
1/8

Alessandro Strino, Simone Mattia

BingoMod: The new android RAT that steals money and wipes data
cleafy.com/cleafy-labs/bingomod-the-new-android-rat-that-steals-money-and-wipes-data

Download your PDF  guide to TeaBot

Get your free copy to your inbox now

Download PDF Version

Key Points

At the end of May 2024, the Cleafy TIR team discovered and analysed a new Android RAT. Since we
didn't find references to any known families, we decided to dub this new family BingoMod.
The main goal of BingoMod is to initiate money transfers from the compromised devices via Account
Takeover (ATO) using a well-known technique, called On Device Fraud (ODF). It aims to bypass bank
countermeasures used to enforce users’ identity verification and authentication, combined with
behavioural detection techniques applied by banks to identify suspicious money transfers.
After installation on the victim’s device, BingoMod leverages various permissions, including
Accessibility Services,  to quietly steal sensitive information, including credentials, SMS messages,
and current account balances. In addition, the malware is equipped with active features that allow it to
conduct overlay attacks and remotely access the compromised device using VNC-like functionality.
After a successful fraudulent transfer, the infected device is typically wiped, removing any traces of
BingoMod activity to hinder forensic investigations.


Another interesting element that emerged during the BingoMod investigation is related to target devices,
which include three languages: English, Romanian, and Italian.
At the time of writing, BingoMod is in a development phase, where developers are experimenting with
obfuscation techniques to lower its detection rate against AV solutions. From the whole sample
collected, what has emerged is the will to try multiple anti-analysis configurations rather than making the
malware more complex in terms of functionalities.
According to the comments identified within the malware code, developers may be Romanian
speakers.

Executive Summary

At the end of May 2024, a new Android RAT appeared in Cleafy’s telemetries. 

Due to the lack of information and the absence of a proper nomenclature for this malware family, we decided

to dub it BingoMod to track it inside our Threat Intelligence taxonomy. This nomenclature is based on the
malware's core component, known at an early stage as “ChrUpdate” but later renamed “BingoMod”.

‍BingoMod belongs to the modern RAT generation of mobile malware, as its remote access capabilities allow
Threat Actors (TAs) to conduct Account Takeover (ATO) directly from the infected device, thus exploiting the
On Device Fraud (ODF) technique. This consolidation of this technique has already been seen recently by
other banking trojans, such as Medusa, Copybara, and Teabot.

These techniques have several advantages: they require less skilled developers, expand the malware's target
base to any bank, and bypass various behavioural detection countermeasures put in place by multiple banks
and financial services. However, this advantage does not come for free, one of the drawbacks of this

https://www.cleafy.com/cleafy-labs/bingomod-the-new-android-rat-that-steals-money-and-wipes-data
https://www.cleafy.com/cleafy-labs/medusa-reborn-a-new-compact-variant-discovered
https://www.cleafy.com/cleafy-labs/on-device-fraud-on-the-rise-exposing-a-recent-copybara-fraud-campaign
https://www.cleafy.com/cleafy-labs/teabot


2/8

technique relies on a live operator that is required to insert and authorise a money transfer, which implicitly
means lowering its scale factor.

BingoMod is similar to the Brata's operation model in using device wiping after a successful fraudulent
transfer. This self-destruction mechanism is designed to eradicate any trace of BingoMod's activity on the
infected device, effectively hindering forensic analysis and making it more challenging for researchers to
identify and attribute incidents. This tactic is relatively rare in the Android landscape, suggesting that the
developers of BingoMod could be aware of Brata's methods and have incorporated them into their
methodology.

Moreover, it's also worth mentioning that this sample is in its early stage of development, and it's still hard to
predict which direction will be taken. However, the developers’ commitment to attempting obfuscation
techniques underlines their intention to pursue a more opportunistic approach than a tailored one already
seen in malware like SharkBot or Gustuff.

The following table represents a summary of the TTP behind BingoMod campaigns:

First Evidence May 2024

State Active (July 2024)

Affected Entities Retail banking

Target OSs Android Devices

Target Countries IT

Infected Chain Social Engineering (smishing) -> Side-loading

Fraud Scenario On-Device Fraud (ODF)

Preferred Cash-Out Instant/SEPA transfer

Amount handled (per transfer) Up to 15K EUR

‍

All detected samples provided in the Appendix are disguised as legitimate security tools to protect the
device.

Figure 1 - Common decoy used by BingoMod
Figure 1 - Common decoy used by BingoMod

Technical Analysis

As previously mentioned, the malicious app is distributed via smishing and often masquerades as a legitimate
antivirus application.  After installation on the victim's device, BingoMod prompts the user to activate
Accessibility Services, disguising the request as necessary for the app to function correctly. If the user
grants the requested permissions, the APK begins to unpack itself, executing its malicious payload. Once the
operation is completed, the apps still lock out the user from the main screen to collect device information and
set up the C2 communication channel.

Figure 2 - Starting phase of BingoMod
Figure 2 - Starting phase of BingoMod

https://www.cleafy.com/cleafy-labs/how-brata-is-monitoring-your-bank-account
https://www.cleafy.com/cleafy-labs/sharkbot-a-new-generation-of-android-trojan-is-targeting-banks-in-europe


3/8

After activation, BingoMod's background functions act, aiming to provide sensitive data to the actors behind
the malware. In detail, two features typical of banking Trojans are used:

Key-logging: This function exploits the Accessibility Services to steal sensitive information displayed on
the device screen or entered by the user, such as login credentials or account balances.
SMS interception: This function starts monitoring SMS messages, often used by financial institutions
for transaction authentication numbers (TANs).

Figure 3 - Keylogging routine
Figure 3 - Keylogging routine

As mentioned earlier, BingoMod's main objective is to initiate money transfers directly from compromised
devices (ODF). Therefore, the malware implements several remote control functionalities. To do this,
BingoMod establishes a socket-based connection with the command and control infrastructure (C2) to
receive commands that TAs want to perform on the compromised device.

The malware provides around 40 remote control functions, among the most relevant are indeed related to
the real-time screen control that is implemented in the following way:

VNC-like routine: Leveraging Android's Media Projection API, TAs capture screenshots of the victim's
device screen at regular intervals, giving them a complete overview of what is happening on the screen.
Screen interaction: Leveraging Accessibility Service, BingoMod provides several commands to
remotely control the infected device screen, allowing TAs to operate the device as if they were
physically in front of it. These functionalities include clicking buttons, filling in forms, and navigating
between apps.

‍

For this purpose, BingoMod uses two separate communication channels: a socket-based channel for
command transmission (in the case of VNC start/stop) and an HTTP-based channel for image transfer.

Figure 4 - C2 communication scheme during VNC routine
Figure 4 - C2 communication scheme during VNC routine

To better illustrate this process, we created a simulated C2 infrastructure. This setup includes a socket-
based C2 server for remote control and an HTTP-based "VNC" server to capture and display real-time
screenshots the infected device sends.

Figure 5 - VNC in action (TAs' point of view)

On the malware side, the VNC routine abuses Android's Media Projection API to obtain real-time screen
content. Once received, this is transformed into a suitable format and transmitted via HTTP to the TAs'
infrastructure.  An exciting feature of the routine is leveraging Accessibility Services to impersonate the user
and enable the screen-casting request, exposed by the Media Projection API.

Figure 6 - VNC routine
Figure 6 - VNC routine

Once the VNC-like routine is activated, TAs can interact with the device using dedicated commands. These
include, for example, opening a specific application (<LAUNCH>), moving to a particular area on the screen
(<MOVEAT>), clicking a particular area (<CLICKAT>) or writing in a particular text box (<SETTEXT>).

https://developer.android.com/media/grow/media-projection


4/8

In addition to real-time screen control, the malware shows phishing capabilities through Overlay Attacks
and fake notifications. Unusually, overlay attacks are not triggered when specific target apps are opened but
are initiated directly by the malware operator. Still, in the context of phishing, TAs can also send SMS
messages from the compromised device; this functionality can be used to spread the malware further.

Figure 7 - Overlay in action
Figure 7 - Overlay in action

Finally, the malware implements some security measures to improve its resilience: it hinders editing system
settings, especially one regarding the malware itself, and can block the activity of specified applications set
by the actors via a dedicated command. If this is not enough, BingoMod can also uninstall arbitrary
applications. For instance, this feature can be used to prevent security apps from detecting the presence of
the malware itself.

As mentioned earlier, BingoMod's most notable security measure is its ability to wipe the device remotelywith
a dedicated command. This feature can be implemented by BingoMod when it is a device administrator and
is typically executed after a successful fraud. However, this functionality is limited to the device's external
storage only, so we speculate that the complete wipe is performed by TAs directly from the device's system
settings, leveraging BingoMod's remote access capabilities.

Figure 8 - Wipe Routine
Figure 8 - Wipe Routine

The entire BingoMod command set is provided in the appendix.

Malware Evolution

It’s worth considering that from the first sample until now, it has been possible to observe that developers are
in an “experimental” phase, mainly on app obfuscation and packing process that aims to reduce its detection
against AV solutions instead of equipping their code with advanced capabilities. This change is immediately
observable using detection engines from VirusTotal, showing that early campaigns were easily detected,
whereas the recent one dropped their detection rate.

Figure 9 - Detection rate dropped after obfuscation layers
Figure 9 - Detection rate dropped after obfuscation layers

As mentioned, functions and classes stayed mostly the same over time. However, the obfuscation employed
lowers the overall detection rate. The figure below gives a code example that refers to the hiddenVNC
procedure, where the malware is sending a screenshot to the C2, simulating a live stream.

Figure 10 - Code comparison between early and newer versions of BingoMod
Figure 10 - Code comparison between early and newer versions of BingoMod

In the upper part of this image, we can see an early version of the sample. Aside from some variable
renaming, the overall code is understandable. However, the same function appears to be heavily obfuscated
using code-flattening and string obfuscation techniques. After tweaking the code to resolve the switches,
the overall structures are the same, strengthening the hypothesis that TAs rely on obfuscation over malware
complexity.

Moreover, it’s worth comparing different code versions to analyse their changes when discussing malware
evolution. As shown in Figure 11, there were no significant changes in the overall structure and functionality.
However, an asynchronous callback mechanism has been introduced in the PingUtil class to send "alive"
signals to the C2 server, giving information about the bot's status.



5/8

Figure 11 - Class name comparison between the earlier malicious BingoMod packages and newer versions
Figure 11 - Class name comparison between the earlier malicious BingoMod packages and newer versions

Another evidence confirming its developmental stage is the amount of log information left within the code. It is
worth mentioning that although some comments have been deleted in future releases, some still refer to older
package names. For instance, in release 1.4.3b, references to package names from the first version (1.0) are
still visible.

Another interesting element that emerged during the BingoMod investigation is related to target devices,
which include three languages: English, Romanian, and Italian, here disguised as com.

Figure 12 - Switches to select the proper language device
Figure 12 - Switches to select the proper language device

However, it is possible to observe that the Romanian language is mixed with English words. For the Italian
language, it has also been observed with a few typos. Those strings and the general code could be another
sign that those versions are still in their “debug” phase.

Attribution

Details retrieved during the investigation led us to several speculations about the developers. For instance,
some comments are in Romanian, but these comments have been removed in more recent versions. This
suggests that the TAs have evolved, possibly incorporating developers from different countries, or they are
trying to reduce indicators that can lead further LEA investigation to a specific region.

Figure 13 - Romanian comments left in the code
Figure 13 - Romanian comments left in the code

Moreover, a recent campaign involving version 1.4.3b was uploaded to VirusTotal from an IP address
geolocating to the Romanian region. While this behaviour is plausible, it strengthens suspicions about active
campaigns and areas involved in their attack.

Figure 14 - Suspicious upload of BingoMod from Romanian country
Figure 14 - Suspicious upload of BingoMod from Romanian country

Conclusion

BingoMod shows relatively straightforward functionalities commonly found in most contemporary RAT, such
as HiddenVNC for remote control and SMS suppression to intercept and manipulate communication and
logging user interactions to steal sensitive data. The emphasis on obfuscation and unpacking techniques
suggests that the developers may lack the sophistication or experience of more advanced malware authors.
This is evident in their reliance on basic obfuscation methods and the minimalistic approach to developing the
malware’s functionalities. It is plausible that the developers aimed to quickly produce a functional piece of
malware, prioritising speed over complexity.

One notable aspect of this malware is its device-wiping capability, triggered after a fraudulent transaction.
This behaviour is reminiscent of the Brata malware, which also employed device-wiping to cover its tracks
and hinder forensic analysis. However, the simplicity and rudimentary nature of the code suggests that this
feature is more of an easy exit strategy rather than an indication of any direct lineage or connection to Brata.
This action further supports the theory that the developers opted for straightforward and efficient methods to
achieve their goals without delving into more complex development practices. Compared to more
sophisticated threats such as Sharkbot, which incorporates an Automatic Transfer System (ATS) to automate
fraudulent transactions, this malware needs to improve in terms of advanced capabilities.



6/8

The lack of automated components implies that scaling this approach would be challenging, as it requires
direct operator interaction to perform Account Takeover (ATO) activities. This direct interaction often involves
manipulating the victim or their device in real time, limiting the scale of potential attacks and exposing the
operators to a higher risk of detection. The reliance on manual intervention underscores the limited technical
capabilities behind this malware and indicates that it operates within a more traditional fraud paradigm.
Interestingly, the current trend among mobile banking trojans, exemplified by threats like Copybara and
Medusa, focuses on On-Device Fraud (ODF) through ATO. This shift highlights a broader trend within the
malware landscape where the emphasis is placed on exploiting the device to conduct fraudulent activities
rather than developing highly automated systems. The analysed malware aligns with this trend, focusing on
direct interaction with the victim's device to carry out its malicious objectives. This approach, while less
sophisticated, still poses significant risks to end-users and financial institutions due to the potential for
substantial economic loss and the disruption of personal data security.

Appendix 1: Indicator of Compromise (IoC)

MD5 Version App Name Package Name

8b173081ea73ee0ed223d5703bb5fcd1 1 APP Protection com.djokovic.chromeupdate

bb8a2e045fdc2017b2171ff57286b05c Antivirus
Cleanup

3f6dfc31e152d39d52388ec7673f64d5 Chrome Update

bd1f1a2e8ff984ce6d795d025bbccdb1

41d1d5e16df294a24e36fd735076ef93

38dc0f70fa3c76b28ba5ad06d84a3e08

bdbec1c7c816b61b4ef9c76804d18f47

7574c1cc849108f911652571a73e2447 InfoWeb com.coffeestainstudios.goatsimulator

03b486cc13618d806a79d794ba138b43 SicurezzaWeb com.ccandroid.suite

e9a58a77a042986ea5fdfdc6b2a396c0 WebSecurity

5bf85b009e29f0af6218991942f32329 WebsInfo com.bimiboo.coloring

802624f4d0169e949bf40b613824d967 com.halfbrick.joyride

1e850e735c649b1f80ba36c7b07a198a 1.1 WebInfo com.tocaboca.tocahairsalon4

60d2350b8f5bd08e05612ed8c894af20 1.4.1b APKAPPSCUDO com.danza.perfectarcher

b4156ef9761f51dbac2d1104946dd3a8 com.kanko.negruzzi

a29c774dc6dc5f29d603f1b52fcdf241 1.4.3b com.vonation.hitenhit

2788e87b8760ebdec67bce21899893d2 1.5.1 com.pescado.hitenhit

3534af6660e5ac844167fc3eef00bcc5 1.6.7 com.primo.eternalache

08878948f69846d2217290614b70c151 1.7.1 com.bleuinc.xperinz

75bee41937b00ab466d31bd9e7193b02 1.8.2 com.pelosi.polskaball



7/8

MD5 Version App Name Package Name

516ab57114f204eb24e690f56b9699c1 1.9.4 com.deco.canta

‍

IP Description

101.99.92[.]10 C2 Server

103.155.92[.]11 C2 Server

Appendix 2: Command Sets

Version

1

Version

1.4.1b

Version

1.4.3b

Version

1.5.1

<ACTIVITY> <ACTIVITY> <ACTIVITY> <ACTIVITY>

<BLOCKAPP> <BLOCKAPP> <BLOCKAPP> <BLOCKAPP>

- - - <BLOCKCALL>

<BRIGHTNESS> <BRIGHTNESS> <BRIGHTNESS> <BRIGHTNESS>

<CALLNO> - - -

- <CHECKPERM> <CHECKPERM> <CHECKPERM>

- <CLEARNOT> <CLEARNOT> <CLEARNOT>

<CLICKAT> <CLICKAT> <CLICKAT> <CLICKAT>

<CLICKNODE> <CLICKNODE> <CLICKNODE> <CLICKNODE>

<DRAWVIEW> - - -

<FAKESMS> <FAKESMS> <FAKESMS> <FAKESMS>

<GETADMIN> <GETADMIN> <GETADMIN> <GETADMIN>

<GETNODES> <GETNODES> <GETNODES> <GETNODES>

<GETNOTIFYPERM> <GETNOTIFYPERM> <GETNOTIFYPERM> <GETNOTIFYPERM>

<GETSMSPERM> <GETSMSPERM> <GETSMSPERM> <GETSMSPERM>

<GETWRITEPERM> <GETWRITEPERM> <GETWRITEPERM> <GETWRITEPERM>

<GRANT> <GRANT> <GRANT> <GRANT>

- <INPUFOCUS> <INPUFOCUS> <INPUFOCUS>

<INPUT> <INPUT> <INPUT> <INPUT>

<LAUNCH> <LAUNCH> <LAUNCH> <LAUNCH>

<LAUNCHA> <LAUNCHA> <LAUNCHA> <LAUNCHA>



8/8

Version
1

Version
1.4.1b

Version
1.4.3b

Version
1.5.1

<MOVEAT> <MOVEAT> <MOVEAT> <MOVEAT>

<MUTEDEV> <MUTEDEV> <MUTEDEV> <MUTEDEV>

<NOTIFY> <NOTIFY> <NOTIFY> <NOTIFY>

<OPTIMISATIONPERM> <OPTIMISATIONPERM> <OPTIMISATIONPERM> <OPTIMISATIONPERM>

<OV> <OV> <OV> <OV>

<PM> <PM> <PM> <PM>

- <REFRESHSMS> <REFRESHSMS> <REFRESHSMS>

<RGTGETWRITEPERM> <RGTGETWRITEPERM> <RGTGETWRITEPERM> <RGTGETWRITEPERM>

- <SELFUNINSTALL> <SELFUNINSTALL> <SELFUNINSTALL>

<SETDEFAULT> <SETDEFAULT> <SETDEFAULT> <SETDEFAULT>

<SETTEXT> <SETTEXT> <SETTEXT> <SETTEXT>

<STARTVNC> <STARTVNC> <STARTVNC> <STARTVNC>

<STOP> <STOP> <STOP> <STOP>

<SUPRESSMS> <SUPRESSMS> <SUPRESSMS> <SUPRESSMS>

<UNBLOCKAPP> <UNBLOCKAPP> <UNBLOCKAPP> <UNBLOCKAPP>

<UNINSTALL> <UNINSTALL> <UNINSTALL> <UNINSTALL>

<UNMUTEDEV> <UNMUTEDEV> <UNMUTEDEV> <UNMUTEDEV>

<VIBRATE> <VIBRATE> <VIBRATE> <VIBRATE>

<WIPE> <WIPE> <WIPE> <WIPE>

‍


