Ghost Emperor Hacker Uses Demodex Rootkit to Attack

sygnia.co/blog/ghost-emperor-demodex-rootkit/

July 17, 2024

The Return of Ghost Emperor's Demodex

A Comprehensive Look at the Updated Infection Chain of Ghost Emperor's Demodex Rootkit.

Dor Nizar, Malware Researcher

17 July 2024

Executive Summary

- In late 2023, Sygnia's Incident Response team was engaged by a client whose network was compromised and was leveraged to penetrate one of its business partner's network.
- During the investigation, several servers, workstations, and users were found to be compromised by a threat actor who deployed various tools to communicate with a set of C2 servers.
- One of these tools was identified as a variant of Demodex, a rootkit previously associated with the threat group known as GhostEmperor.
- GhostEmperor is a sophisticated China-nexus threat group known to target mostly South-East Asian telecommunication and government entities, first disclosed by Kaspersky in a <u>blog</u> published in September 2021.
- GhostEmperor employs a multi-stage malware to achieve stealth execution and persistence and utilizes several methods to impede analysis process.
- Usually, once the threat group gains initial access to the victim's network by using vulnerabilities such as ProxyLogon, a batch file is executed to initiate the infection chain.
- In this blog we describe a new infection chain deployed by GhostEmperor, which includes several loading schemes and various obfuscation techniques utilized by the threat group.

Introduction

During Sygnia's analysis of the forensic findings extracted from the victim's environment, the team found strong resemblance to the multi-stage tool which was described in Kaspersky's blog from 2021. However, our investigation yielded some alterations in the infection chain and a slightly different C++ DLL variant.

Among these alterations, the variant we analyzed incorporates an EDR evasion technique and uses a reflective loader to execute the Core-Implant. Additionally, we identified the use of different file names and registry keys. The variant we encountered appears to have been compiled in July 2021, suggesting it might be a more recent version than the one originally analyzed by Kaspersky.

This blog post focuses on the key differences we identified and analyzed in the infection chain and the loading scheme operations.

New Infection Chain Flow Graph

Infection Chain: Process Tree Overview

WMIExec

WMIExec is a command-line tool used for executing commands on remote Windows systems through Windows Management Instrumentation (WMI). It is part of the Impacket Toolkit, which is an open-source collection of modules written in Python for programmatically constructing and manipulating network protocols, that is commonly used by threat actors and red teams.

During our investigation, we observed that the threat actor used this tool to run a batch file, initiating the infection chain on the victim's compromised machine. The output logs were saved to a file located at c:\windows\temp using a local SMB path. The following command was executed:

cmd.exe Process name 4052 Process ID Creation time End time cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo		Properties
cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo End time cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo End time		cmd.exe
4052 Process ID Creation time End time cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo End time cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo		Process name
cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo End time cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo End time		4052
cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo End time cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo		Process ID
cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo ww\Terma\kCv@D L 2>81		
cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo wc\Terms\kCvBD L 2x81		Creation time
cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo wo\Temp\kGvBD L2x81		End time
chiu.exe/Q/Cc.\windows\vss\1.bat1>\\127.	cmd.exe /Q /c c:\windows\vss\1.bat 1> \\127.0.0.1\C\$\Windo	and ave (0 (a citurindewa)/rea)1 bet 15 1)127
Ws/renp/koybbJ 22%	ws\Temp\kGyBDJ 2>&1	Command line
False		False

Snippet showcasing the WMIExec command being executed on a victim machine with batch script '1.bat'

Batch File

The batch file starts the infection by installing the malware and obtaining persistency by the following actions:

It starts by dropping a CAB file named "1.cab" to C:\Windows\Web. CAB is a compressed archive format commonly utilized in Windows to bundle multiple files.

The batch file then uses expand.exe – a native Windows tool used for file extraction from compressed Cabinet files (.cab), to extract these four files:

- prints1m.dll Service DLL.
- Service.ps1 encrypted Powershell.
- config.REG registry dump of AES decryption key.
- AesedMemoryBinX64.REG registry dump of AES-encrypted shellcode containing the Core-Implant.

Next, the batch file imports the two registry files using the **reg.exe import [file]** command to set two registry keys with encrypted values, which will be used later to execute the next stage.

Snippet from Registry Explorer showcasing the embedded payload stored in the registry value

The threat actor employs several LOLBins such as reg.exe and expand.exe within the batch file to achieve stealthiness as they are legitimate and signed Microsoft built-in tools which do not arouse any suspicion.

The Batch file proceeds and executes an encrypted PowerShell script, passing a decryption key as a parameter. This script contains an encrypted blob, which, once decrypted using the provided key, reveals another PowerShell script that is executed.

A command line executing the PowerShell script and the decryption argument

PowerShell script

The decrypted PowerShell script creates a new service named "WdiSystem" that loads the malicious Service DLL (prints1m.dll). It also creates a service group called "WdiSystemhost" and runs the malicious service within this group. By running the malicious service within the context of the "WdiSystemhost" service group, the threat actor masquerades the malware's execution as a legitimate Windows system process, as it resembles the authentic and legitimate WdiSystem**H**ost ("Windows Diagnostic System Host" service).

Processes	Services	Network	Disk				
Name				PID	CPU	User name	Private k
svcl	nost.exe			468		NT AUTHORITY\SYSTEM	26.87
svch	nost.exe			C:\Windows File: C:\Windo Host Prod Microsof Service gro WdiSyste Services: WdiSyste Notes: Signer: M Console	s\Systen ows\Syst cess for t Corpor up name mhost m (Wdi licrosoft applicat	n32\svchost.exe -k <mark>WdiSyst</mark> em32\svchost.exe Windows Services 10.0.190 ration e: System) : Windows Publisher ion: services.exe (680)	emhost }

Rogue "WdiSystemhost" service in process list

To accomplish this technique, the script carries out the following steps:

• Creates a service by invoking the New-Service PowerShell command with svchost.exe as the binary path of the service.

• Creates a service group named "WdiSystemhost" by adding a new registry key in HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentCersion\SvcHost:

Registry Editor			-	×
File Edit View Favorites Help Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\W	Vindows NT\CurrentVersion\	Svchost		
 Perfwidstorage Ports Prefetcher ProfileList ProfileService RemoteRegistry Schedule SecEdit Sensor setup SoftwareProtectionPlatform SPP SRUM Superfetch Svchost AarSvc appmodel AarSvc appmodel AssignedAccessManagerSv; autotimeev 	Name Definit PrintWorkflow rdxgroup RPCSS Skrsvc Smphost Smphost Smphost UdkSvcGroup UdkSvcGroup UlstackSvcGroup UlstackSvcGroup WilSystemhost WilSystemhost WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup WepHostSvcGroup	Iype REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ REG_MULTI_SZ	Data PrintNotify PrintWorkflowUserSvc RetailDemo RpcEptMapper RpcSs sdrsvc Ianmanserver smphost swprv TermService UdkUserSvc PimIndexMaintenanceSvc CDPUserSvc WpnUserSer DiagTrack WbioSrvc WdiSystem WepHostSvc wersvc clipsvc AppXSvc WaaSMedicSvc	

Registry view of service groups managed by svchost

The lowercase "host" in the name suggests it is a rogue version. The original name is "WdiSystemHost"

Wires the malicious service DLL (prints1m.dll) to the service by setting a "ServiceDll" registry key with the DLL's path as the value, located in

HKLM:\SYSTEM\CurrentControlSet\Services\WdiSystem\Parameters.

Registry Editor				-	×
File Edit View Favorites Help					
Computer\HKEY_LOCAL_MACHINE\SYSTEM\CurrentCon	trolSet\Services\WdiSys	tem\Parameters			
> 🣜 Wdf01000	^ Name	Туре	Data		
> Kurren WdFilter	(Default)	REG_SZ	(value not set)		
> 2 WdiServiceHost	ServiceDII	REG_EXPAND_SZ	C:\Windows\System32\prints1m.dll		
VdiSystem					
- Parameters					
> WdiSystemHost					
> 🧘 wdiwifi					
 –					
> 🧵 WdNisDrv					
> 🧾 WdNisSvc					
> 📕 WebClient					

Registry view of the key that dictates the DLL associated with the malware's service.

- Runs the service by invoking the Start-Service PowerShell command.
- Launches the malicious service DLL (prints1m.dll) as a service which is executed within the service group.

The PowerShell script after decryption

Prints1m.dll – Service DLL

This Service DLL dynamically loads all of the necessary functions it requires for operation by navigating through an internal OS structure named Process Environment Block, which contains the already loaded libraries and functions in the process.

The Kernel32 library, loaded by default in every process, is used by the malware to access the LoadLibraryA function, which is responsible for loading DLLs into the process.

Subsequently, an encrypted configuration located at the DLL's data section (offset 0x4050) is decrypted using a custom decryption scheme, which contains the following parameters:

- Initial sleep time.
- Registry paths of the shellcode location (which was established by the batch file).
- A list of module and function names required for operation (offset 0x45F0).

The service uses this list to create an in-memory Import Address Table, loading the modules it requires using the LoadLibraryA function, and traverses each module's export table to obtain the necessary functions.

```
iat[1] = get_function_by_export_name(v3, "GetProcAddress");
*iat = get_function_by_export_name(v3, "LoadLibraryA");
iat[6] = get_function_by_export_name(v3, "Sleep");
iat[7] = get_function_by_export_name(v3, "VirtualAlloc");
iat[8] = get_function_by_export_name(v3, "VirtualFree");
iat[9] = get_function_by_export_name(v3, "VirtualProtect");
iat[15] = get_function_by_export_name(v3, "CreateThread");
if ( (iat[1])(v3, "SetProcessMitigationPolicy") )
{
  iat[18] = (iat[1])(v3, "SetProcessMitigationPolicy");
  is SPMP = 1;
}
iat[16] = get_function_by_export_name(v3, "ExitThread");
v6 = (*iat)("advapi32.dll");
iat[2] = get_function_by_export_name(v6, "RegOpenKeyExW");
iat[3] = get_function_by_export_name(v6, "RegQueryValueExW");
iat[4] = get_function_by_export_name(v6, "RegDeleteValueW");
iat[5] = get_function_by_export_name(v6, "RegCloseKey");
iat[10] = get_function_by_export_name(v6, "CryptAcquireContextW");
iat[11] = get_function_by_export_name(v6, "CryptImportKey");
iat[12] = get_function_by_export_name(v6, "CryptDecrypt");
iat[13] = get_function_by_export_name(v6, "CryptDestroyKey");
iat[14] = get_function_by_export_name(v6, "CryptReleaseContext");
result = get_function_by_export_name(v6, "SetServiceStatus");
iat[17] = result;
return result;
```

Part of service's code to dynamically load necessary functions

00007000101460	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000711001044400	00	00	00	00	6D	00	65	00	72	00	60	00	65	00	60	00	kannal
00007FF8C1DA4470	00	00	20	00	00	00	60	00	12	00	OE CC	00	00	00	00	00	K.e.r.n.e.1.
00007FF8C1DA4480	33	00	32	00	ZE	00	04	00	DC	00	oc	00	00	00	00	00	3.20.1.1
00007FF8C1DA4490	00	00	00	00	61	64	76	61	70	69	33	32	2E	64	60	6C	advap132.dll
00007FF8C1DA44A0	00	00	00	00	4C	6F	61	64	4C	69	62	72	61	72	79	41	LoadLibraryA
00007FF8C1DA44B0	00	00	00	00	47	65	74	50	72	6F	63	41	64	64	72	65	GetProcAddre
00007FF8C1DA44C0	73	73	00	00	52	65	67	4F	70	65	6E	4 B	65	79	45	78	<pre>ssRegOpenKeyEx</pre>
00007FF8C1DA44D0	57	00	00	00	52	65	67	51	75	65	72	79	56	61	60	75	WRegQueryValu
00007FF8C1DA44E0	65	45	78	57	00	00	00	00	00	00	00	00	52	65	67	44	eExWRegD
00007FF8C1DA44F0	65	6C	65	74	65	56	61	6C	75	65	57	00	52	65	67	43	eleteValueW.RegC
00007FF8C1DA4500	6C	6F	73	65	4 B	65	79	00	00	00	00	00	53	60	65	65	loseKeySlee
00007FF8C1DA4510	70	00	00	00	56	69	72	74	75	61	60	41	6C	60	6F	63	pVirtualAlloc
00007FF8C1DA4520	00	00	00	00	56	69	72	74	75	61	60	46	72	65	65	00	VirtualFree.
00007FF8C1DA4530	00	00	00	00	56	69	72	74	75	61	60	50	72	6F	74	65	VirtualProte
00007FF8C1DA4540	63	74	00	00	43	72	79	70	74	41	63	71	75	69	72	65	ctCryptAcquire
00007FF8C1DA4550	43	6F	6E	74	65	78	74	57	00	00	00	00	43	72	79	70	ContextWCryp
00007FF8C1DA4560	74	49	6D	70	6F	72	74	4B	65	79	00	00	43	72	79	70	tImportKeyCryp
00007FF8C1DA4570	74	44	65	63	72	79	70	74	00	00	00	00	43	72	79	70	tDecryptCryp
00007FF8C1DA4580	74	44	65	73	74	72	6F	79	4B	65	79	00	43	72	79	70	tDestroyKey.Cryp
00007FF8C1DA4590	74	52	65	60	65	61	73	65	43	6F	6E	74	65	78	74	00	tReleaseContext.
00007FF8C1DA45A0	00	00	00	00	43	72	65	61	74	65	54	68	72	65	61	64	CreateThread
00007FF8C1DA45B0	00	00	00	00	45	78	69	74	54	68	72	65	61	64	00	00	ExitThread
00007FF8C1DA45C0	00	00	00	00	53	65	74	53	65	72	76	69	63	65	53	74	SetServiceSt
00007FF8C1DA45D0	61	74	75	73	00	00	00	00	00	00	00	00	53	65	74	50	atusSetP
00007FF8C1DA45E0	72	6F	63	65	73	73	4D	69	74	69	67	61	74	69	6F	6E	rocessMitigation
00007FF8C1DA45F0	50	6F	60	69	63	79	00	00	00	00	00	00	01	00	00	00	Policy
00007FF8C1DA4600	01	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Memory view of the decrypted configuration, showing the list of functions

00007FF8C1DA4260	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4270	00	00	00	00	53	00	6F	00	66	00	74	00	77	00	61	00	S.o.f.t.w.a.
00007FF8C1DA4280	72	00	65	00	5 C	00	4D	00	69	00	63	00	72	00	6F	00	r.e.\.M.i.c.r.o.
00007FF8C1DA4290	73	00	6F	00	66	00	74	00	5C	00	77	00	6F	00	77	00	s.o.f.t.\.w.o.w.
00007FF8C1DA42A0	36	00	34	00	00	00	00	00	00	00	00	00	00	00	00	00	6.4
00007FF8C1DA42B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA42C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA42D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA42E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA42F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4300	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4310	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4320	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4330	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4340	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4350	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4360	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00007FF8C1DA4370	00	00	00	00	69	00	6E	00	70	00	75	00	74	00	60	00	i.n.p.u.t.l.
00007FF8C1DA4380	6F	00	67	00	00	00	00	00	00	00	00	00	00	00	00	00	o.g
00007FF8C1DA4390	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Memory view of the decrypted configuration, showing the path of the encrypted shellcode

After setting up an anti-hooking technique (which will be described in the next section), the service

initiates the next stage by spawning a new thread. It then sleeps for 15 seconds before

attempting to decrypt and execute the next stage, which is retrieved from the registry keys set by the batch file. In case of failure, it retries at intervals of 30 to 60 seconds until successful execution is achieved.

Snippet of code showing the decryption loop

EDR Evasion and Anti-User-Mode Hooking Technique

Antivirus and EDR solutions typically inject DLLs into the address space of running applications to facilitate user-mode hooking, thus identifying and preventing malicious activity within the processes.

During our investigation we observed that the threat actor added an evasion technique to the Service DLL by setting a specific mitigation policy to the process:

```
if ( mem_decrypted && is_SPMP_resolved )
{
    lpBuffer.Flags = 1;
    SetProcessMitigationPolicy(ProcessSignaturePolicy, &lpBuffer, 4ui64);
}
```

Calling SetMitigationPolicy with ProcessSignaturePolicy as parameter to set the mitigation policy

Mitigation policies, such as ASLR, DEP and CFG, are security measures implemented by the OS to mitigate attacks and vulnerabilities such as Buffer Overflows and Code Injections. Some of these mitigation policies are enabled in the process by default. In our investigation, the threat actor set up a particular mitigation named "ProcessSignaturePolicy" which forbid loading DLLs that are not signed by Microsoft to the process.

This means that any security solution trying to inject a DLL not signed by Microsoft will fail to do so. This technique helps circumvent analysis tools by limiting user-mode hooking.

Process										
Command line:	C:\Windows\System32\svchost.exe -k WdiSystemhost									
Current directory:	Mitigation Policies									
Started:	Policy									
PEB address:	ASLR (high entropy)									
Parent:	CF Guard DEP (permanent)									
Mitigation	Signatures restricted (Microsoft only)									
Protection: None	Strict handle checks									
	Description:									
	Image signature restrictions are enabled for this process. Only Microsoft signatures are allowed. This is an opt-in restriction.									

Service's mitigation policies

The fact that many antivirus vendors employ DLLs with a legitimate Microsoft signature, and that some security solutions inject their DLLs prior to the invocation of SetProcessMitigationPolicy, limits the effectiveness of this method.

Shellcode and Reflective loader

The Service DLL reads two encrypted registry keys that were set by the batch file:

"AKey" – an AES decryption key

"inputlog" – an AES-encrypted shellcode containing the core-implant.

*	Registry (18)	
	Operation	Кеу
	Read Value	HKEY_LOCAL_MACHINE\Software\Microsoft\AKey
	Read Value	HKEY_LOCAL_MACHINE\Software\Microsoft\wow64\inputlog

Snippet from Sandbox execution of the threat actor's malicious service showing the read activity performed by the service of the two registry keys

The service employs the AES algorithm to decrypt the encrypted shellcode retrieved from the "inputlog" registry key. It sets the decryption key from the "AKey" value and uses a null byte array as the Initialization Vector (IV). The shellcode consists of a Position-Independent shellcode functioning as a reflective loader, alongside a corrupted Portable Executable (PE) file, positioned at offset 0x4000. Certain headers within the PE file have been deliberately stripped to enhance resistance to analysis and detection. Specifically, the "MZ" and "PE" headers have been nullified, and the DOS Stub has been removed.

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	OF	Decoded text
00000000	F8	E9	0A	00	00	00	CC	CC	CC	CC	CC	CC	CC	CC	CC	CC	øéÌÌÌÌÌÌÌÌÌÌÌÌ
00000010	4C	89	4C	24	20	4C	89	44	24	18	48	89	54	24	10	48	LaL\$ LaD\$.HaT\$.H
00000020	89	4C	Dis	asse	mbly	:					00	C7	44	24	40	FF	%L\$.H.ì~ÇD\$@ÿ
00000030	FF	FF	0.	60					1.		00	00	00	00	00	48	ÿÿÿHÇ"\$ÀH
			1:	e9 0;	00 0	00 00		i	mp	0x10							
			6:	cc				i	nt3								
			7:	cc				i	nt3								

Jump\trampoline at the Start of the shellcode

Offset(h)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	OD	0E	OF	Decoded text
00003FB0	69	F8	4A	D7	9E	B 8	5D	97	98	6D	75	2E	E1	ED	DE	54	iøJמ,]-~mu.áiÞT
00003FC0	DB	15	3D	E3	BE	CC	1C	70	71	5D	E4	1B	FD	AF	8E	2A	Û.=ã¾Ì.pq]ä.ýŽ*
00003FD0	F6	FA	9D	90	62	5B	EE	4F	1B	81	59	9A	BE	3C	60	BO	öúb[î0Yš¾<`°
00003FE0	B7	18	19	98	59	12	C2	E4	AA	58	52	C8	AA	45	50	31	· "Y.Âä*XRÈ*EP1
00003FF0	1E	69	B7	04	D7	92	15	86	2A	51	AA	18	8C	7 F	54	AA	.i *' . **Qª.C.Tª
00004000	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00004010	м	7	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00004020	Hea	der	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00004030	00	00	00	00	00	00	00	00	00	00	00	00	E8	00	00	00	è
00004040	00	00	00	00	00	00	00	00	00	00	00	00	0	Doin	tor	00	
00004050	00	00	00	00	00	00	00	00	00	00	00	00	0	to)	00	
00004060	00	00	00	00	00	00	00	00	00	00	00	00	0 p	E He	ader	00	
00004070	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00004080	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00004090	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000040A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000040B0	00	00	00	00	00	00	00	00	00	00		00	00	00	00	00	
000040C0	00	00	00	00	00	00	00	00	0	P	E	00	00	00	00	00	
000040D0	00	00	00	00	00	00	00	00	0.	Hea	uer	00	00	00	00	00	
000040E0	00	00	00	00	00	00	00	00	00	00	00	00	64	86	05	00	dt
000040F0	90	0A	BE	56	00	00	00	00	00	00	00	00	FO	00	22	20	¥Vð."

Corrupted PE file located at offset 0x4000

The shellcode loads the core-implant DLL using a reflective loader which performs the following steps:

- Allocates memory for the core-implant DLL.
- Parses the custom PE headers of the core-implant.
- Moves each section to its proper location in the allocated memory.

```
memset(hMem_stage3, 0i64, stage3_size);
for ( i = 0; i < stage2_conf->numSections; ++i )
{
    section_0 = &stage2_conf->section_table[40 * i + 2 + stage2_conf->sectionBaseOffset];
    if ( section_0->SizeOfRawData )
    {
        v17 = section_0->VirtualAddress + hMem_stage3;
        memmove(
           section_0->VirtualAddress + hMem_stage3,
           section_0->PointerToRawData + data_region,
           section_0->SizeOfRawData);
        section_0->Misc.PhysicalAddress = v17;
    }
}
```

Code snippet parsing DLL sections and relocating them to the appropriate memory locations

- Performs relocation of the code and data sections to match the new base address.
- Resolves the import table.
- Sets proper memory protections.

Code snippet applying correct protections for each section

Executes the now-ready Core-Implant by calling its Entry Point.

Core-Implant

The Core-Implant handles two main tasks – managing Command and Control (C2) communication and installing the Demodex kernel rootkit. To load Demodex, the threat actor had to bypass the Driver Signature Enforcement (DSE) security feature, which blocks unsigned drivers.

To do that, the threat actor leveraged "Cheat Engine", an open-source tool used for video game cheating, and utilized its signed driver, dbk64.sys, to manipulate memory and execute code in kernel space. the threat actor used this driver to map and execute a shellcode in kernel space which patches the IOCTL Dispatcher of the dbk64.sys driver. This modification adds functionality to the driver that enables it to load the Demodex driver.

An analysis of the Core-Implant's metadata shows that the threat actor modified the compilation and export-table timestamp of the Core-Implant to 12 Feb 2016. However, the timestamp of the debug section is set to 02 July 2021, which might indicate that this is the actual time this implant was created.

stamps	
compiler-stamp	Fri Feb 12 16:38:40 2016 UTC
debug-stamp	Fri Jul 02 13:57:24 2021 UTC
resource-stamp	n/a
import-stamp	n/a
export-stamp	Fri Feb 12 16:38:40 2016 UTC

Core-Implant's timestamps retrieved from PE Studio

Appendix – IOC

Description	Hash
Service DLL – prints1m.dll	MD5: 4bb191c6d3a234743ace703d7d518f8f SHA1: 43f1c44fa14f9ce2c0ba9451de2f7d3dd1a208de
PowerShell script – service.ps1	MD5: 95e3312de43c1da4cc3be8fa47ab9fa4 SHA1: a59cca28205eeb94c331010060f86ad2f3d41882
Cheat Engine driver – dbk64.sys	MD5: d8ebfd26bed0155e7c4ec2ca429c871d SHA1: bab2ae2788dee2c41065850b2877202e57369f37
C2 Domain	imap.dateupdata[.]com
C2 IP	193.239.86.168