
1/17

Pascal Geenens

MegaMedusa, RipperSec’s Public Web DDoS Attack Tool
radware.com/blog/security/2024/08/megamedusa-rippersec-public-web-ddos-attack-tool/

Key insights

RipperSec is a pro-Palestinian, pro-Muslim hacktivist group operating from Malaysia
RipperSec has been operating on Telegram since June 2023 and accumulated over
2,000 members in a little over a year
MegaMedusa is a publicly available Web DDoS attack tool created and maintained by
a member of the RipperSec group
MegaMedusa can be installed in just five simple commands allowing anyone to launch
highly scalable Web DDoS attacks against targets of their choice
The MegaMedusa attack tool uses 10 randomization techniques to diversify its attack
requests and make the detection and mitigation of its attacks harder
MegaMedusa makes some rudimentary attempts to evade CAPTCHA triggers through
randomization and proxy use, but it does not include advanced CAPTCHA-solving
capabilities
RipperSec’s threat and scale do not come from a large and sophisticated attack
infrastructure but from its community. Community has always been activists’ and
hacktivists’ most powerful weapon.

RipperSec Background

Figure 1: RipperSec Telegram profile (source: TGStat)

RipperSec is a pro-Palestinian and pro-Muslim Malaysian hacktivist group. Their Telegram
channel @RipperSec was created in June 2023 and accumulated over 2,000 subscribers by
August 8, 2024.

https://www.radware.com/blog/security/2024/08/megamedusa-rippersec-public-web-ddos-attack-tool/
https://tgstat.com/channel/@RipperSec/stat


2/17

RipperSec often works in alliance with other like-minded hacktivist groups and hackers in
and outside of the region, including Tengkorak Cyber Crew, Eagle Cyber Crew, Stucx Team,
4Exploitation, Khalifah Cyber Crew, Helang Merah Group, Rex AnonSaven7, Team Cyber
Ababil, Malaysia Hacktivist, Zenimous Crew, Laskar Pembebasan Palestina aka the
Palestine Liberation Army, Garruda From Cyber (GFC), Holy League, Morrocan Cyber Black
Army and several others. Most hacktivists from Malaysia do not agree with the actions taken
by Israel and consider all countries that support Israel as enemies.

RipperSec’s attack activity includes data breaches, defacements and DDoS attacks—
anything that creates chaos, attracts attention and causes disruption that’s typical for a
hacktivist group.

RipperSec DDoS Attack Claims

Between January 1 and August 8, 2024, RipperSec claimed 196 DDoS attacks. Almost a
third of the attacks targeted Israel. India, the United States, the United Kingdom and
Thailand were other countries with significant attack activity claimed by RipperSec in 2024.

Figure 2: Number of attacks claimed per month by RipperSec (source: Radware)



3/17

Figure 3: RipperSec’s top targeted countries (source: Radware)

RipperSec targeted mostly government and educational websites, followed by business,
society and financial services.



4/17

Figure 4: RipperSec’s top targeted website categories (source: Radware)

MegaMedusa, a Web DDoS Attack Tool

MegaMedusa is a publicly available Web DDoS attack tool created and maintained by a
member of the RipperSec group. The tool’s source code is published on GitHub and while its
JavaScript code is obfuscated, it is easy enough to deobfuscate and recover readable code.
While written in JavaScript, MegaMedusa is a command-line tool to be executed using the
Node.js cross-platform JavaScript runtime environment. Node.js provides asynchronous and
non-blocking I/O, allowing it to handle multiple requests concurrently. This makes it highly
efficient for I/O-bound tasks such as managing large amounts of network connections.
Node.js applications also can run on multiple platforms (Windows, macOS, Linux) without the
need for platform-specific code.



5/17

Figure 7: MegaMedusa Layer 7 DDoS attack tool (source: GitHub)

Installation and Operation

The author of MegaMedusa provides an installation script and steps to install and run the
tool on the code repository’s GitHub landing page. Only five simple commands are needed to
download and install the Node.js runtime environment and all required dependencies.
Anyone who runs a Linux-based system at home or rents a Linux-based virtual private
system in a public or bulletproof cloud can gear up to launch highly scalable Web DDoS
attacks against targets of their choice in only a few minutes.

https://github.com/TrashDono/MegaMedusa


6/17

Figure 8: MegaMedusa installation instructions (source: GitHub)

The publicly available version of MegaMedusa allows attacks directed at any online web
application or API. On the command line, users can specify the number of simultaneous
threats that should be executing web requests, the attack rate expressed in requests per
second (RPS) and the duration of the attack in seconds. Specifying a text file with open
proxies allows the attack traffic to be distributed across proxies. For each new request, the
proxy is randomly chosen from the list of proxies provided in the command line.

Figure 9: MegaMedusa command line usage and description of command line arguments (source:
GitHub)

Randomization of Web Requests

The MegaMedusa attack tool leverages several levels of randomization to diversify its attack
requests and make detection and mitigation of its attacks harder. Here are the key
randomization techniques used by MegaMedusa:

https://github.com/TrashDono/MegaMedusa
https://github.com/TrashDono/MegaMedusa


7/17

1. Randomized Headers:
User-Agent Strings: The script randomizes the User-Agent header, which
represents the client’s browser and operating system. Different user agents make
the requests appear to come from various types of devices and browsers.
Accept-Language, Accept-Encoding, Cache-Control, etc.: These headers are
randomized to simulate requests from different regions, clients and
configurations. For example, the Accept-Language header is randomized to
suggest different languages.
Referrer Header: The Referrer header is randomized to make it appear as if the
request is coming from various legitimate pages like Google Search.
Connection Header: The script randomly alternates between keep-alive and close
in the connection header.

2. Randomized Request Paths:
Query Parameters: The script appends random query strings and parameters to
the URL path to create unique URLs. For example, it might add ‘?s=’, ‘?page=’, or
other parameters with random values to the URL.
Path Segments: It also includes random path segments such as ‘/’ and
‘/.lsrecap/recaptcha?’ to diversify the request paths or target specific
functionalities of the website like reCAPTCHA to increase the impact on the
backend infrastructure of the website.

3. Randomized Request Methods: The HTTP request method (GET, POST, HEAD, etc.)
is randomized. Each request might use a different method, making it more difficult to
identify patterns.

4. Randomized Cookies: Randomly generated cookies make each request appear as
though it comes from a different session or user. Some cookies such as ‘cf_clearance’
are randomly generated within specific patterns to attempt to bypass security features.

5. Random IP Addresses (IP Spoofing): The X-Forwarded-For, Client-IP, Real-IP, X-
Forwarded-Host, and other headers are filled with random IP addresses used to spoof
the origin of the request.

6. Randomized TLS/SSL Configurations: The script randomizes the use of different
TLS/SSL ciphers and protocols when establishing a connection. This makes the TLS
handshake appear unique.

7. Randomized HTTP/2 Settings: HTTP/2 settings such as headerTableSize,
maxConcurrentStreams, initialWindowSize, etc., are randomized to vary the HTTP/2
session characteristics.

8. Proxy Randomization: The tool selects a random proxy from a list of proxies for each
request, which diversifies the apparent source IP addresses and geolocations of the
requests.

9. Random Timing Intervals: The attack tool uses setInterval() to send requests at
intervals, which can be configured and randomized to vary, making the timing of
requests less predictable.



8/17

10. Randomized Header Values: Random values are inserted into certain headers, such
as Sec-WebSocket-Key, Sec-WebSocket-Version, etc., making each request appear
unique even at the WebSocket level.

These techniques combined make the requests appear unique and diversified, which helps
avoid detection or blocking by standard web application firewalls (WAFs) and other common
security measures designed to mitigate suspicious or malicious traffic patterns.

Open Proxy Support

While MegaMedusa provides support for open proxies and includes a tool to scrape fresh
lists of open proxies from publicly available open proxy lists, commercial proxies and private
proxies that require authentication are not supported. Adding support for authentication,
however, is not a big task and the code shows that the author is not an inexperienced
Node.js developer. There is also evidence that the core members of RipperSec use several
more evolved and improved versions of MegaMedusa. It is not improbable that certain
attacks leverage commercial proxy lists that allow diversifying attack traffic across several
hundreds of thousands of IP addresses compared to several thousands of open proxies than
can be freely scraped.

The Node.js scrapers provided in the repository are very basic, but they do provide a list of
over 30 different resources on the internet that can be used to create custom proxy files.
Moreover, searching the internet for open proxy lists is easy enough. Most open proxy
websites provide a download function to save a filtered list of proxies in text format that can
be directly used with the MegaMedusa tool.

Security Challenge Bypasses

The author of MegaMedusa claims challenge bypass support for several security vendors
including Cloudflare’s Under Attack Mode and NoSec, DDoS Guard, vShield and
ShieldSquare Captcha (Radware).



9/17

 Figure 10:

MegaMedusa challenge bypass features (source: GitHub)

While MegaMedusa makes some rudimentary attempts to evade CAPTCHA triggers through
randomization and proxy use, it does not include advanced CAPTCHA-solving capabilities. It
mainly focuses on making the requests appear diverse and less detectable rather than
directly bypassing CAPTCHA challenges. True CAPTCHA bypass typically requires more
sophisticated approaches, such as solving the CAPTCHA or using pre-solved tokens, neither
of which is present in this script.

The implementation of security challenge bypasses in MegaMedusa will not cut through
current modern security challenges. The internet is riddled with information, misinformation
and all levels of working and broking examples to perform bot detection bypass based on
HTTP request headers. It is not impossible to bypass security challenges and fingerprinting
detections but relying on static bypass and using randomly generated and pre-provisioned
HTTP request headers as implemented in MegaMedusa and shown in the code below has a
very limited success rate.

The most efficient way to circumvent protections and challenges is to find the server’s origin
IP address. This, however, is only possible in scenarios where the origin server is exposed
on the internet and does not adequately filter traffic other than from known and authorized
secure gateways.

https://github.com/TrashDono/MegaMedusa


10/17

Figure 11: HTTP header parameters, including captcha bypasses (source: MegaMedusa.js)

MegaMedusa does not include any functionality to automatically solve CAPTCHAs such as
image recognition and reCAPTCHA v2/v3 tokens. Sophisticated CAPTCHA bypassing
typically involves using machine learning models, CAPTCHA-solving services, or leveraging
browser automation tools like Puppeteer or Selenium to interact with CAPTCHAs in real-
time, which MegaMedusa does not do.

The code does include some basic CAPTCHA handling elements that interact with
CAPTCHA challenges, such as using random __cf_chl_tk tokens, which are related to
Cloudflare’s CAPTCHA challenges. However, these tokens are randomly generated and not
tied to an actual CAPTCHA-solving process. Without solving the CAPTCHA correctly, these
tokens are unlikely to be valid.

RipperSec and MegaMedusa

While a member of the RipperSec group made a version of MegaMedusa publicly available
for volunteers and subscribers of the RipperSec Telegram channel, there is evidence that
shows the use of improved and more capable custom versions of the tool used by RipperSec
group members. Below is a screenshot taken from an advertisement video shared by
RipperSec. While not the best quality, it is possible to see several alleged Node.js attack
programs in the directory listing. It is reasonable to assume that core RipperSec members
have access to more capable tools than the one that is shared publicly and used by
volunteers and allies of the group.



11/17

Figure 12: Screenshot demonstrating an attack and more advanced attack tools (source:
RipperSec)

Generating Web DDoS Attacks (for educational purposes)

The name Web DDoS attack refers to a high rate of web requests directed at an online web
application or API, leveraging different methods of request randomization and proxies.
Proxies conceal the origins of web requests and make detection and mitigation more difficult
by making it look like the requests are coming from many different locations. Proxying
requests can also circumvent measures like geo-blocking by leveraging proxies inside the
country of the victim.

Proxying Requests

Tunneling web requests is performed by creating a TCP connection with a proxy and
requesting the proxy to ‘connect’ to the target (see image below). The proxy handles the SSL
and HTTP connection with the target and responds with a status 200 when the connection is
established successfully. The attacker node is now able to send requests to and receive
responses from the target through its TCP tunnel connection with the proxy. From the
perspective of the target, the communication is established from the proxy and not from the
attack-generating node, concealing the location of the attacker’s infrastructure.



12/17

Figure 13: A HTTPS request tunneled through a Proxy (source: Radware)

Node.js provides several libraries that implement web requests through proxies such as the
NPM (Node Package Manager) modules http-proxy-agent and https-proxy-agent. Proxying
web requests using the https-proxy-agent module is as easy as creating an agent object
using the statement “agent = new HttpsProxyAgent(‘http://<proxy-ip>:<proxy-port>’)”,
followed by a regular HTTPS request using the https standard library module and passing
the agent object as an argument (see image below).

Figure 14: https-proxy-agent module example (source: GitHub)

MegaMedusa, however, does not leverage the https-proxy-agent module. It implements
proxy support natively by first creating a proxy socket, followed by the connect command to
the proxy and then passing the established socket to the https module for performing the

https://github.com/TooTallNate/proxy-agents/tree/5555794b6d9e4b0a36fac80a2d3acea876a8f7dc/packages/https-proxy-agent


13/17

GET/POST/HEAD/… request. Native implementations reduce the dependencies on third-
party modules and leave the author in control of the connection options and the lifetime of
the proxy connection.

Optimizing Attack Request Rates

To support a world that has become more reliant on web and mobile applications providing
real-time access to data combined with great user experience, the protocol specifications for
HTTP were improved over time to include mechanisms that reduce the latency and increase
the throughput, while decreasing resource requirements on both client and server. While
these improvements were meant to improve the efficiency of applications and server
infrastructure, they also serve malicious actors by making their attacks more efficient.

HTTP/1.1 pipelining is used primarily to improve the efficiency of sequential requests but
suffers from limitations like head-of-line blocking. While not widely adopted due to its
limitations, it is much liked by attackers because it allows them to increase the number of
RPS from the same infrastructure without too much impact on resources and it is very easy
to implement.

HTTP/2 introduced multiplexing, which allows multiple HTTP requests and responses to be
performed concurrently over a single TCP connection. This implementation overcomes the
limitations of HTTP/1.1 pipelining and provides a more efficient use of network resources,
reducing latency and improving page load times for users. As with pipelining, multiplexing
also allows attackers to efficiently increase their RPS numbers. To make it more evident, in
October 2023, the HTTPS/2 Rapid Reset vulnerability was disclosed. This resulted in a large
number of DDoS-for-hire services introducing this technique as a new attack vector in their
arsenal of attack tools. Another notable vulnerability is the HTTP/2 Continuation vulnerability,
which was disclosed in April 2024.

Open and Commercial Proxies

Open proxies typically consist of compromised residential routers and servers. IoT botnets
compromise vulnerable modems, routers and weakly secured cloud servers not only to
generate attacks, but the same enslaved devices can also be leveraged as HTTP or SOCKS
proxies by incorporating proxy functionality in the bot, installing a proxy server on the
compromised device or just by reconfiguring the device and living off the land (LOTL) from
services offered by the router or gateway. By leveraging devices located in residential IP
ranges, attacks are less prone to be filtered as they share the same location as legitimate
users.

Commercial proxy vendors deploy servers behind residential IP addresses and lease unused
ranges from internet service providers. They consolidate the proxy service on a single or
several Linux servers running, for example, a Squid proxy.

https://www.radware.com/blog/applicationdelivery/2023/10/http-2-rapid-reset-attack-technique-observed-in-the-wild/
https://www.radware.com/blog/security/threat-intelligence/2024/04/http-2-continuation-flood/


14/17

Figure 15: Services offered by commercial proxy services (source: internet)

Most commercial proxy services offer features like daily rotating IP addresses, which change
30% or more of the IP addresses in the pool of proxies every day. Attackers can leverage
this to avoid blocking from IP feeds that provide longer-term analysis for the collection of
malicious IP addresses.

Many commercial proxy providers also offer a free list. These lists can be leveraged without
additional cost but with limitations in time or in the service rendered. There are also several
unmanaged lists scattered around the internet, hosted publicly on GitHub and in other
places, containing free and open proxies. Proxies from those lists are typically hit and miss,
but by leveraging a proxy checker tool it is still possible to generate working lists of free and
open proxies to perform attacks. The IT Army of Ukraine, for example, as part of its IT Army
Kit, provides a curated list of proxies scraped from several locations on the internet and



15/17

includes it with their improved version of MHDDOS. More information about the IT Army Kit
and DDoS tools offered by the IT Army of Ukraine to volunteers supporting its cause can be
found here.

Figure 16: Free proxy list offered by commercial provider, categorized by protocol, country and
latency and providing an API URL for dynamically loading proxies in software (source: internet)

Advanced DDoS Attacker Infrastructure

Sophisticated DDoS attackers and DDoS-for-hire service providers leverage a whole arsenal
of attack tools ranging from several variants of network DDoS amplification and reflection to
Web DDoS with different randomizations of payloads and protection evasions. Depending on
the attack, attackers conceal their infrastructure and increase their reach by leveraging
source IP spoofing, proxy and SOCKS services and, in some cases, routing through the Tor
overlay network.



16/17

Threat actors, like businesses, find agility and scale in the cloud. By transitioning from
internet of things (IoT) devices to a cloud-centric model, they enhance scalability, reliability
and ease of management compared to trying to control and maintain a huge number of
infected IoT devices. The scanning and infecting of IoT devices is also more prone to getting
noticed by honeypots, resulting in exposure and potentially the takedown of the command
and control (C2) infrastructure.

Bulletproof hosters provide more lenient content policies and are often used for hosting
content or services that regular hosting providers would not permit due to their policies.
While they provide more freedom, they are often associated with nefarious activities and are
scrutinized for hosting malicious content. They also provide malicious actors with a more
stable environment as the providers are not responding to abuse and take down messages
from the security community.

Figure 17: Advanced DDoS attackers’ cloud infrastructure (source: Radware)

While the cloud provides many benefits for attackers’ infrastructure, there are still plenty of
botnets in use and leveraged for DDoS attacks. Botnets are good at creating highly
distributed attacks. A botnet is the better platform to launch, for example, highly impactful
DNS Water Torture or Pseudorandom Subdomain (PRSD) attacks as it leverages the trust
relation between DNS forwarders and the residential IP ranges of the internet service
providers (ISP). Some DDoS-for-hire services start with botnets as a cheaper alternative for
their attack infrastructure. As they grow and need to provide more scalable and stable
services to their customers, we see them transition to a hybrid infrastructure consisting of
both botnets and cloud attack nodes.



17/17

The same IoT botnets used for DDoS attacks can also be leveraged for proxy and SOCKS
services. Once IoT devices are compromised, it is rather easy for a bot herder to change or
diversify his services by updating his bot’s functionality and increasing and diversifying their
revenue streams.

Reasons for Concern

MegaMedusa is not the ultimate DDoS attack tool, but it is certainly good enough for a
person with limited knowledge to perform attacks reaching levels that most websites will not
be able to withstand without adequate Web DDoS protections.

As an attacker group, RipperSec can count on volunteers and allied groups to orchestrate
devastating attacks. RipperSec’s threat and scale do not come from a large and
sophisticated attack infrastructure but from its community, which has always been the most
powerful weapon of activists and hacktivists.

Posted in: Security Threat Intelligence

Pascal Geenens

As the Director, Threat Intelligence for Radware, Pascal helps execute the company's
thought leadership on today’s security threat landscape. Pascal brings over two decades
of experience in many aspects of Information Technology and holds a degree in Civil
Engineering from the Free University of Brussels. As part of the Radware Security
Research team Pascal develops and maintains the IoT honeypots and actively researches
IoT malware. Pascal discovered and reported on BrickerBot, did extensive research on
Hajime and follows closely new developments of threats in the IoT space and the
applications of AI in cyber security and hacking. Prior to Radware, Pascal was a consulting
engineer for Juniper working with the largest EMEA cloud and service providers on their
SDN/NFV and data center automation strategies. As an independent consultant, Pascal
got skilled in several programming languages and designed industrial sensor networks,
automated and developed PLC systems, and lead security infrastructure and software
auditing projects. At the start of his career, he was a support engineer for IBM's Parallel
System Support Program on AIX and a regular teacher and presenter at global IBM
conferences on the topics of AIX kernel development and Perl scripting.

https://www.radware.com/blog/security/
https://www.radware.com/blog/security/threat-intelligence/

