
1/32

CyberGate Technical Analysis
blog.cyber5w.com/cybergate-malware-analysis

Experience Level required: Intermediate

Objectives

In this report, we will analyze CyberGate, a Delphi malware, to determine its function and
capabilities.

https://blog.cyber5w.com/cybergate-malware-analysis

2/32

Overview

According to Subex Secure, CyberGate is a Remote Access Trojan (RAT) that allows an
attacker to gain unauthorized access to
the victim’s system. Attackers can remotely connect
to the compromised system from anywhere
around the world. The Malware author generally
uses this program to steal private information
like passwords, files, etc. It might also be
used to install malicious software on the compromised
systems.

Basic Analysis

Sample Hash: dbc1e78c7644c07e178acd09bc3b02c230dba253dab5e45e5bcbf4be120a05bc

Let’s get some information about this sample. I’ll use pestudio

3/32

We have some indicators that this sample is packed using UPX Packer, as shown in the
figure above, UPX is a file compressor. It reduces the file size of programs and DLLs by
around 50%-70%, malware authors use that packer to obfuscate and compress their
malicious code.

We can unpack this sample by using UPX tool as seen below

upx.exe -d
C:\Users\M4lcode\Desktop\dbc1e78c7644c07e178acd09bc3b02c230dba253dab5e45e5bcbf4be120
a05bc.exe

Note: The packed file will be replaced by the unpacked one

https://github.com/upx/upx

4/32

The malware is 32bit and it is written in Delphi, as you can see in the image above.

Let’s see if it’s packed or not. I’ll use DIE

5/32

The sample is packed, specifically .rsrc section

Before doing the advanced analysis we need to see the sample behavior in a sandbox, I’ll
use tria.ge.

The processes created by CyberGate:

6/32

CyberGate tried to communicate with these C2 servers in WIN10 Sandbox

7/32

CyberGate creates mutexes to avoid running multiple instances of it at the same time.

8/32

9/32

Mutexes:

10/32

MUTEX

MUTEX_PERSIST

MUTEX_SAIR

MUTEX

Dropped files

CyberGate dropped some files, Let’s take a look on them

4fa4d8b33f615cb05345165fcdc59125b0667f21c3d3557629c4c859f77d3aba

fa7166dc1ce0ea167556d47a16ce8d9cbea652d6cef6b8873c78767ef9485e79

51a3fe220229aa3fdddc909e20a4b107e7497320a00792a280a03389f2eacb46

4a32894e7ca16b8ea247ccd7157b3884afc7d5de880e42597bd8a1d87e935e4e

UuU.uUu

This file Contains only a time value

09:59:34

XX–XX–XX.txt

Contains two paths

C:\Users\Admin\AppData\Local\Temp\dbc1e78c7644c07e178acd09bc3b02c230dba253dab5e45e5b
cbf4be120a05bc.exe|c:\dir\install\spynet\server.exe|

in the first 88 byte, after that there is dump bytes

11/32

logs.dat

This file contains 9 bytes with random letters, maybe it is a decrypted string and the
malware will use it later with the strings in the two other files

server.exe

This is the process that the malware injected malicious code in, we will take a look at it later.

Let’s take a fast look at the code of the sample before unpacking it

Advanced Analysis

1st Stage

Let’s open the sample in IDA

we need to do some changes in IDA options

12/32

1- Disable the analysis

2- in options » compiler, select the following options

13/32

3- in options » general » analysis, select the following options

14/32

Now we can analyze this sample

Creating and Checking Mutexes

sub_403568 function creates a mutex using CreateMutexA API

15/32

MUTEX: _x_X_UPDATE_X_x_

GetLastError() == 183: Checks if the mutex already exists.

If it does (error code 183), it closes the mutex handle and sleeps for 12 seconds

If it doesn’t, it closes the mutex handle.

Next, sub_403568 creates another mutex

MUTEX: _x_X_PASSWORDLIST_X_x_

if the mutex already exists it closes the handle and go to sub_409AD4

In the most cases this mutex will not exists, so the malware will jump to 0x0040BFA0
address

16/32

The malware will closes the handle and creates another mutex

MUTEX: _x_X_BLOCKMOUSE_X_x_

Process Injection

In process injection technique, the malware attempts to open a handle of a process either
created or already existing in the system’s memory.

In sub_40B7FC CyberGate tries to find a specific window named (Shell_TrayWnd) to
retrieve its process ID, and opens a handle to that process.
But if it’s not found it tries to
create a new process named (explorer.exe), then call sub_4040F4 with
ProcessInformation, hProcess as parameters

After allocating memory within the created or existing process, the malware fills this
memory with the code intended for injection, which contains the malicious instructions.

And that happens in sub_4040F4

The function has loop attempts to allocate virtual memory by using VirtualAlloc, then tries
to allocate memory in the process using VirtualAllocEx. This loop continues until it
successfully allocates memory (v5) or v3 exceeds 0x30000000 bytes.

17/32

Then it applies protection attributes to the allocated memory by using VirtualProtect

Then it Uses WriteProcessMemory to write data to the allocated memory in the target
process.

After that the malware executes the injected code by using CreateRemoteThread in
sub_4038AC

Writing files

The function sub_405D70 in sub_40B93C, creates and writes a file named XX–XX–XX.txt
(which we took a look on it before) by using CreateFileA and WriteFile APIs

18/32

Now that’s enough let’s unpack the sample using unpacme, to make the process faster and
get directly to the main unpacked sample.

unpacme results

https://www.unpac.me/
https://www.unpac.me/results/f558bde7-0edd-4c1b-8f6c-e90b3f898053

19/32

1st Sample

Sample Hash:fc50cb7d6cb4f18992363fcba1473464f526d5c574f4bfbdbed9e025a2072bbe

The sample is a dll written in delphi, I’ll open in in IDA and I’ll do the same thing I did for the
parent sample

The dll entry point doesn’t have anything important, so let’s start from StartHttpProxy
export

Firewall Evasion

20/32

In sub_4302E4 the malware set Root Key to HKEY_LOCAL_MACHINE and attempts to
open a series of nested registry keys under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parame

ters\FirewallPolicy\StandardProfile\AuthorizedApplications\List . It will
created if it does not exist

Then concatenates three strings (v2, “:*:Enabled:”, and “Windows Firewall Update”)
into v7

and finally Writes the concatenated string v7 to the registry above, using
System__AnsiString as the value name.

“Windows Firewall Update” application has been added to the list of authorized
applications. The “*:Enabled:” part typically means that all ports and protocols are
enabled for this application, potentially allowing it to communicate freely through the
firewall.

Thats mean that the malware maybe run with name “Windows Firewall Update” to evade
firewall

Creating Mutex

Then the malware creates a mutex

MUTEX: xX_PROXY_SERVER_Xx

Let’s go to GetChromePass export

21/32

In sub_420C04 the malware assigns the string
“SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders” to v8 and assigns
the string Local AppData to v7.

Then it:

retrieves a specific value from the Windows Registry under a given key (Local
AppData) registry (SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell
Folders)

Copies a file from “\Local AppData\Google\Chrome\User Data\Default\Web Data” to
TMP folder

Opens an SQLite database named “\x0FTSQLiteDatabase”

Loops through Database Query Results then Retrieves and processes the password
value, username_value, origin_url

Decrypts data (pDataIn) using CryptUnprotectData and stores it in pDataOut

22/32

In Mozilla3_5Password export, the malware gets Mozilla’s password

23/32

2nd Sample

Let’s go to the second sample

Sample Hash:0722a71d9251b626a8c066963a19fe6db4711227c803afc40402c3a3e0fb51fd

It is the process that the malware injected malicious code in it which named server.exe

So it’s just the parent sample but with removing upx layer

Anyway let’s go to the last sample

24/32

3rd Sample

Sample Hash:1fd16ca095f1557cc8848b36633d4c570b10a2be26ec89d8a339c63c150d3b44

Creating 1st Mutex

First it creates mutex

MUTEX: ***MUTEX***_PERSIST

Achieving PERSISTENCE

In sub_14045240

The malware creates and set these registry keys

25/32

\REGISTRY\MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Run\HKLM =
"c:\\dir\\install\\spynet\\server.exe"	

Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

\REGISTRY\MACHINE\SOFTWARE\WOW6432Node\Microsoft\Active Setup\Installed Components\
{H1EWWBPB-334P-45N1-UT28-6F0PHX81A73C}\StubPath =
"c:\\dir\\install\\spynet\\server.exe Restart"	

Creating 2nd Mutex

Then It creates another mutex

MUTEX: ***MUTEX***_SAIR

Process Injection

CyberGate creates thread

Get the id of process

Then it uses LookupPrivilegeValueA, “SeDebugPrivilege”

malware uses SeDebugPrivilege to get access to debug and adjust the memory of
processes owned by any user in the system

26/32

Get local Time

In sub_14006BD0 it fetches the current local time and stores it in the SystemTime
structure.

Checking windows version

In sub_14043A04 » sub_14043944

The malware checks for Windows version by checking dwMinorVersion

if it is equal to 1 that means that the windows version is:

Windows NT 3.1 or Windows XP or Windows 7 or Windows Server 2008 R2

CyberGate creates 3rd mutex SPY_NET_RATMUTEX

27/32

Then the code sets up two threads

After that it creates 4th mutex _x_X_PASSWORDLIST_X_x_

then executes a shell command using ShellExecuteA. If the result of ShellExecuteA is
greater than 0x20 (32), the following actions are taken:

The program sleeps for 1000 milliseconds (1 second).
The mutex handle MutexA_0 is closed using CloseHandle.

The last thing in our malware is this function

The function checks for a Windows message using PeekMessageA. If a message is found
and it is not WM_QUIT, the message is translated and dispatched Then it sleeps for 20
milliseconds to avoid busy-waiting and to give other processes some CPU time.

The function returns 1 if a message was processed, otherwise it returns 0.

28/32

IOCs

Mutexes:

 xX_PROXY_SERVER_Xx

 _x_X_BLOCKMOUSE_X_x_

 _x_X_PASSWORDLIST_X_x_

 _x_X_UPDATE_X_x_

 MUTEX

 MUTEX_PERSIST

 MUTEX_SAIR

Hashes:

 fa7166dc1ce0ea167556d47a16ce8d9cbea652d6cef6b8873c78767ef9485e79

 1fd16ca095f1557cc8848b36633d4c570b10a2be26ec89d8a339c63c150d3b44

 0722a71d9251b626a8c066963a19fe6db4711227c803afc40402c3a3e0fb51fd

 fc50cb7d6cb4f18992363fcba1473464f526d5c574f4bfbdbed9e025a2072bbe

 dbc1e78c7644c07e178acd09bc3b02c230dba253dab5e45e5bcbf4be120a05bc

Network:

 j230uy.no-ip.org:5007

 j230uy.no-ip.info:5007

 j230uy.no-ip.org:5000

 j230uy.no-ip.org:5002

 224.0.0.252

Files:

 C:\\Users\\Admin\\AppData\\Local\\Temp\XX--XX--XX.txt

 C:\\Users\\Admin\\AppData\\Roaming\\logs.dat

 C:\\Users\\Admin\\AppData\\Local\\Temp\\UuU.uUu

 c:\\dir\\install\\spynet\\server.exe

registry:

 \REGISTRY\MACHINE\SOFTWARE\WOW6432Node\Microsoft\Windows\CurrentVersion\Run\HKLM
= "c:\\dir\\install\\spynet\\server.exe"

 \REGISTRY\MACHINE\SOFTWARE\WOW6432Node\Microsoft\Active Setup\Installed
Components\{H1EWWBPB-334P-45N1-UT28-6F0PHX81A73C}\StubPath =
"c:\\dir\\install\\spynet\\server.exe Restart"	

MITRE ATT&CK

TACTIC TECHNIQUE TITLE MITRE ATT&CK ID

Persistence Boot or Logon Autostart Execution T1547

 Registry Run Keys / Startup Folder T1547.001

 Active Setup T1547.014

Privilege Escalation Boot or Logon Autostart Execution T1547

 Registry Run Keys / Startup Folder T1547.001

29/32

TACTIC TECHNIQUE TITLE MITRE ATT&CK ID

 Active Setup T1547.014

Defense Evasion Modify Registry T1112

Discovery System Information Discovery T1082

This blog is authored by Mostafa Farghaly(M4lcode).

30/32

https://labs.cyber5w.com/

31/32

Previous Post

Google Drive Forensics

https://blog.cyber5w.com/google-drive-forensics

32/32

Next Post

How SIEM Works

https://blog.cyber5w.com/how-siem-works

