
1/14

August 2, 2024

StormBamboo Compromises ISP to Abuse Insecure
Software Update Mechanisms

volexity.com/blog/2024/08/02/stormbamboo-compromises-isp-to-abuse-insecure-software-update-mechanisms/

August 2, 2024

by Ankur Saini, Paul Rascagneres, Steven Adair, Thomas Lancaster

KEY TAKEAWAYS

StormBamboo successfully compromised an internet service provider (ISP) in order to
poison DNS responses for target organizations.
Insecure software update mechanisms were targeted to surreptitiously install malware
on victim machines running macOS and Windows.
Malware deployed by StormBamboo includes new variants of the MACMA malware.
Analysis of the newest versions of MACMA shows converged development of the
MACMA and GIMMICK malware families.
Post-exploitation activity included deployment of the malicious browser extension
RELOADEXT to exfiltrate victim mail data.

In mid-2023, Volexity detected and responded to multiple incidents involving systems
becoming infected with malware linked to StormBamboo (aka Evasive Panda, and previously
tracked by Volexity under “StormCloud”). In those incidents, multiple malware families were

https://www.volexity.com/blog/2024/08/02/stormbamboo-compromises-isp-to-abuse-insecure-software-update-mechanisms/
https://www.volexity.com/blog/2022/03/22/storm-cloud-on-the-horizon-gimmick-malware-strikes-at-macos/


2/14

found being deployed to macOS and Windows systems across the victim organizations’
networks.

The infection vector for this malware was initially difficult to establish but later proved to be
the result of a DNS poisoning attack at the internet service provider (ISP) level. Volexity
determined that StormBamboo was altering DNS query responses for specific domains tied
to automatic software update mechanisms. StormBamboo appeared to target software that
used insecure update mechanisms, such as HTTP, and did not properly validate digital
signatures of installers. Therefore, when these applications went to retrieve their updates,
instead of installing the intended update, they would install malware, including but not limited
to MACMA and POCOSTICK (aka MGBot). The overall workflow used by the attackers is
similar to a previous incident investigated by Volexity that was attributed to DriftingBamboo, a
threat actor which is possibly related to StormBamboo.

In April 2023, ESET published a blog post about a malware family that Volexity has tracked
since 2018 as POCOSTICK. ESET did not have direct evidence but proposed the most likely
source of infection was an adversary-in-the-middle (AiTM). Volexity can now confirm this
scenario in a real-world case and prove the attacker was able to control the target ISP’s DNS
infrastructure in order to modify DNS responses in the victim organization’s network.

This blog post explains the infection vector and gives an example of where an automatic
update was abused by StormBamboo. Note that this is just one example; the threat actor has
modified installation workflows for a range of applications whose update mechanisms are
vulnerable to this type of attack.

Overview

During one incident investigated by Volexity, it was discovered that StormBamboo poisoned
DNS requests to deploy malware via an HTTP automatic update mechanism and poison
responses for legitimate hostnames that were used as second-stage, command-and-control
(C2) servers.

The DNS records were poisoned to resolve to an attacker-controlled server in Hong Kong at
IP address 103.96.130[.]107. Initially, Volexity suspected the initial victim organization’s
firewall may have been compromised. However, further investigation revealed the DNS
poisoning was not performed within the target infrastructure, but further upstream at the ISP
level. Volexity notified and worked with the ISP, who investigated various key devices
providing traffic-routing services on their network. As the ISP rebooted and took various
components of the network offline, the DNS poisoning immediately stopped. During this time,
it was not possible to pinpoint a specific device that was compromised, but various
components of the infrastructure were updated or left offline and the activity ceased.

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
https://malpedia.caad.fkie.fraunhofer.de/details/win.mgbot
https://www.welivesecurity.com/2023/04/26/evasive-panda-apt-group-malware-updates-popular-chinese-software/


3/14

This is not the first case where Volexity has encountered an attacker utilizing DNS poisoning
to facilitate initial access to a target network. In the May 2023 Cyber Session, Volexity
presented details of a malware family it calls CATCHDNS, DNS poisoning malware used by
DriftingBamboo that was deployed to a network appliance (in that instance, a Sophos XG
Firewall). Volexity cannot confirm what mechanism was used by StormBamboo on the ISP’s
routers to modify DNS responses; however, CATCHDNS would be a well-designed tool to
achieve this goal in an ISP environment. An analysis of CATCHDNS can be found in the
Appendix.

DNS Poisoning: Now with Abuse of Insecure Automatic Update
Mechanisms!

In the previously analyzed case where CATCHDNS was used to modify DNS responses, the
end goal of the attacks was to modify the content of pages users browsed. This resulted in a
popup JavaScript alert on the page asking the user to “update their browser”, which would
download a malicious file from the attacker’s server. In this most recent case, the attacker’s
method of delivering malware was more sophisticated, abusing insecure automatic update
mechanisms present in software in the victim’s environment, thus requiring no user
interaction.

The logic behind the abuse of automatic updates is the same for all the applications: the
legitimate application performs an HTTP request to retrieve a text-based file (the format
varies) containing the latest application version and a link to the installer. Since the attacker
has control of the DNS responses for any given DNS name, they abuse this design,
redirecting the HTTP request to a C2 server they control hosting a forged text file and a
malicious installer. The AiTM workflow is shown below.

https://www.volexity.com/wp-content/uploads/2023/06/Volexity-Cyber-Session-May-2023-FirewallZeroDayInvestigations.pdf


4/14

Volexity observed StormBamboo targeting multiple software vendors, who use insecure
update workflows, using varying levels of complexity in their steps for pushing malware. For
example, 5KPlayer uses a workflow that, for each time the application is started, the binary
automatically checks if a new version of “YoutubeDL” is available. The image below shows
the HTTP request to upgrade Youtube.config.

And the following image shows the contents of upgrade Youtube.config.

https://www.5kplayer.com/


5/14

If a new version is available, it is downloaded from the specified URL and executed by the
legitimate application. StormBamboo used DNS poisoning to host a modified config file
indicating a new update was available. This resulted in the YoutubeDL software downloading
an upgrade package from StormBamboo’s server.

As one might expect, the YoutubeDL package had been backdoored through the insertion of
malicious code into the middle of the YouTubeDL.py file that is used as part of the upgrade
process. The image below shows inserted malicious code, starting at line 164.

Its purpose is to download the next stage, a PNG file containing MACMA (macOS) or
POCOSTICK (Windows) depending on the operating system.

MACMA was first publicly documented in 2021 by Google TAG. In the three years since,
MACMA has changed, with more features added for the convenience of the operator and
some of its architecture overhauled. For example, the network protocol has been completely
changed. The original version used a Data Distribution Server (DDS) implemented in a

https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
https://en.wikipedia.org/wiki/Data_Distribution_Service


6/14

series of custom classes prefixed by the string “CDDS”. Now, MACMA appears to use the
kNET protocol UDP for network communications. During Volexity’s analysis, Volexity noticed
significant code similarities between the latest MACMA version and the GIMMICK malware
family previously described by Volexity.

Follow-on Activity

In one case, following successful compromise of a victim’s macOS device, Volexity observed
StormBamboo deploying a Google Chrome extension to the victim’s device. Volexity tracks
this malicious extension under the name RELOADEXT. The extension was installed using a
custom binary (ee28b3137d65d74c0234eea35fa536af) developed by the attacker. The
installer supports the following parameters:

Parameter Description

-p / --plugin Path of the plugins (must be a ZIP archive)

-f / --force Kill Chrome and install the plugin

The browser extension is deployed by modifying the Secure Preferences file to include the
new extension. The installer also correctly fixes the protections.macs and
protections.super_mac values in the newly modified SecurePreferences. These values
are designed to prevent tampering with a user’s browser settings, but they can be forged. If
they do not contain the expected values, Chrome will overwrite the SecurePreferences file.

The plugin passed to this tool is stored in the following location:

$HOME/Library/Application

Support/Google/Chrome/Default/Default/CustomPlug1n/Reload/

Once configured, it can be seen in the user’s SecurePreferences file, as shown below.

https://github.com/juj/kNet
https://www.volexity.com/blog/2022/03/22/storm-cloud-on-the-horizon-gimmick-malware-strikes-at-macos/
https://www.microsoft.com/en-us/security/blog/2020/12/10/widespread-malware-campaign-seeks-to-silently-inject-ads-into-search-results-affects-multiple-browsers/


7/14

Finally, the plugin (6abf9a7926415dc00bcb482456cc9467) is activated by the installer running
the following AppleScript command:

osascript -e tell application “Google Chrome” to activate

The extension portrays itself as an extension that loads a page in compatibility mode with
Internet Explorer:



8/14



9/14

The main JavaScript logic used by the extension is obfuscated using Obfuscator.io. The
purpose of the extension is to exfiltrate browser cookies to a Google Drive account controlled
by the attacker. The attacker’s Google Drive client_id, client_secret, and
refresh_token are all contained in the extension. They are encrypted beyond the default
encryption afforded by Obfuscator.io using AES with the key chrome extension.

The exfiltrated data sent to Google Drive is also encrypted using AES, using the key
opizmxn!@309asdf and encoded with base64 prior to exfiltration.

Conclusion

StormBamboo is a highly skilled and aggressive threat actor who compromises third parties
(in this case, an ISP) to breach intended targets. The variety of malware employed in various
campaigns by this threat actor indicates significant effort is invested, with actively supported
payloads for not only macOS and Windows, but also network appliances.

The incident described in this blog post confirms the supposition made by ESET concerning
the infection vector for the POCOSTICK malware. The attacker can intercept DNS requests
and poison them with malicious IP addresses, and then use this technique to abuse
automatic update mechanisms that use HTTP rather than HTTPS. This method is similar to
the attack vector Volexity previously observed being used by DriftingBamboo following the 0-
day exploitation of Sophos Firewalls.

To detect the malware used in this specific attack, Volexity recommends the following:

Use the rules provided here to detect related activity.
Block the IOCs provided here.

Volexity's Threat Intelligence research, such as the content from this blog, is published
to customers via its Threat Intelligence Service. The content of this blog post is a
summary of posts published in 2022–2024. Volexity Network Security Monitoring
customers are also automatically covered through signatures and deployed detections
from the threats and IOCs described in this post.

If you are interested in learning more about these products and services, please do not
hesitate to contact us.

Appendix

CATCHDNS Analysis

https://obfuscator.io/
https://www.volexity.com/blog/2022/06/15/driftingcloud-zero-day-sophos-firewall-exploitation-and-an-insidious-breach/
https://github.com/volexity/threat-intel/blob/main/2024/2024-08-02%20StormBamboo/rules.yar
https://github.com/volexity/threat-intel/blob/main/2024/2024-08-02%20StormBamboo/iocs.csv
https://www.volexity.com/company/contact/


10/14

CATCHDNS is a 32-bit ELF malware that targets Linux systems which was discovered in a
case investigated by Volexity which Volexity attributes to StormBamboo. CatchDNS is
designed to be deployed on systems through which most of the network traffic passes. In the
specific case investigated by Volexity, this malware was discovered on a perimeter firewall
device. However, CATCHDNS could be deployed on any Linux device that supports the use
of libpcap.

After initial analysis, Volexity found that the malware is fully stripped, and the library functions
are statically linked thus making further analysis more difficult. CATCHDNS stores its
configuration within itself as an encrypted archive. The malware decrypts the archive and
drops it on disk at runtime with the name [binary_name].tty. This archive is then
decompressed in memory, and the copy on disk is deleted. In the example analyzed, the
configuration file was in a file named dns.ini. The configuration follows the INI file format,
which consists of various sections containing key-value pairs.

CATCHDNS configurations can have following sections:

Section Description

[LISTEN_DEV]
[SEND_DEV]

The listen device and send device sections have a “dev” key under them
whose value refers to the interface on which the malware intercepts the
packets and sends fake packets.

[DNSDomain] This section contains the “dns” key whose value represents the domain
whose DNS is to be hijacked.

[SERVER_IP] This section contains the “ip” key whose value is the IP address to which
the hijacked domain will resolve once the malware has successfully
performed hijacking.

[IPLimit] This section contains a key named “ip”. When this is defined, the
malware only hijacks requests originating from this IP address. This
option only applies to HTTP requests.

[HTTPConfig] This section is interesting, as it is the only one with multiple keys. It
defines various values that are used when the malware intercepts HTTP
requests.

Packet Interception

Packet Interception is a key component of CATCHDNS. To intercept packets, it makes use of
libpcap, a common library for packet monitoring on Linux. The device/interface on which the
malware intercepts the packets is specified in the configuration. It uses the pcap_open_live
library function to open the device for capturing packets. It installs a BPF filter on the device,
and the filter program is compiled using the pcap_compile function by passing the filter string

https://en.wikipedia.org/wiki/INI_file


11/14

 “(udp and dst port 53 ) or (tcp and dst port 80 or 8080)”. The filter only captures
UDP packets on port 53 and TCP packets on ports 80 or 8080. To actually install this filter, it
uses the pcap_setfilter call.

Once everything is set up, CATCHDNS calls pcap_loop with a handler function as an
argument. For every packet that passes the filter, the handler function is called with the
packet data as an argument. This handler function is responsible for processing every
filtered packet, as shown below.

The packet processing function checks the Ethernet and IPv4 headers to determine if it is a
UDP or TCP packet. Depending on the IPv4 protocol of the packet, either
process_udp_packet or process_tcp_packet is called.

DNS Hijacking

After analyzing the process_udp_packet function, it is clear the function specifically
processes DNS packets. While dealing with network packets, it a good idea to create the
packet structures in IDA and apply them while analyzing. This makes it easy to understand
the whole logic. A DNS packet consists of the Ethernet header, IP header, and UDP header,
followed by the DNS header and DNS data. Using this knowledge, these structures are
applied to the processing functions to reveal the function parsing the DNS header and to
perform basic sanity checks, as shown below.



12/14

Each DNS packet contains queries that appear after the DNS header in the packet. The
queries contain information about the domain for which the DNS information is requested by
the client. The malware parses the DNS queries and retrieves the domain name for which
the DNS request is being made. Once it has the domain name, it is compared to the DNS
domain(s) present in the malware’s configuration. If there is match, the DNS request is
hijacked and the malware builds a fake DNS response packet. It then sends the packet back
to the client, responding with the attacker-controlled (C2) IP address instead of the legitimate
IP address. The following function is used to build the fake DNS packet and send it to the
client:

HTTP Interception and Mock Response



13/14

The process_tcp_packet function is used to intercept HTTP requests. An attacker can tune
the interception using various configuration options. Both GET and POST requests can be
intercepted by the malware. As previously mentioned, HTTP interception can also be limited
to a given IP address using IPLimit. HTTP interception works similarly to DNS interception.
If a request meets the conditions specified, the malware builds an HTTP mock response and
sends it back to the client. The response can be configured via the malware configuration,
where the attacker can configure a hardcoded page to return in response to specific
requests.

To successfully respond with a fake HTTP response, all conditions specified in the
configuration must be satisfied. The following keys can be specified in HTTPConfig:

url

host

ua (user-agent)
content-type

otherhead_%s

sendlimit

configfile

Other headers to be parsed and checked can be specified using the otherhead_%s key,
where %s denotes the header name. The sendlimit key defines how many times the
malware will respond to requests satisfying the configuration. Once this limit is exceeded, the
malware will no longer modify responses to requests matching the pattern. The configfile
key contains the path to the web page to be served if all conditions are met.

Configuration Example

Volexity was able to extract all configurations from the CATCHDNS samples encountered
during the intrusion by intercepting them before they were deleted from the disk. The image
below shows one example of an extracted configuration.



14/14

The above configuration intercepts all DNS (53) and HTTP (80 and 8080) packets on the
Port1 device. It hijacks the www.msftconnecttest[.]com domain and responds with IP
address 122.10.90[.]20 for this domain. In HttpConfig , the “host” key is absent, meaning
the malware would intercept an HTTP request to any host if it satisfied the other conditions.
This was only one of several configurations observed; the attacker has been observed using
a variety of options offered by the malware to achieve various objectives.


