
max(_time) as lastTime by user, dest, signature, signature_id, Image, process_name,
process_guid

 | rename Image as process
 | where count >=100

 | `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

 | `windows_high_file_deletion_frequency_filter`

Windows Data Destruction Recursive Exec Files Deletion

Figure 23: Detection for Regasm with Network Connection

Figure 24: Detection for Windows High File Deletion Frequency

https://research.splunk.com/endpoint/45b125c4-866f-11eb-a95a-acde48001122/
https://research.splunk.com/endpoint/3596a799-6320-4a2f-8772-a9e98ddb2960/

19/26

The following analytic identifies a suspicious process that is recursively deleting executable files
on a compromised host. It leverages Sysmon Event IDs 23 and 26 to detect this activity by
monitoring for a high volume of deletions or overwrites of files with extensions like .exe, .sys, and
.dll.

`sysmon` EventCode IN ("23","26") TargetFilename IN ("*.exe", "*.sys", "*.dll")
| bin _time span=2m

 | stats count, values(TargetFilename) as deleted_files, min(_time) as firstTime,
max(_time) as lastTime by user, dest, signature, signature_id, Image, process_name,
process_guid

 | rename Image as process
 | where count >=100

| `security_content_ctime(firstTime)`
 | `security_content_ctime(lastTime)`

 | `windows_data_destruction_recursive_exec_files_deletion_filter`

Simulation

By simulating techniques employed by the adversary in this real-world campaign, security teams
can assess their detection and response capabilities against tactics that have been observed in
actual malicious operations. This approach allows organizations to proactively identify gaps in their
defenses and improve their overall security posture against current and emerging threats.

To specifically support teams looking to test their defenses against this particular wiper threat, we
generated an NSIS script that performs three main Atomic Tests that simulate different techniques
that adversaries might use: an AutoIT test, a RegAsm.exe test, and a driver loading test.

You may retrieve the NSIS script here. Below, we’ll provide an overview of how each test works.

AutoIt Test

This test demonstrates how an attacker might use AutoIt to run arbitrary scripts on a system.

Figure 25: Detection for Windows Data Destruction Recursive Exec Files Deletion

https://gist.github.com/MHaggis/5af86a70a0e7d6eb0c3953059f2b8e5f

20/26

AutoIt is a scripting language designed for automating Windows GUI and general scripting. It's
sometimes misused by attackers to evade detection. The script performs the following steps:

1. Downloads AutoIt from the official website:

 NSISdl::download "https://www.autoitscript.com/cgi-bin/getfile.pl?autoit3/autoit-
v3.zip" "$INSTDIR\autoit-v3.zip"

2. Extracts the downloaded AutoIt package:

 nsExec::ExecToLog 'powershell.exe -NoProfile -ExecutionPolicy Bypass -Command "Expand-
Archive -Path \"$INSTDIR\autoit-v3.zip\" -DestinationPath \"$INSTDIR\AutoIt\" -Force"'

3. Creates a simple AutoIt script:

 FileWrite $0 'MsgBox(0, "Atomic Message", "hello from Atomic Red Team")'

4. Executes the AutoIt script and spawns a message box:

 ExecWait '"$AutoItExe" "$INSTDIR\atomic_script.au3"'

RegAsm.exe Test (T1218.009)

21/26

RegAsm.exe is a legitimate Windows tool that can be abused for DLL execution. This test
showcases how an attacker might abuse RegAsm.exe to run malicious code. The script does the
following:

1. Writes a C# source code file (T1218.009.cs) to disk:

 !insertmacro T1218_009_CS_CONTENT

2. Compiles the C# code into a DLL:

 nsExec::ExecToLog 'C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe
/r:System.EnterpriseServices.dll /out:"$INSTDIR\T1218.009.dll" /target:library
"$INSTDIR\T1218.009.cs"'

3. Executes RegAsm.exe with the compiled DLL, showcasing in the NSIS Show Details window:

 nsExec::ExecToLog 'C:\Windows\Microsoft.NET\Framework\v4.0.30319\regasm.exe /U
"$INSTDIR\T1218.009.dll"'

Driver Loading Test

This test simulates an attempt to load a malicious kernel driver, which could be used by attackers
to gain deep system access.

https://github.com/redcanaryco/atomic-red-team/blob/master/atomics/T1218.009/src/T1218.009.cs

22/26

The script performs these steps:

1. Extracts the driver file:

 File "/oname=$INSTDIR\driver.sys" "path\to\your\ListOpenedFileDrv_32.sys"

2. Attempts to create a service for the driver:

 nsExec::ExecToLog 'sc.exe create TestDriver type= kernel binPath=
"$INSTDIR\driver.sys"'

3. Tries to start the service:

 nsExec::ExecToLog 'sc.exe start TestDriver'

IOCs

File Hash

96dec6e07229201a02f538310815c695cf6147c548ff1c6a0def2fe38f3dcbc8 update.zip

19001dd441e50233d7f0addb4fcd405a70ac3d5e310ff20b331d6f1a29c634f0 Phishing
attachment (pdf)

8316065c4536384611cbe7b6ba6a5f12f10db09949e66cb608c92ae8b69e4d67 OpenFileFinder.dll

Learn More

23/26

This blog helps security analysts and Splunk customers enhance their threat detection capabilities
and strengthen their defenses against sophisticated malware campaigns like Handala's Wiper. You
can implement the detections in this blog in Splunk Enterprise Security using the Splunk
Enterprise Security Content Update app. To view the Splunk Threat Research Team’s complete
security content repository, visit research.splunk.com.

Feedback

Any feedback or requests? Feel free to put in an issue on Github and we’ll follow up. Alternatively,
join us on the Slack channel #security-research. Follow these instructions if you need an invitation
to our Splunk user groups on Slack.

Contributors

We would like to thank Teoderick Contreras, Michael Haag, Jose Hernandez, Nicole Hoffman and
Eric Kuhla, Nick Biasini and Cisco Talos for authoring this post and the entire Splunk Threat
Research Team for their contributions.

Digital Resilience Pays Off

Download this e-book to learn about the role of Digital Resilience across enterprises.

Download now

https://www.splunk.com/en_us/products/enterprise-security.html
https://splunkbase.splunk.com/app/3449/
http://research.splunk.com/
https://splunk-usergroups.slack.com/
https://docs.splunk.com/Documentation/Community/1.0/community/Chat
https://twitter.com/tccontre18
https://twitter.com/M_haggis
https://twitter.com/_josehelps
https://blog.talosintelligence.com/author/nicole/
https://x.com/E191145
https://x.com/infosec_nick
https://talosintelligence.com/
https://www.splunk.com/en_us/form/digital-resilience-pays-off.html
https://www.splunk.com/en_us/form/digital-resilience-pays-off.html

24/26

Splunk Threat Research Team
The Splunk Threat Research Team is an active part of a customer’s overall defense strategy by
enhancing Splunk security offerings with verified research and security content such as use cases,
detection searches, and playbooks. We help security teams around the globe strengthen
operations by providing tactical guidance and insights to detect, investigate and respond against
the latest threats. The Splunk Threat Research Team focuses on understanding how threats,
actors, and vulnerabilities work, and the team replicates attacks which are stored as datasets in
the Attack Data repository.

Our goal is to provide security teams with research they can leverage in their day to day
operations and to become the industry standard for SIEM detections. We are a team of industry-
recognized experts who are encouraged to improve the security industry by sharing our work with
the community via conference talks, open-sourcing projects, and writing white papers or blogs.
You will also find us presenting our research at conferences such as Defcon, Blackhat, RSA, and
many more.

Read more Splunk Security Content.

Related Articles

Security 5 Min Read

Revisiting the Big Picture: Macro-level ATT&CK Updates for 2023

SURGe reviews the latest attacker trends and behaviors with this look at four years of ATT&CK
data from some of the largest and most trusted threat reporting sources.

Security 5 Min Read

STRT-TA03 CPE - Destructive Software

https://www.splunk.com/en_us/blog/author/secmrkt-research.html
https://github.com/splunk/attack_data/
https://github.com/splunk/security_content
https://www.splunk.com/en_us/blog/security.html
https://www.splunk.com/en_us/blog/security/revisiting-the-big-picture-macro-level-att-ck-updates-for-2023.html
https://www.splunk.com/en_us/blog/security.html
https://www.splunk.com/en_us/blog/security/strt-ta03-cpe-destructive-software.html

25/26

The Splunk Threat Research Team is monitoring several malicious payloads targeting Customer
Premise Equipment (CPE) devices. These are defined as devices that are at customer
(Commercial, Residential) premises and that provide connectivity and services to the internet
backbone

About Splunk

The Splunk platform removes the barriers between data and action, empowering observability, IT
and security teams to ensure their organizations are secure, resilient and innovative.

Founded in 2003, Splunk is a global company — with over 7,500 employees, Splunkers have
received over 1,020 patents to date and availability in 21 regions around the world — and offers an
open, extensible data platform that supports shared data across any environment so that all teams
in an organization can get end-to-end visibility, with context, for every interaction and business
process. Build a strong data foundation with Splunk.

https://www.splunk.com/en_us/blog/security/strt-ta03-cpe-destructive-software.html

26/26

Learn more about Splunk

https://www.splunk.com/en_us/about-us/why-splunk.html

