
1/48

August 26, 2024

BlackSuit Ransomware
thedfirreport.com/2024/08/26/blacksuit-ransomware/

Key Takeaways

In December 2023, we observed an intrusion that started with the execution of a Cobalt
Strike beacon and ended in the deployment of BlackSuit ransomware.
The threat actor leveraged various tools, including Sharphound, Rubeus, SystemBC,
Get-DataInfo.ps1, Cobalt Strike, and ADFind, along with built-in system tools.
Command and control traffic was proxied through CloudFlare to conceal their Cobalt
Strike server.
Fifteen days after initial access, BlackSuit ransomware was deployed by copying files
over SMB to admin shares and executing them through RDP sessions.
Three rules were added to our private ruleset related to this case.

An audio version of this report can be found on Spotify, Apple, YouTube, Audible,
& Amazon.

The DFIR Report Services

Private Threat Briefs: Over 20 private DFIR reports annually.
Threat Feed: Focuses on tracking Command and Control frameworks like Cobalt
Strike, Metasploit, Sliver, etc.
All Intel: Includes everything from Private Threat Briefs and Threat Feed, plus private
events, opendir reports, long-term tracking, data clustering, and other curated intel.
Private Sigma Ruleset: Features 100+ Sigma rules derived from 40+ cases, mapped to
ATT&CK with test examples.
DFIR Labs: Offers cloud-based, hands-on learning experiences, using real data, from
real intrusions. Interactive labs are available with different difficulty levels and can be
accessed on-demand, accommodating various learning speeds.

Contact us today for pricing or a demo!

Table of Contents:

Case Summary

The intrusion began in December 2023, with the initial sign being the execution of an
unusually large-sized Cobalt Strike beacon. After the beacon’s execution, there was no
immediate follow-up activity. The initial access delivery method for the intrusion remains

https://thedfirreport.com/2024/08/26/blacksuit-ransomware/
https://podcasters.spotify.com/pod/show/the-dfir-report/
https://podcasts.apple.com/us/podcast/reports/id1728699064
https://www.youtube.com/@TheDFIRReport/videos
https://www.audible.com/pd/Reports-Podcast/B0CSZBRCFX?action_code=ASSGB149080119000H&share_location=pdp
https://music.amazon.com/podcasts/c4fe897d-a4b4-4ceb-908d-d1a78af8cb6d/reports
https://thedfirreport.com/services/threat-intelligence/#threat-brief
https://thedfirreport.com/services/threat-intelligence/#threat-feed
https://thedfirreport.com/services/threat-intelligence/#all-intel
https://thedfirreport.com/services/detection-rules/
https://thedfirreport.com/services/dfir-labs/
https://thedfirreport.com/contact/

2/48

unclear, as there was no evidence available. The Cobalt Strike C2 traffic beaconed to IP
addresses managed by CloudFlare, which acted as proxy server between the victim network
and their team server.

Approximately six hours after the initial execution, the threat actor used Windows utilities,
such as systeminfo and nltest to perform enumeration on the system and environment. After,
they conducted AS-REP Roasting and Kerberoasting attacks against two of the domain
controllers, utilizing Rubeus, which was executed in memory via Cobalt Strike. Following this,
the threat actor ran Sharphound in memory through the Cobalt Strike beacon, and saved the
output to disk.

Around ten minutes after the initial discovery, the threat actor carried out their first lateral
movement. They transferred a Cobalt Strike beacon via SMB and executed it through a
service to compromise another workstation. On that workstation, they accessed LSASS to
obtain credentials from memory. Throughout the second day of the intrusion, the threat actor
deployed multiple Cobalt Strike beacons on workstations and servers and also used RDP for
further lateral movement.

The threat actor deployed multiple SystemBC executables on one of the file servers. The
second executable, established persistence through a registry run key and opened a new
command and control channel. After a busy second day of activity, the intrusion went silent.
On the seventh day, the Cobalt Strike command and control domain stopped using
CloudFlare and switched to an Amazon AWS IP address, for the remainder of the intrusion.

On the eighth day, the threat actors deployed a new PowerShell Cobalt Strike beacon on a
domain controller, this time pointing to a separate command and control server. After two
days of inactivity, the intrusion resumed with more Cobalt Strike beacons being distributed,
along with several RDP logins. More discovery activity was noticed when Sharphound was
executed again. The threat actor attempted multiple times to run ADFind but failed in each
instance.

Five days later, the threat actor returned to finalize their objectives. This time, ADFind was
executed successfully, followed by the execution of the PowerShell script Get-DataInfo.ps1.
The final step was the deployment of the BlackSuit ransomware binary, qwe.exe, which was
distributed via SMB to remote systems through the C$ share. The attacker then manually
connected to these systems using RDP to execute the ransomware. Upon execution, the
ransomware used vssadmin to delete shadow copies before encrypting the hosts. The Time
to Ransomware (TTR) was just under 328 hours, spanning 15 calendar days, with files being
encrypted and the BlackSuit ransom note left on desktops and folders across the systems.

If you would like to get an email when we publish a new report, please subscribe here.
Follow us on LinkedIn for additional insights and notifications!

https://thedfirreport.com/subscribe/
https://www.linkedin.com/in/the-dfir-report

3/48

Analysts

Analysis and reporting completed by @MetallicHack, @yatinwad, and @malforsec.

Initial Access

The earliest sign of the threat actor’s presence was the execution of a Cobalt Strike beacon,
identified as RtWin64.exe. Despite thorough investigation, the initial access point for the
beacon’s deployment could not be determined.

Execution

Cobalt Strike PsExec

Cobalt Strike served as the primary tool utilized by the threat actor, with a particular focus on
its capabilities that mimic Sysinternals PsExec. These features, including psexec and
psexec_psh, enable remote process execution across systems. The psexec module
functions by uploading a binary to the target system, then creating and launching a Windows
service to execute the file.

The eventID 7045 in Windows System logs shows the services created on the system:

The psexec command spawned a rundll32.exe process.

https://twitter.com/MetallicHack
https://twitter.com/yatinwad
https://twitter.com/malforsec
https://thedfirreport.com/wp-content/uploads/2024/08/26364_001.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_002.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_003.png

4/48

The psexec_psh module doesn’t copy a binary to the target, but instead executes a
PowerShell one-liner. The pattern it uses is %COMSPEC% /b /c start /b /min powershell -nop
-w hidden -encodedcommand …

Persistence

Registry Run Key

To ensure persistent access to the environment, the threat actor created a run key named
“socks5” within the Current User registry hive. The registry key’s configuration indicated that
PowerShell would be used to launch a SystemBC backdoor named socks32.exe.

Sysmon eventID 13 (Registry value set) shows changes to a registry key value:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_004.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_005.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_006.png

5/48

One interesting thing to mention is that the registry value name socks5 created under the
Run key is hard coded.

The data is a string (type REG_SZ) which starts with powershell.exe windowstyle -hidden
Command concatenated with the current executable name, which is obtained using
GetModuleFileNameA with a null hModule first parameter.

Scheduled Task

SystemBC possesses the ability to create scheduled tasks using COM, as demonstrated in
the following example. While other reports have noted SystemBC utilizing this feature, it
likely wasn’t employed in our case, as no evidence of scheduled task creation was observed
during our investigation.

It first uses the function CoCreateInstance to create an instance of an ITaskScheduler
object and then call the method NewWorkItem to create a scheduled task.

Privilege Escalation

On a workstation that the threat actor moved laterally to, we observed use of named pipes.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_008.png
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulefilenamea
https://thedfirreport.com/wp-content/uploads/2024/08/26364_009.png
https://www.kroll.com/en/insights/publications/cyber/inside-the-systembc-malware-server
https://thedfirreport.com/wp-content/uploads/2024/08/26364_010.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_011.png

6/48

Usually, when observing this behavior from Cobalt Strike, this tends to be usage of the
getsystem command to elevate privileges; however, in this case we observed the parent
process to not be services.exe and the threat actor was already running as SYSTEM. This
activity was seen in correlation to pass-the-hash behavior listed in Lateral Movement. The
threat actor changed to the context of a domain administrator and then was observed moving
laterally again using Cobalt Strike, so we attribute this activity to pass-the-hash command
execution activity rather than getsystem.

Defense Evasion

Modify Registry

The threat actor employed an encoded PowerShell command to modify the registry, enabling
Remote Desktop Protocol (RDP) access to a file server.

Setting the registry key
“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Terminal Server”
DenyTSConnections to 0 will allow terminal server connections to the host.

Process Injection

Given the threat actor’s extensive use of Cobalt Strike beacons, we anticipated the use of
process injection as a method of evading detection by hiding within legitimate processes.

Upon analyzing process injections and access patterns from Cobalt Strike-generated
processes, we successfully identified the suspicious activity we were searching for.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_012.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_013.png

7/48

These injections can then be confirmed using things like YARA memory scanning:

Credential Access

The threat actor undertook multiple actions to obtain valid credentials, primarily leveraging
Rubeus as the key tool. During our investigation, we discovered that Rubeus had been
loaded into mstsc.exe—a process previously injected by Cobalt Strike—functioning as a CLR
module.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_014.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_015.png
https://learn.microsoft.com/en-us/dotnet/standard/clr

8/48

AS-REP roasting

AS-REP roasting was the first credential access activity performed by the threat actor. This
was done with Rubeus on the beachhead host targeting a domain controller.

Rubeus writing the result of AS-REP roasting output to a file:

Indications of AS-REP roasting can be found by looking for windows eventID 4768 on the
target domain controller. The request is for Authentication tickets(TGT) with “Pre-
Authentication Type” set to 0, meaning no password is required.

A lot of Kerberos Authentication Tickets were requested during AS-REP Roasting:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_016.png
https://www.ired.team/offensive-security-experiments/active-directory-kerberos-abuse/as-rep-roasting-using-rubeus-and-hashcat
https://thedfirreport.com/wp-content/uploads/2024/08/26364_017.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_018.png

9/48

Kerberoasting

The threat actor used Rubeus to conduct a Kerberoasting attack. During this period of time,
we observed numerous Kerberos ticket requests, specifically using encryption type 0x17,
which corresponds to RC4 encryption. These RC4 encryption requests coincided with the
execution of Rubeus and targeted multiple accounts across the domain

Rubeus executed in memory by Cobalt Strike creating kerberoast output:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_019.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_020.png

10/48

EventID 4769 on a domain controller showing request for tickets with weak encryption:

LSASS memory access

The threat actor accessed LSASS memory on a workstation with a specific access request of
0x1010, where 0x0010 is necessary to read memory using ReadProcessMemory. This
request originated from a process that had been injected with Cobalt Strike.

Sysmon eventID 10 shows mstsc.exe accessing lsass with the access mask 0x1010

Discovery

Discovery plays a critical role for the threat actor in assessing the environment they have
infiltrated. Throughout the intrusion, the attacker conducted discovery activities across
multiple systems, gathering valuable intelligence on the network and its assets.

Hands On Keyboard

Discovery began on the beachhead host approximately six hours after initial access. The first
command executed was “systeminfo,” aimed at gathering details about the local system.
Shortly after, the command “nltest /dclist” was issued to identify the domain controllers within
the environment.

Sysmon eventID 1 shows evidence of running the commands:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_021.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_022.png

11/48

Sharphound

Once the threat actor identified the domain controllers, they wasted no time and promptly
loaded Sharphound into memory via Cobalt Strike. This allowed them to conduct further
discovery activities within the environment, expanding their reconnaissance efforts.

We have some proof showing mstsc.exe loading Sharphound as a CLR(Common Language
Runtime) module. mstsc.exe is the child process of Cobalt Strike beacon RtWin64.exe. The
below screenshot taken from the EDR telemetry depicts that:

Output from Sharphound was stored in “C:\Windows\Temp\Dogi\”. The recurring use of this
directory aligns with behaviors documented in a different report, BazarCall to Conti
Ransomware chain. This suggests a potential operational signature or TTP (Tactics,
Techniques, and Procedures) common to this threat actor group or its operators. Based on
the output files created, `it looks like it was run in default mode as described below.

Sysmon eventID 11 showing the files created:

Sharphound appeared to be running in its default mode, which involves enumerating local
group memberships by querying the Windows Security Accounts Manager (SAM) database
remotely through the samr pipe on the target host. This pipe is exposed via the IPC$ share,
and corresponding activity can be detected by monitoring Windows security events with
event ID 5145. A similar approach is used to discover logged-on users; however, in this
case, Sharphound communicates with the srvsvc pipe, utilizing the Server Service Remote
Protocol.

Windows eventlog eventID 5145 showing Sharphound enumeration activity:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_023.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_024.png
https://thedfirreport.com/2021/08/01/bazarcall-to-conti-ransomware-via-trickbot-and-cobalt-strike/
https://thedfirreport.com/wp-content/uploads/2024/08/26364_025.png

12/48

When Sharphound enumerates the Active Directory through LDAP searches, it performs an
excess amount of queries.

Example of Sharphound LDAP searches:

"(|(samaccounttype=268435456)(samaccounttype=268435457)(samaccounttype=536870912)
(samaccounttype=536870913))", "(BuildString("(primarygroupid=*)"

Sharphound executed in memory by Cobalt Strike, performing LDAP queries:

Sharphound was initially executed on the beachhead host. Later in the intrusion, the threat
actor ran Sharphound two more times, this time on a domain controller. The output from the
first run was saved to “C:\Windows\System32\”, while the second run’s results were directed

https://thedfirreport.com/wp-content/uploads/2024/08/26364_026.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_027.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_028.png

13/48

to “C:\Perflogs\”.

Again Sysmon eventID 11 caught the files created by Sharphound:

Windows Security eventID 4799 shows Sharphound performing discovery on local security-
enabled groups:

More information on how Sharphound functions can be found here:

https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-1

https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-2

More ways to detect LDAP queries generally in this great article here:

https://falconforce.nl/falconfriday-detecting-active-directory-data-collection-0xff21

ADFind

https://thedfirreport.com/wp-content/uploads/2024/08/26364_029.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_030.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_031.png
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-1
https://blog.compass-security.com/2022/05/bloodhound-inner-workings-part-2
https://falconforce.nl/falconfriday-detecting-active-directory-data-collection-0xff21

14/48

ADFind, a tool frequently used by threat actors, was also employed in this intrusion to
conduct enumeration and discovery. After gaining access to the second domain controller,
the threat actor created “ADFind.exe” and “adf.bat” in an attempt to gather further Active
Directory information.

Sysmon eventID 11 showing creation of ADFind.exe and adf.bat by Cobalt Strike:

A few seconds after creation of the files, the threat actor was eager to collect the desired
information and executed adf.bat via cmd.exe:

No additional commands were observed after each batch file execution. This indicates the
operator may have encountered difficulties, as the batch file was executed twice within just
over a minute of the initial attempt, suggesting potential issues or missteps during execution.

Sysmon eventID 11 shows the creation of the files with the output of ADFind:

It’s possible that the files ended up being empty, causing the threat actor to reconsider their
approach. About 15 minutes later, the operator tried running ADFind.exe directly from the
command line, likely to verify whether the tool would execute properly.

After failing to determine the cause of the issue, the threat actor stayed quiet until the next
day. The operator likely made an error by trying to run “adf.bat” from
“C:\Windows\System32\” when both “adf.bat” and “ADFind.exe” were actually located in

https://thedfirreport.com/wp-content/uploads/2024/08/26364_032.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_033.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_034.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_035.png

15/48

“C:\Perflogs\adf\". Because of this, “ADFind.exe” probably couldn’t be found as an
executable in the wrong directory, leading to the error.

After several days, the threat actor decided to give ADFind another try. This time, on the file
server the operator was successful in running adf.bat correctly to find ADFind.exe and
perform the desired discovery activity:

Sysmon eventID 1 showing threat actor running adf.bat:

Resulting in several adfind.exe process events:

Get-DataInfo.ps1

The threat actor also used a PowerShell script to enumerate local systems. Together with a
batch script called “start.bat” the threat actor ran Get-DataInfo.ps1 on both a domain
controller and a different servers in the environment. We have seen this PowerShell script
used several times before. Interestingly, PowerShell was initiated using the start.bat file.
However, the start.bat file did not work as intended and passed the “method” parameter to
the Get-DataInfo.ps1 script, which is not recognized as a valid parameter. As a result, it ran
in default mode. This behavior may have confused the operator at the keyboard, as well as
the batch script that was run several times in a row on both servers.

Sysmon EventID 1 shows start.bat executes Get-DataInfo.ps1 with parameter method:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_036.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_037.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_038.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_039.png
https://github.com/Zorg08/collection/blob/master/Get-Datainfo.ps1
https://thedfirreport.com/?s=get-datainfo
https://thedfirreport.com/wp-content/uploads/2024/08/26364_040.png

16/48

The start.bat script tries to set a variable called method to the discovery method chosen by
the user if the method is not typed on the command line:

The issue with the script arises from the fact that the variable “method” does not receive the
user-chosen value until after the IF condition is complete. Additionally, the variable must be
referenced as %method% to capture the user input correctly. This oversight explains why the
PowerShell command initiating Get-DataInfo.ps1 includes “method” as a parameter on the
command line:

The below will end up running the Get-DataInfo.ps1 script in default mode:

The default mode will run the Test-LHost, Get-DiskInfo and Get-Software functions in the
script before calling the last function, Compress-Result:

Sysmon eventID 1 showing the execution:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_041.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_042.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_043.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_044.png

17/48

Sysmon eventID 1 process create showing several runs of start.bat:

Windows Utilities

The threat actor performed several discovery commands using various Windows utilities at
various times during the intrusion.

C:\Windows\system32\\cmd.exe /C systeminfo	

C:\Windows\system32\cmd.exe /C net group "domain admins" /domain

C:\Windows\system32\cmd.exe /C nltest /dclist <domainname redacted>

nltest /domain_trusts /all_trusts

C:\Windows\system32\cmd.exe /C net group "enterprise admins" /domain

C:\Windows\system32\cmd.exe /C ping <hostname redacted>

C:\Windows\system32\taskmgr.exe /4

C:\Windows\system32\cmd.exe /C All windows Import-Module ActiveDirectory Get-
ADComputer -Filter {enabled -eq $true} -properties *|select Name, DNSHostName,
OperatingSystem, LastLogonDate, IPv4Address | Export-CSV C:\Users\AllWindows.csv -
NoTypeInformation -Encoding UTF8

C:\Windows\system32\cmd.exe /C route print

C:\Windows\system32\cmd.exe /C ping http://<IP redacted>/

Administrator Consoles

On the final day of the intrusion, the threat actor accessed the administrative consoles for
both DNS and Group Policy. Shortly after, they proceeded to deploy ransomware across the
environment.

C:\Windows\system32\mmc.exe C:\Windows\system32\dsa.msc

C:\Windows\system32\mmc.exe C:\Windows\System32\gpedit.msc

Lateral Movement

https://thedfirreport.com/wp-content/uploads/2024/08/26364_045.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_046-1.png

18/48

Pass the hash

An examination of logon activity within the environment revealed evidence pointing to pass-
the-hash attacks. Specifically, Windows Security logs with event ID 4624, showing logon type
9 and the Logon Process listed as “seclogo,” serve as solid indicators of the pass-the-hash
technique employed by the threat actor.

The threat actor used three main methods for lateral movement. First, Cobalt Strike utilized
SMB ADMIN$ shares to move beacons laterally, along with distributing both SMB and
HTTPS beacons. Secondly, they used Remote Desktop Protocol to access a file server and
a backup server, where they performed discovery activity. Lastly, the threat actor used the
hidden SMB share C$ to distribute the ransomware executable to strategic endpoints within
the infrastructure.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_047.png

19/48

A domain controller was used as the main pivot point by the threat actor.

Overview of lateral movement involving SMB ADMIN$ shares and RDP:

To investigate access to the SMB ADMIN$ share, the Windows event log proves invaluable.
By examining System event ID 5145, which indicates “A network share object was
checked…,” We can track the movement of beacons by the threat actor across the network,
gaining essential insight into their lateral movements and activities.

The RDP Activity can be identified with windows security eventID 4624 where the logon type
equals 10 RemoteInteractive – “A user logged on to this computer remotely using Terminal
Services or Remote Desktop.”

https://thedfirreport.com/wp-content/uploads/2024/08/26364_048.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_049.png

20/48

Windows security event ID 5145 was used to demonstrate lateral movement once again,
showing SMB C$ share usage.

Cobalt Strike SMB beacons, used for lateral movement, were distributed on the beachhead
and on a domain controller:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_050.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_051.png

21/48

The configuration of the SMB beacons:

22/48

xorkey b'.' 2e

0x0001 payload type 0x0001 0x0002 2 windows-beacon_smb-bind_pipz

0x0002 port 0x0001 0x0002 4444

0x0003 sleeptime 0x0002 0x0004 10000

0x0004 maxgetsize 0x0002 0x0004 2048576

0x0005 jitter 0x0001 0x0002 0

0x0006 maxdns 0x0001 0x0002 0

0x0007 publickey 0x0003 0x0100
30819f300d06092a864886f70d010101050003818d0030818902818100b8783383addbd675fb86964aae67

0x0008 server,get-uri 0x0003 0x0100 (NULL ...)

0x0009 useragent 0x0003 0x0080 (NULL ...)

0x000a post-uri 0x0003 0x0040 (NULL ...)

0x000b Malleable_C2_Instructions 0x0003 0x0100

 Transform Input: [7:Input]

0x000c http_get_header 0x0003 0x0100

0x000d http_post_header 0x0003 0x0100

0x000e SpawnTo 0x0003 0x0010 (NULL ...)

0x001d spawnto_x86 0x0003 0x0040
'%windir%\\syswow64\\SyncHost.exe'

0x001e spawnto_x64 0x0003 0x0040
'%windir%\\sysnative\\mstsc.exe'

0x000f pipename 0x0003 0x0080
'\\\\.\\pipe\\WkSvcPipeMgr_JORW2e'

0x001f CryptoScheme 0x0001 0x0002 0

0x0037 EXIT_FUNK 0x0001 0x0002 0

0x0028 killdate 0x0002 0x0004 0

0x0025 license-id 0x0002 0x0004 674054486 Stats uniques ->
ips/hostnames: 60 publickeys: 47

0x0024 deprecated 0x0003 0x0020 'bfnETSwzb1Xsa2g6gr+auA=='
0x0026 bStageCleanup 0x0001 0x0002 1

0x0027 bCFGCaution 0x0001 0x0002 0

0x0029 textSectionEnd 0x0002 0x0004 1

0x002a ObfuscateSectionsInfo 0x0003 0x0028
'\x00\x10\x00\x00\x95`\x02\x00\x00p\x02\x00À\n\x03\x00\x00\x10\x03\x00\x00Í\x03\x00\x0

0x003a TCP_FRAME_HEADER 0x0003 0x0080 '\x00\x0fk\x1d^ôá±\x81Bª\x1da'

0x0039 SMB_FRAME_HEADER 0x0003 0x0080 '\x00\x1ek\x01oÿ>ñëb±\x1b
×\x85\x8e¥X\x1eOQË©¶¦\x13ø1'

0x002b process-inject-start-rwx 0x0001 0x0002 4 PAGE_READWRITE

0x002c process-inject-use-rwx 0x0001 0x0002 32 PAGE_EXECUTE_READ

0x002d process-inject-min_alloc 0x0002 0x0004 13891

0x002e process-inject-transform-x86 0x0003 0x0100
'\x00\x00\x00U\x0f\x1f\x84\x00\x00\x00\x00\x00\x0f\x1f@\x00\x0f\x1f\x80\x00\x00\x00\x0

0x002f process-inject-transform-x64 0x0003 0x0100
'\x00\x00\x00\x16f\x90f\x0f\x1fD\x00\x00f\x90\x0f\x1f\x00f\x0f\x1f\x84\x00\x00\x00\x00

0x0035 process-inject-stub 0x0003 0x0010 'ÅNí/½Ée\\\x0c\x13U\x0f\x04Ç,('

0x0033 process-inject-execute 0x0003 0x0080
'\x06\x04\x07\x00\x00\x00\x06ntdll\x00\x00\x00\x00\x13RtlUserThreadStart\x00\x01\x08\x

23/48

0x0034 process-inject-allocation-method 0x0001 0x0002 0

0x0030 DEPRECATED_PROCINJ_ALLOWED 0x0001 0x0002 1

0x0010 killdate_year 0x0001 0x0002 0

0x004a 0x0003 0x0020
'ÌÑ¶\x8f½ÉeDc~buq®FJô\x16\x9ccß\x82+\td\x7ff_J°\x11\x15'

0x0000

Guessing Cobalt Strike version: 4.4 (max 0x004a)

The threat actor’s use of RDP and tunnels via SystemBC left behind crucial artifacts that
helped identify their activities. Notably, we detected two hostnames, “DESKTOP-0MEMSEA”
and “DESKTOP-BIFFSC7”, which were used during the intrusion. These artifacts appeared
in various logs, including Sysmon event ID 24 (clipboard change), Windows Security event
ID 4624 (logon), event ID 4778 (terminal session reconnect), and event ID 4779 (terminal
server disconnect), providing multiple points of evidence linking the threat actor’s presence
across the environment.

Here is an overview of the RDP sessions where the threat actor used these two hosts:

Collection

Archiving

The threat actor used 7z to archive data output from running the Get-DataInfo.ps1
PowerShell script.

Sysmon eventID 1 showing execution of 7z.exe archiving data:

Looking for interesting files

https://thedfirreport.com/wp-content/uploads/2024/08/26364_052.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_053.png

24/48

In their pursuit of valuable data, the threat actor browsed through file systems, selectively
opening files they deemed interesting. Documents containing passwords, financial
information, and other sensitive data were specifically targeted, as these types of files
typically hold high value for the intruders.

Sysmon eventID 1 showing Notepad and Wordpad used to open and look at files:

Command and Control

For command and control, the threat actor used two main tools, Cobalt Strike and
SystemBC.

Cobalt Strike

Overview of Cobalt Strike traffic beaconing pattern over intrusion:

https://thedfirreport.com/wp-content/uploads/2025/08/26364_054_001.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_055.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_056.png

25/48

The initial Cobalt Strike beacon, delivered via RtWin64.exe on the beachhead host,
maintained a continuous command and control domain at svchorst[.]com throughout the
entire infection. The IP address associated with the domain changed over time, and the
communication process also shifted as queries were injected into different processes by
RtWin64.exe.

To further obfuscate its presence, the threat actor initially routed the Cobalt Strike command
and control traffic through CloudFlare’s CDN service, effectively attempting to hide in plain
sight by blending into legitimate web traffic.

The 104[.]21.76.140 and 172[.]67.196.25 addresses belonged to Cloudflare.

Later in the intrusion, the command and control (C2) server moved away from CloudFlare,
and subsequently, the domain resolved to an AWS IP address.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_057.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_058.png

26/48

DNS queries performed for svchorst[.]com:

Network connections to svchorst[.]com:

Using Didier Steven’s great tool 1768.py, we successfully extracted the configuration of the
Cobalt Strike beacon, which validated the host artifacts discovered on the beachhead host.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_059.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_060.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_061.png
https://github.com/DidierStevens/DidierStevensSuite/blob/master/1768.py

27/48

xorkey b'.' 2e

0x0001 payload type 0x0001 0x0002 8 windows-beacon_https-
reverse_https

0x0002 port 0x0001 0x0002 443

0x0003 sleeptime 0x0002 0x0004 50408

0x0004 maxgetsize 0x0002 0x0004 4103260

0x0005 jitter 0x0001 0x0002 30

0x0007 publickey 0x0003 0x0100
30819f300d06092a864886f70d010101050003818d0030818902818100b8783383addbd675fb86964aae67

428d39816f41810d852974f73e9ae1e7fd525c02221b9761a8f157db0728039c1103f31bb8adae4b4fed45

2d999279172b79739f60628e57c311f4234fe65ea8eab3b7d19b0203010001000000000000000000000000

00

0x0008 server,get-uri 0x0003 0x0100 'svchorst.com,/shiatzu/v2.41'

0x0043 DNS_STRATEGY 0x0001 0x0002 0

0x0044 DNS_STRATEGY_ROTATE_SECONDS 0x0002 0x0004 -1

0x0045 DNS_STRATEGY_FAIL_X 0x0002 0x0004 -1

0x0046 DNS_STRATEGY_FAIL_SECONDS 0x0002 0x0004 -1

0x000e SpawnTo 0x0003 0x0010 (NULL ...)

0x001d spawnto_x86 0x0003 0x0040
'%windir%\\syswow64\\SyncHost.exe'

0x001e spawnto_x64 0x0003 0x0040
'%windir%\\sysnative\\mstsc.exe'

0x001f CryptoScheme 0x0001 0x0002 0

0x001a get-verb 0x0003 0x0010 'GET'

0x001b post-verb 0x0003 0x0010 'POST'

0x001c HttpPostChunk 0x0002 0x0004 0

0x0025 license-id 0x0002 0x0004 674054486

0x0024 deprecated 0x0003 0x0020 'bfnETSwzb1Xsa2g6gr+auA=='
0x0026 bStageCleanup 0x0001 0x0002 1

0x0027 bCFGCaution 0x0001 0x0002 0

0x0047 MAX_RETRY_STRATEGY_ATTEMPTS 0x0002 0x0004 0

0x0048 MAX_RETRY_STRATEGY_INCREASE 0x0002 0x0004 0

0x0049 MAX_RETRY_STRATEGY_DURATION 0x0002 0x0004 0

0x0009 useragent 0x0003 0x0100 'Mozilla/5.0 (Windows NT 6.1;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Sa

fari/537.36'

0x000a post-uri 0x0003 0x0040 '/unobservedly/v10.78'

In the rest of the infrastructure, two distinct types of Cobalt Strike beacons were deployed:
HTTPS beacons and SMB beacons. The HTTPS beacons appeared to communicate with
three different domains—wq[.]regsvcast[.]com, as[.]regsvcast[.]com, and zx[.]regsvcast[.]com
—though, in reality, only wq[.]regsvcast[.]com was actively used, resolving to IP address
147.78.47[.]178. This Cobalt Strike server was tracked as active by the DFIR Threat Feeds
from December 21st through Jan 6th, 2024.

28/48

Sysmon event ID 22 helped document the DNS queries related to the *regsvcast[.]com
domains, providing further insight into the network activity tied to the Cobalt Strike
infrastructure.

Sysmon event ID 3 logs every network connection made, provided it’s not disabled in the
Sysmon configuration. This can be particularly useful, as some EDR solutions apply rate
limits to this type of artifact.

Since Cobalt Strike beacons can generate significant traffic, the volume of network
connections for each beacon can be observed in the final column of these logs, highlighting
the frequency and noisiness of the communication between beacons and command and
control infrastructure.

Below is the configuration of the beacon from DC Y which communicated encrypted over
https on port 443:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_062-1.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_063.png

29/48

File: b7bcee8.exe

payloadType: 0x00002810

payloadSize: 0x00040405

intxorkey: 0xe43ebc19

id2: 0x00000000

MZ header found position 9

Config found: xorkey b'.' 0x0003ac30 0x000403fc

0x0001 payload type 0x0001 0x0002 8 windows-beacon_https-
reverse_https

0x0002 port 0x0001 0x0002 443

0x0003 sleeptime 0x0002 0x0004 63612

0x0004 maxgetsize 0x0002 0x0004 2796542

0x0005 jitter 0x0001 0x0002 39

0x0007 publickey 0x0003 0x0100
30819f300d06092a864886f70d010101050003818d0030818902818100a208a5996fa9e52ff4f19fb148b9

0x0008 server,get-uri 0x0003 0x0100
'qw.regsvcast.com,/hr,as.regsvcast.com,/hr,zx.regsvcast.com,/hr'

0x0043 DNS_STRATEGY 0x0001 0x0002 0

0x0044 DNS_STRATEGY_ROTATE_SECONDS 0x0002 0x0004 -1

0x0045 DNS_STRATEGY_FAIL_X 0x0002 0x0004 -1

0x0046 DNS_STRATEGY_FAIL_SECONDS 0x0002 0x0004 -1

0x000e SpawnTo 0x0003 0x0010 (NULL ...)

0x001d spawnto_x86 0x0003 0x0040
'%windir%\\syswow64\\runonce.exe'

0x001e spawnto_x64 0x0003 0x0040
'%windir%\\sysnative\\runonce.exe'

0x001f CryptoScheme 0x0001 0x0002 0

0x001a get-verb 0x0003 0x0010 'GET'

0x001b post-verb 0x0003 0x0010 'POST'

0x001c HttpPostChunk 0x0002 0x0004 0

0x0025 license-id 0x0002 0x0004 1580103824 Stats uniques ->
ips/hostnames: 316 publickeys: 148

0x0026 bStageCleanup 0x0001 0x0002 1

0x0027 bCFGCaution 0x0001 0x0002 0

0x0009 useragent 0x0003 0x0100 'Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36
Edge/12.246'

0x000a post-uri 0x0003 0x0040 '/rw'

0x000b Malleable_C2_Instructions 0x0003 0x0100

 Transform Input: [7:Input,4,2:338,3,11]

 Print

 Remove 338 bytes from begin

 BASE64

 NETBIOS uppercase

0x000c http_get_header 0x0003 0x0200

 Const_header Connection: close

 Const_header Accept-Encoding: br

 Build Metadata: [7:Metadata,13,3,2:wordpress_logged_in=,6:Cookie]

 BASE64 URL

 BASE64

 Prepend wordpress_logged_in=

30/48

 Header Cookie

0x000d http_post_header 0x0003 0x0200

 Const_header Connection: close

 Const_header Accept-Language: en-US

 Const_header Content-Type: text/plain

 Build Output: [7:Output,3,3,4]

 BASE64

 BASE64

 Print

 Build SessionId: [7:SessionId,3,2:__session__id=,6:Cookie]

 BASE64

 Prepend __session__id=

 Header Cookie

0x0036 HostHeader 0x0003 0x0080 (NULL ...)

0x0032 UsesCookies 0x0001 0x0002 1

0x0023 proxy_type 0x0001 0x0002 2 IE settings

0x003a TCP_FRAME_HEADER 0x0003 0x0080 '\x00\x04'

0x0039 SMB_FRAME_HEADER 0x0003 0x0080 '\x00\x04'

0x0037 EXIT_FUNK 0x0001 0x0002 0

0x0028 killdate 0x0002 0x0004 0

0x0029 textSectionEnd 0x0002 0x0004 179426

0x002a ObfuscateSectionsInfo 0x0003 0x0028
'\x00À\x02\x00â¸\x03\x00\x00À\x03\x00H\x92\x04\x00\x00\xa0\x04\x00dÀ\x04\x00\x00Ð\x04\

0x002b process-inject-start-rwx 0x0001 0x0002 4 PAGE_READWRITE

0x002c process-inject-use-rwx 0x0001 0x0002 32 PAGE_EXECUTE_READ

0x002d process-inject-min_alloc 0x0002 0x0004 18046

0x002e process-inject-transform-x86 0x0003 0x0100
'\x00\x00\x00\x05\x90\x90\x90\x90\x90'

0x002f process-inject-transform-x64 0x0003 0x0100
'\x00\x00\x00\x05\x90\x90\x90\x90\x90'

0x0035 process-inject-stub 0x0003 0x0010 '"+\x8f\'Ûßº\x8dÝU\x9eì¢~¦H'

0x0033 process-inject-execute 0x0003 0x0080 '\x01\x04\x03'

0x0034 process-inject-allocation-method 0x0001 0x0002 0

0x0000

Guessing Cobalt Strike version: 4.3 (max 0x0046)

Sanity check Cobalt Strike config: OK

Public key config entry found: 0x0003ac65 (xorKey 0x2e) (LSFIF: b'././.,.&.,./.,/')

Public key header found: 0x0003ac6b (xorKey 0x2e) (LSFIF: b'././.,.&.,./.,/')

One C2 connection from the Cobalt Strike beacons stands out from the rest: it originates
from PowerShell but communicates over HTTP to port 80.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_064.png

31/48

Communicating in clear text gives us the opportunity to look at what is going on. The threat
actor used PowerShell to perform the download:

Using Wireshark to view the exact HTTP query to the C2 server:

A PowerShell script was downloaded that decodes a Base64-encoded blob using
`FromBase64String`. At the end of the script, the decoded data is decompressed, which can
easily be done using tools like `gunzip`. This behavior is highly indicative of a Cobalt Strike
PowerShell stager. Upon decoding the Base64 blob, we uncovered another embedded
PowerShell script.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_065.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_066.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_067.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_068.png

32/48

This PowerShell script decodes another base64 blob, but as we can see it also performs
XOR operations on the bytes. XOR with decimal 35(0x23) is a well known key for Cobalt
Strike PowerShell stagers.

After decoding the final base64 blob we get the Cobalt Strike beacon and can get the
configuration (as the configuration is the same on all HTTP beacons the config is extracted
with csce):

https://thedfirreport.com/wp-content/uploads/2024/08/26364_069.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_070.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_071.png
https://github.com/strozfriedberg/cobaltstrike-config-extractor
https://thedfirreport.com/wp-content/uploads/2024/08/26364_072.png

33/48

{

 "beacontype": [

 "HTTPS"

],

 "sleeptime": 63612,

 "jitter": 39,

 "maxgetsize": 2796542,

 "spawnto": "AAAAAAAAAAAAAAAAAAAAAA==",

 "license_id": 1580103824,

 "cfg_caution": false,

 "kill_date": null,

 "server": {

 "hostname": "qw.regsvcast.com",

 "port": 443,

 "publickey":
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCiCKWZb6nlL/Txn7FIuXF2qwp+LPwdWfzGYeTRr60MZjb8l

 },

 "host_header": "",

 "useragent_header": null,

 "http-get": {

 "uri": "/hr",

 "verb": "GET",

 "client": {

 "headers": null,

 "metadata": null

 },

 "server": {

 "output": [

 "print",

 "prepend 338 characters",

 "base64",

 "netbiosu"

]

 }

 },

 "http-post": {

 "uri": "/ch",

 "verb": "POST",

 "client": {

 "headers": null,

 "id": null,

 "output": null

 }

 },

 "tcp_frame_header":
"AAQAA

 "crypto_scheme": 0,

 "proxy": {

 "type": null,

 "username": null,

34/48

 "password": null,

 "behavior": "Use IE settings"

 },

 "http_post_chunk": 0,

 "uses_cookies": true,

 "post-ex": {

 "spawnto_x86": "%windir%\\syswow64\\runonce.exe",

 "spawnto_x64": "%windir%\\sysnative\\runonce.exe"

 },

 "process-inject": {

 "allocator": "VirtualAllocEx",

 "execute": [

 "CreateThread",

 "RtlCreateUserThread",

 "CreateRemoteThread"

],

 "min_alloc": 18046,

 "startrwx": false,

 "stub": "IiuPJ9vfuo3dVZ7son6mSA==",

 "transform-x86": [

 "prepend '\\x90\\x90\\x90\\x90\\x90'"

],

 "transform-x64": [

 "prepend '\\x90\\x90\\x90\\x90\\x90'"

],

 "userwx": false

 },

 "dns-beacon": {

 "dns_idle": null,

 "dns_sleep": null,

 "maxdns": null,

 "beacon": null,

 "get_A": null,

 "get_AAAA": null,

 "get_TXT": null,

 "put_metadata": null,

 "put_output": null

 },

 "pipename": null,

 "smb_frame_header":
"AAQAA

 "stage": {

 "cleanup": true

 },

 "ssh": {

 "hostname": null,

 "port": null,

 "username": null,

 "password": null,

 "privatekey": null

35/48

 }

}

SytemBC

Another command and control channel utilized by the threat actor in this intrusion was
SystemBC, a tool frequently favored by ransomware groups. One of its most commonly used
features is its proxy functionality. This allowed the threat actor to leverage their own external
computers and, through the SystemBC malware deployed on the file server, establish proxy
connections to access the local network, facilitating further actions within the compromised
environment.

The threat actor first brought in SystemBC as a file named SC.exe. This was executed
manually by the threat actor after logging into the file server from DC X.

Security EventID 4624 showing RDP logon and Logon ID:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_073.png

36/48

The threat actor manually started SystemBC with name SC.exe:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_074.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_075.png

37/48

Notice that the original name is different and that the LogonID is the same as from the RDP
login above.

Shortly after the threat actor brought another SystemBC file, with the name socks32.exe.
That was moved to the file server from DC X.

socks32.exe moved over SMB C$ share:

Once again execution is done manually after logging in through RDP.

RDP logon:

Manual execution:

If the SystemBC sample is compiled without modifications, it should be feasible to extract the
configuration from the implant by examining the exe file, as all information is presented in
plain text.

Port and host configuration for SystemBC in the socks32.exe implant:

Impact

The threat actor’s primary objective in this case was financial gain through ransom. They
introduced an executable named qwe.exe, which we later identified as BlackSuit
ransomware.

This ransomware was strategically distributed across key endpoints within the infrastructure
and executed, initiating the ransom demands.

https://thedfirreport.com/wp-content/uploads/2024/08/26364_076.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_077.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_078.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_079.png

38/48

Windows security eventID 5145 shows the distribution of the BlackSuit ransom executable
via SMB C$ shares:

To avoid any errors during the final stage of their operation, the threat actor refrained from
manually typing the command to execute the ransomware with the necessary command line
arguments. Instead, to ensure accuracy and eliminate the risk of typos, they also moved a
file named 123.txt along with qwe.exe, likely using it as a script or reference to guarantee the
correct execution of the ransomware.

Windows security eventID 5145 shows distribution of 123.exe to the c:\users directory:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_080-1.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_081.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_082.png

39/48

Movement of the 123.txt file seen from the network side. Including the content. The id is
redacted.

After staging the ransomware executable qwe.exe and the helper file 123.txt, the threat actor
used RDP from DC X to log onto various systems. Once logged in, they opened 123.txt in
Notepad, copied the command from the file, and executed the ransomware. This method
ensured the correct command line arguments were used, reducing the risk of mistakes
during the final execution phase.

Sysmon eventID 1 showing notepad.exe opening 123.txt:

Sysmon eventID 1 showing execution of qwe.exe

Once the ransomware was executed a lot of ransom notes where created:

https://thedfirreport.com/wp-content/uploads/2024/08/26364_083.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_084.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_085.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_086.png

40/48

readme.blacksuit.txt looked like:

Timeline

https://thedfirreport.com/wp-content/uploads/2024/08/26364_087.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_088.png

41/48

https://thedfirreport.com/wp-content/uploads/2024/08/26364_089-1.png

42/48

Diamond Model

Indicators

Atomic

SystemBC C2

 137.220.61[.]94

Cobalt Strike C2

 svchorst[.]com - 15.197.130[.]221

 as.regsvcast[.]com - 147.78.47[.]178

 zx.regsvcast[.]com - 147.78.47[.]178

 qw.regsvcast[.]com - 147.78.47[.]178

Computed

https://thedfirreport.com/wp-content/uploads/2024/08/26364_089-1.png
https://thedfirreport.com/wp-content/uploads/2024/08/26364_090.png

43/48

RtWin64.exe	 - Cobalt Strike Beacon

 md5:b5266cd35d1b3770b05 ad6870c0c4bde	

 sha1:2bb6c8b6461edc49e22f3d0c7dc45904b2ed8a2b

 sha256:55cde638e9bcc335c79c605a564419819abf5d569c128b95b005b2f48ccc43c1

 imphash:6015e6e85d0d93e60041fa68c6a89776

7f02ab2.exe	 - Cobalt Strike Beacon	

 md5:3bf1142b3294c23852852053135ec0df	

 sha1:a3b617eb4248aba34c28c48886116ac97e55e932

 sha256:6c884e4a9962441155af0ac8e7eea4ac84b1a8e71faee0beafc4dd95c4e4753f

 imphash:1b2b0fc8f126084d18c48b4f458c798b

7341ac3.exe	 - Cobalt Strike Beacon

 md5:519dc779533b4ff0fc67727fecadba82	

 sha1:586ea19ea4776300962e20cfc9e7017a50888ecb

 sha256:a39dc30bd672b66dc400f4633dfa4bdd289b5e79909c2e25e9c08b44d99b8953

 imphash:1b2b0fc8f126084d18c48b4f458c798b

61185c1.exe	 - Cobalt Strike Beacon

 md5:820cfde780306e759bb434da509f7a91	

 sha1:4e38b98965a4d4756e6f4a8259df62cbca7de559

 sha256:e92912153cf82e70d52203a1a5c996e68b7753818c831ac7415aedbe6f3f007d

 imphash:1b2b0fc8f126084d18c48b4f458c798b

b7bcee8.exe	 - Cobalt Strike Beacon

 md5:b54240c98ca23202e58a1580135ad14c	

 sha1:cd55256904f1964b90b51089b46f1a933fec3e8e

 sha256:27e300fa67828d8ffd72d0325c6957ff54d2dc6a060bbf6fc7aa5965513468e0

 imphash:bed5688a4a2b5ea6984115b458755e90

e225857.exe	 - Cobalt Strike Beacon

 md5:3900ebc7766f3894fb1eb300460376ad	

 sha1:e63732fb38d2e823348529a264b4c4718e0c0b4a

 sha256:f474241a5d082500be84a62f013bc2ac5cde7f18b50bf9bb127e52bf282fffbf

 imphash:bed5688a4a2b5ea6984115b458755e90

7341ac3.exe	 - Cobalt Strike Beacon

 md5:519dc779533b4ff0fc67727fecadba82	

 sha1:586ea19ea4776300962e20cfc9e7017a50888ecb

 sha256:a39dc30bd672b66dc400f4633dfa4bdd289b5e79909c2e25e9c08b44d99b8953

 imphash:1b2b0fc8f126084d18c48b4f458c798b

AdFind.exe	

 md5:9b02dd2a1a15e94922be3f85129083ac

 sha1:2cb6ff75b38a3f24f3b60a2742b6f4d6027f0f2a

 sha256:b1102ed4bca6dae6f2f498ade2f73f76af527fa803f0e0b46e100d4cf5150682

 imphash:4fbf3f084fbbb2470b80b2013134df35

SharpHound.exe

 md5:76a2363d509cc7174c4abee9a7d7ae68

 sha1:286588a50b9b128d07aa0f8851f2d7ee91dfa372

 sha256:3b873bc8c7ee12fe879ab175d439b5968c8803fbb92e414de39176e2371896b2

44/48

 imphash:f34d5f2d4577ed6d9ceec516c1f5a744

socks32.exe

 md5:ed44877077716103973cbbebd531f38e

 sha1:ceb8c699a57193aa3be2a1766b03050cde3c738a

 sha256:9493b512d7d15510ebee5b300c55b67f9f2ff1dda64bddc99ba8ba5024113300

 imphash:d66000edfed0a9938162b2b453ffa516

qwe.exe

 md5:0bb61c0cff022e73b7c29dd6f1ccf0e2

 sha1:8dde03600a18a819b080a41effc24f42fa960a3e

 sha256:60dcbfb30802e7f4c37c9cdfc04ddb411060918d19e5b309a5be6b4a73c8b18a

 imphash:ecc488e51fbb2e01a7aac2b35d5f10bd

Detections

Network

ET CURRENT_EVENTS [Fireeye] HackTool.TCP.Rubeus.[nonce]

ET CURRENT_EVENTS [Fireeye] HackTool.TCP.Rubeus.[nonce 2]

ET Threatview.io High Confidence Cobalt Strike C2 IP group 3

ET Threatview.io High Confidence Cobalt Strike C2 IP group 2

ET POLICY SMB Executable File Transfer

ET RPC DCERPC SVCCTL - Remote Service Control Manager Access

ET POLICY SMB2 NT Create AndX Request For a .bat File

ET POLICY SMB2 NT Create AndX Request For an Executable File In a Temp Directory
ET POLICY Powershell Command With Hidden Window Argument Over SMB - Likely Lateral
Movement

ET POLICY PE EXE or DLL Windows file download HTTP

Sigma

Search rules on detection.fyi or sigmasearchengine.com

DFIR Public Rules Repo:

50046619-1037-49d7-91aa-54fc92923604 : AdFind Discovery

DFIR Private Rules:

03be05e6-4977-44cd-8ee4-a79400a5ceb0 : Detection of Cobalt Strike Execution

ded07dbe-bcd4-4d15-a27b-1669445d3215 : Enabling RDP service via reg.exe command

execution

feee5785-1381-4119-95d0-ca0c3fffe2f2 : Potential Kerberoasting Attack Detected

f8fd3970-d558-40c8-86e2-a989cd53daea : RDP Session from Host with Default Hostname

194e0132-ddee-433c-ac98-3e544c5a2a3a : Suspicious Powershell Execution in Run Key

Sigma Repo:

https://detection.fyi/
https://sigmasearchengine.com/

45/48

903076ff-f442-475a-b667-4f246bcc203b : Nltest.EXE Execution

5cc90652-4cbd-4241-aa3b-4b462fa5a248 : Potential Recon Activity Via Nltest.EXE

9a132afa-654e-11eb-ae93-0242ac130002 : PUA - AdFind Suspicious Execution

d5601f8c-b26f-4ab0-9035-69e11a8d4ad2 : CobaltStrike Named Pipe

496a0e47-0a33-4dca-b009-9e6ca3591f39 : Suspicious Kerberos RC4 Ticket Encryption
8eef149c-bd26-49f2-9e5a-9b00e3af499b : Pass the Hash Activity 2

f376c8a7-a2d0-4ddc-aa0c-16c17236d962 : HackTool - Bloodhound/Sharphound Execution

02773bed-83bf-469f-b7ff-e676e7d78bab : BloodHound Collection Files

0d894093-71bc-43c3-8c4d-ecfc28dcf5d9 : Mimikatz Detection LSASS Access

a18dd26b-6450-46de-8c91-9659150cf088 : Potentially Suspicious GrantedAccess Flags On
LSASS

098d7118-55bc-4912-a836-dc6483a8d150 : Access To ADMIN$ Network Share

61a7697c-cb79-42a8-a2ff-5f0cdfae0130 : Potential CobaltStrike Service Installations -
Registry

1d61f71d-59d2-479e-9562-4ff5f4ead16b : Suspicious Service Installation

4aafb0fa-bff5-4b9d-b99e-8093e659c65f : Writing Local Admin Share

ca2092a1-c273-4878-9b4b-0d60115bf5ea : Suspicious Encoded PowerShell Command Line

0ef56343-059e-4cb6-adc1-4c3c967c5e46 : Suspicious Execution of Systeminfo

bbb7e38c-0b41-4a11-b306-d2a457b7ac2b : Suspicious File Created In PerfLogs

3dfd06d2-eaf4-4532-9555-68aca59f57c4 : Process Execution From A Potentially
Suspicious Folder

0d5675be-bc88-4172-86d3-1e96a4476536 : Potential Tampering With RDP Related Registry
Keys Via Reg.EXE

Yara

File Scan Results:

DFIR Report:

https://github.com/The-DFIR-Report/Yara-Rules/compare/26364

https://github.com/search?q=repo%3AThe-DFIR-Report%2FYara-Rules+get-
data&type=code

https://github.com/search?q=repo%3AThe-DFIR-Report%2FYara-
Rules%20netscan&type=code

YARA Forge:

DITEKSHEN_MALWARE_Win_EXEPWSH_Dlagent

ELASTIC_Windows_Trojan_Cobaltstrike_1787Eef5

ELASTIC_Windows_Trojan_Cobaltstrike_7F8Da98A

EMBEERESEARCH_Win_Cobaltstrike_Pipe_Strings_Nov_2023

GCTI_Cobaltstrike_Resources_Artifact64_V3_14_To_V4_X

Memory Scan Results:

https://github.com/search?q=repo%3AThe-DFIR-Report%2FYara-Rules+get-data&type=code
https://github.com/search?q=repo%3AThe-DFIR-Report%2FYara-Rules%20netscan&type=code
https://yarahq.github.io/

46/48

HKTL_CobaltStrike_SleepMask_Jul22

CobaltStrike_Sleep_Decoder_Indicator

Windows_Trojan_CobaltStrike_b54b94ac

HKTL_CobaltStrike_Beacon_4_2_Decrypt

CobaltStrike_Sleeve_Beacon_x64_v4_4_v_4_5_and_v4_6

Windows_Trojan_CobaltStrike_663fc95d

Windows_Trojan_CobaltStrike_3dc22d14

HKTL_CobaltStrike_Beacon_Strings

HKTL_Win_CobaltStrike

SUSP_PS1_JAB_Pattern_Jun22_1

WiltedTulip_WindowsTask

CobaltStrike_Resources_Command_Ps1_v2_5_to_v3_7_and_Resources_Compress_Ps1_v3_8_to_v4_

Cobaltbaltstrike_Payload_Encoded

Msfpayloads_msf_ref

CobaltStrike_Resources_Template_x64_Ps1_v3_0_to_v4_x_excluding_3_12_3_13

Windows_Shellcode_Generic_8c487e57

Cobaltbaltstrike_RAW_Payload_smb_stager_x86

Windows_Trojan_Metasploit_38b8ceec

CobaltStrike_Resources_Smbstager_Bin_v2_5_through_v4_x

Windows_Trojan_CobaltStrike_f0b627fc

CobaltStrike_Sleeve_BeaconLoader_HA_x64_o_v4_3_v4_4_v4_5_and_v4_6

CobaltStrike_C2_Encoded_XOR_Config_Indicator

SUSP_XORed_Mozilla

SUSP_PowerShell_IEX_Download_Combo

CobaltStrike_Sleeve_Beacon_Dll_v4_3_v4_4_v4_5_and_v4_6

Windows_Trojan_Metasploit_7bc0f998

Windows_Trojan_Metasploit_c9773203

Rule authors:

Elastic Security

Florian Roth (Nextron Systems)

Avast Threat Intel Team

MITRE ATT&CK

https://github.com/Neo23x0/signature-base/blob/master/yara/apt_cobaltstrike_evasive.yar
https://github.com/elastic/protections-artifacts/tree/main/yara
https://github.com/chronicle/GCTI/tree/main
https://github.com/volexity/threat-intel/tree/main
https://github.com/Neo23x0/signature-base
https://github.com/avast/ioc/blob/master/CobaltStrike/yara_rules/cs_rules.yar

47/48

https://thedfirreport.com/wp-content/uploads/2024/08/26364_091-1.png

48/48

Abuse Elevation Control Mechanism - T1548

Archive Collected Data - T1560

AS-REP Roasting - T1558.004

Data Encrypted for Impact - T1486

Domain Groups - T1069.002

Domain Trust Discovery - T1482

Inhibit System Recovery - T1490

Kerberoasting - T1558.003

LSASS Memory - T1003.001

Malicious File - T1204.002

Modify Registry - T1112

PowerShell - T1059.001

Process Injection - T1055

Proxy - T1090

Registry Run Keys / Startup Folder - T1547.001

Remote Desktop Protocol - T1021.001

Remote System Discovery - T1018

Security Software Discovery - T1518.001

Service Execution - T1569.002

SMB/Windows Admin Shares - T1021.002

Software Discovery - T1518

System Information Discovery - T1082

Web Protocols - T1071.001

Windows Command Shell - T1059.003

Pass the Hash - T1550.002

Internal case #TB29364 #PR31354

