Ghost Emperor Hacker Uses Demodex Rootkit to Attack

July 17, 2024

Gr 87 EMEBROR

The Return of Ghost Emperor’s Demodex

A Comprehensive Look at the Updated Infection Chain of Ghost Emperor’s Demodex
Rootkit.

Dor Nizar, Malware Researcher

17 July 2024

Executive Summary

1/14

https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/
javascript:fbShare('https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/',%20520,%20350);
javascript:twitterShare('https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/',%20'The%20Return%20of%20Ghost%20Emperor%E2%80%99s%20Demodex',%20520,%20350);
javascript:linkedinShare('https%3A%2F%2Fwww.sygnia.co%2Fblog%2Fghost-emperor-demodex-rootkit%2F',%20520,%20350);
https://www.sygnia.co/cdn-cgi/l/email-protection#d6e9a5a3b4bcb3b5a2eb82beb3f3e4e684b3a2a3a4b8f3e4e6b9b0f3e4e691beb9a5a2f3e4e693bba6b3a4b9a434564fa5f3e4e692b3bbb9b2b3aef0b7bba6edb4b9b2afeb95beb3b5bdf6b9a3a2f6a2bebfa5f6bea2a2a6a5f3e597f3e490f3e490a1a1a1f8a5afb1b8bfb7f8b5b9f3e490b4bab9b1f3e490b1beb9a5a2fbb3bba6b3a4b9a4fbb2b3bbb9b2b3aefba4b9b9a2bdbfa2f3e490
javascript:fbShare('https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/',%20520,%20350);
javascript:twitterShare('https://www.sygnia.co/blog/ghost-emperor-demodex-rootkit/',%20'The%20Return%20of%20Ghost%20Emperor%E2%80%99s%20Demodex',%20520,%20350);
javascript:linkedinShare('https%3A%2F%2Fwww.sygnia.co%2Fblog%2Fghost-emperor-demodex-rootkit%2F',%20520,%20350);
https://www.sygnia.co/cdn-cgi/l/email-protection#4c733f392e26292f3871182429697e7c1e2938393e22697e7c232a697e7c0b24233f38697e7c09213c293e233eaeccd53f697e7c082921232829346a2d213c772e232835710f24292f276c2339386c3824253f6c2438383c3f697f0d697e0a697e0a3b3b3b623f352b22252d622f23697e0a2e20232b697e0a2b24233f386129213c293e233e6128292123282934613e232338272538697e0a

e In late 2023, Sygnia’s Incident Response team was engaged by a client whose network
was compromised and was leveraged to penetrate one of its business partner’s
network.

» During the investigation, several servers, workstations, and users were found to be
compromised by a threat actor who deployed various tools to communicate with a set
of C2 servers.

» One of these tools was identified as a variant of Demodex, a rootkit previously
associated with the threat group known as GhostEmperor.

o GhostEmperor is a sophisticated China-nexus threat group known to target mostly
South-East Asian telecommunication and government entities, first disclosed by
Kaspersky in a blog published in September 2021.

o GhostEmperor employs a multi-stage malware to achieve stealth execution and
persistence and utilizes several methods to impede analysis process.

o Usually, once the threat group gains initial access to the victim’s network by using
vulnerabilities such as ProxyLogon, a batch file is executed to initiate the infection
chain.

« In this blog we describe a new infection chain deployed by GhostEmperor, which
includes several loading schemes and various obfuscation techniques utilized by the
threat group.

Introduction

During Sygnia’s analysis of the forensic findings extracted from the victim’s environment, the
team found strong resemblance to the multi-stage tool which was described in Kaspersky’s
blog from 2021. However, our investigation yielded some alterations in the infection chain
and a slightly different C++ DLL variant.

Among these alterations, the variant we analyzed incorporates an EDR evasion technique

and uses a reflective loader to execute the Core-Implant. Additionally, we identified the use
of different file names and registry keys. The variant we encountered appears to have been
compiled in July 2021, suggesting it might be a more recent version than the one originally
analyzed by KaspersKky.

This blog post focuses on the key differences we identified and analyzed in the infection
chain and the loading scheme operations.

2/14

https://securelist.com/ghostemperor-from-proxylogon-to-kernel-mode/104407/

reg.exe import
] S
= A
2 REG files =]
AES
g n— |
. tive Loader
P BT % | :
WMIExec Drop (2] expand.exe Y J"_—__"I';-L @
Machine 4 e :Tdm Loveimpmiot
missing headers l
@ F ((})
& Encrypted .r';c%;\ i
PowerShell Iﬂt) s
el - Creates Servion Communication
Run with decryption key T Group
New Infection Chain Flow Graph
e | \
ﬁ wmiprvse exe @
A
o cmd.exe)
- o ©
_A
conhost.exe)
3 expand.exe
CE powershell.exe)
(3 reg.exe
G)

WMIExec

Infection Chain: Process Tree Overview

WMIExec is a command-line tool used for executing commands on remote Windows
systems through Windows Management Instrumentation (WMI).
It is part of the Impacket Toolkit, which is an open-source collection of modules written in
Python for programmatically constructing and manipulating network protocols, that
is commonly used by threat actors and red teams.

During our investigation, we observed that the threat actor used this tool to run a batch file,
initiating the infection chain on the victim’s compromised machine. The output logs were
saved to a file located at c: \windows\temp using a local SMB path. The following command

was executed:

3/14

cmd.exe /Q /c c:\windows\vss\1.bat >\127.0.0.1\C$\Windows\Temp[generated_string] 2>&1

 Properties

cmd.exe
4052

cmd.exe /Q /c c:\windows\vss\1.bat 1>\\127.0.0.1\C$\Windo cmioxs /0 fe-cAwindowsives\T bat 1> \127.

ws\Temp\kGyBD.J 2>&1

False

Snippet showcasing the WMIExec command being executed on a victim machine with batch script
“1.bat’

Batch File

The batch file starts the infection by installing the malware and obtaining persistency by the
following actions:

It starts by dropping a CAB file named “1.cab” to C:\Windows\Web. CAB is a compressed
archive format commonly utilized in Windows to bundle multiple files.

The batch file then uses expand.exe — a native Windows tool used for file extraction from
compressed Cabinet files (.cab), to extract these four files:

prints1m.dll — Service DLL.

Service.ps1 — encrypted Powershell.

config.REG - registry dump of AES decryption key.

AesedMemoryBinX64.REG — registry dump of AES-encrypted shellcode containing the
Core-Implant.

Next, the batch file imports the two registry files using the reg.exe import [file]
command to set two registry keys with encrypted values, which will be used later to execute
the next stage.

Sni,t;np‘ez“ from”Registry Explorer ehdvlvcasing the embedded ba”y/ééd stored /; the reé)'stry ve/ue 7
‘inputlog’.

a/14

The threat actor employs several LOLBins such as reg.exe and expand.exe within the batch
file to achieve stealthiness as they are legitimate and signed Microsoft built-in tools which do
not arouse any suspicion.

The Batch file proceeds and executes an encrypted PowerShell script, passing a decryption
key as a parameter. This script contains an encrypted blob, which, once decrypted using the
provided key, reveals another PowerShell script that is executed.

powershell -ex bypass .\service.ps1 UEOIODKN867HKIkj97

A command line executing the PowerShell script and the decryption argument

PowerShell script

The decrypted PowerShell script creates a new service named “WdiSystem” that loads the
malicious Service DLL (prints1m.dll). It also creates a service group called “WdiSystemhost”
and runs the malicious service within this group. By running the malicious service within the
context of the “WdiSystemhost” service group, the threat actor masquerades the malware’s
execution as a legitimate Windows system process, as it resembles the authentic and
legitimate WdiSystemHost (“Windows Diagnostic System Host” service).

Processes Services Network Disk

Name PID CPU User name Private
‘8] svchost.exe 468 NT AUTHORITY\SYSTEM 26.87
=] svchost.exe C:\Windows\System32\svchost.exe -k WdiSystemhost

File:

C\Windows\System32\svchost.exe
Host Process for Windows Services 10.0.19041.546
Microsoft Corporation
Service group name:
WdiSystemhost
Services:
WdiSystem (WdiSystem)
Notes:
Signer: Microsoft Windows Publisher
Console application: services.exe (680)

Rogue “WdiSystemhost” service in process list

To accomplish this technique, the script carries out the following steps:

o Creates a service by invoking the New-Service PowerShell command with svchost.exe
as the binary path of the service.

5/14

o Creates a service group named “WdiSystemhost” by adding a new registry key in

HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentCersion\SvcHost:

B Registry Editor
File Edit View Favorites Help
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost
b PerHwldStorage # || Name Type Data
Ports | a8 print REG_MULTISZ PrintNotify
Pretetcher | a8 Printwarkfiow REG_MULTI_SZ PrintWerkflowUserSve
Pnntl ;s ab rdxgroup REG_MULTI_SZ RetailDemo
:::ll:;‘ <. | aBJRPCSS REG_MULTISZ RocEptMapper RpcSs
Paditatonkis : atsdrsve REG_MULTI_SZ sdrsve
RemoteRegistry | ._‘_P.‘ smbsvcs REG_MULTI_SZ lanmanserver
Schedule | .1_'?.‘ smphost REG_MULTI_SZ smphost
SecEdit | 2B|swprv REG_MULTI_SZ swprv
> | Sensor | abltermsvcs REG_MULTI_SZ TermService
> 1 setup | 3¥)UdkSveGroup REG_MULTI SZ UdkUserSve
» | SoftwareProtectionPlatform | b UnistackSveGroup REG_MULTI_SZ PimindexMaintenanceSve CDPUserSve WpnlUserSer...
> I sep | 8] utesve REG_MULTI_SZ DiagTrack
> B SRUM || 2¥)wicsveGroup REG_MULTI SZ WhioSrvc
> W Supetetcly J WaliSystemhost REG_MULT_SZ WdiSystem
w SV\::::;W , ._u WepHostSveGroup REG_MULTI_SZ WepHostSvc
B——— _z_l_-. WerSvcGroup REG_MULTI_SZ wersve
AssignedAccessManagersve || .‘l_=. wsappx REG_MULTI_SZ clipsve AppXSve
aitotifae v ||) wusves REGMULTLSZ ~ WaaSMedicSuc

Registry view of service groups managed by svchost

The lowercase “host” in the name suggests it is a rogue version. The original name is

“WdiSystemHost”

Wires the malicious service DLL (prints1m.dll) to the service by setting a “ServiceDII”

registry key with the DLL’s path as the value, located in
HKLM:\SYSTEM\CurrentControlSet\Services\WdiSystem\Parameters.

B Registry Editor
File Edit View Favorites Help

-C;:!m pL;T;l-\;-(k-EﬂV_LDCAL_MAEI-lEi‘iE\-SYS-:T-E_M\EJrrentC_DntrDi_S;Et_\S-emTce-s.{\-i\-f.d_iS;ster-\;\B;ram;eters

> 1 Wdf01000 A || Name Type Data
% I MdEilter | &%) (Default) REG_SZ (value not set)
Mol s REG_EXPAND_SZ C:A\Windows\System32\prints1m.dil
v | WdiSystem
Parameters
WdiSystemHost
wdiwifi
WdmCompanionFilter
WdNisDrv
WdNisSvc
WebClient

2 ServiceDll

* Runs the service by invoking the Start-Service PowerShell command.

o Launches the malicious service DLL (prints1m.dll) as a service which is executed

within the service group.

Registry view of the key that dictates the DLL associated with the malware’s service.

6/14

svcname = 1

$svogroup = '@

$svedesc =

$svedllpath =

$TRUE_FALSEm(t $uvcd.1].plthl

Lt{s'l‘kl.l! FALSE -ne ") {Write-Output " rexit:)
if((Get-Service $svemame -ea SilentlyCont u=-)]

Ssve = Get-5
if ($sve -ne sr.m_'l.l)
{

try{st service -force -inputobject §svc -ea stop;)catchi});
$osvc = Get-¥Wmicbject -Class Win32_Service -filter §(“+§svename+” ' ") ;
if ($osvc -ne $null)
{
tryl Stop-Process -id $esve.ProcessId -Force -ea stop;leatchi}:
try{ $§osvc.delete();)catch{};

"#[System.I0.Path] : :GetFileName (§svedllpath)) /f

ssve ce -name $svename -binaryPathName $(t + §svegroup) -Description $svedesc; if (§sve -eg $mull) {
cexit:)

.sx;;

perty =Path "t FTWE f t v t" =Name § group -Value § -PropertyTlype Multistring -Force;
if $z-t =-aq Srmll IR -Qutput " v cexit;)}
. t T " 4 §svcname + " .) ~=-Force -ea stop; if ($zet -e=q $null) { Write-Cutput
+ Ssvename +) -Name =Value §svedllpath =-PropertyType

"exit; }

The PowerShell script after decryption

Prints1m.dll — Service DLL

This Service DLL dynamically loads all of the necessary functions it requires for operation by
navigating through an internal OS structure named Process Environment Block, which
contains the already loaded libraries and functions in the process.

The Kernel32 library, loaded by default in every process, is used by the malware to access
the LoadLibraryA function, which is responsible for loading DLLs into the process.

Subsequently, an encrypted configuration located at the DLL’s data section (offset 0x4050) is
decrypted using a custom decryption scheme, which contains the following parameters:

e Initial sleep time.
» Registry paths of the shellcode location (which was established by the batch file).
o A list of module and function names required for operation (offset 0x45F0).

The service uses this list to create an in-memory Import Address Table, loading the modules
it requires using the LoadLibraryA function, and traverses each module’s export table to
obtain the necessary functions.

7/14

iat[1] = get_function_by_export_name(v3, "GetProcAddress");
*iat = get_function_by_export_name(v3, "LoadlLibraryA");

iat[6] = get_function_ by export name(v3, "Sleep");

iat[7] = get_function_by_export_name(v3, "VirtualAlloc");
iat[8] = get_function_by export_name(v3, "VirtualFree");
iat[9] = get_function_by_export_name(v3, "VirtualProtect");

iat[15] = get_function_by export_name(v2, "CreateThread");

if ((iat[1])(v3, "SetProcessMitigationPolicy"))

{
iat[18]
is_SPMP

(iat[1])(v3, "SetProcessMitigationPolicy");
1;

¥
iat[16] = get_function_by_export_name(v3, "ExitThread");

v6 = (¥iat)("advapi32.dll");

iat[2] = get_function_by_export_name(v6, "RegOpenKeyExW");

iat[3] = get_function_ by export name(vt, "RegQueryValueExW");
iat[4] = get_function_by export_name(v6, "RegDeleteValueW");
iat[5] = get_function_by export_name(v6, "RegCloseKey");

1at[190] = get_function_by_ export_name(v6, "CryptAcquireContextW")]
iat[11] = get_function_by export_name(v6, "CryptImportKey");
iat[12] = get _function_by export name(v6, "CryptDecrypt");

iat[13] = get_function_by_export_name(v6, "CryptDestroyKey");
iat[14] = get_function_by export_name(v6, "CryptReleaseContext");

result = get_function_by_export_name(v6, "SetServiceStatus");
iat[17] = result;

return result;

Part of service’s code to dynamically load necessary functions

8/14

00007FF8CIDA4A60 0O 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000O7FF8CIDA4470 0O ©0 00 00 6B 00 65 00 72 00 6E 00 65 00 6C 00k.e.r.n.e.l.
PPOO7FF8CIDA4480 33 00 32 00 2E 00 64 00 6C 00 6C 00 00 00 00 @@ 3.2...d.1.1.....
0P007FF8CIDA4490 00 @0 00 00 61 64 76 61 70 69 33 32 2E 64 6C 6Cadvapi32.dll
00007FF8C1DA44AD 0O ©0 00 00 AC 6F 61 64 4C 69 62 72 61 72 79 41LoadLibraryA
00007FF8C1DA44BO 00 @0 90 @0 47 65 74 50 72 6F 63 41 64 64 72 65GetProcAddre
000O7FF8C1DA44CO 73 73 00 @0 52 65 67 4F 70 65 6E 4B 65 79 45 78 ss..RegOpenKeyEx
00007FF8CIDA44DO 57 00 @0 @0 52 65 67 51 75 65 72 79 56 61 6C 75 W...RegQueryValu

00007FF8C1DA44ED 65 45 78
P0BQ7FF8C1DA44F@ 65 6C 65
P00O7FF8C1DA4500 6C 6F 73
00007FF8C1DA4510 70 00 00
00O 7FF8C1DA4A520 00 00 00

i
~J

00 00 00 00 00 00 00 PO 52 65 67 44 eExW........ RegD
65 56 61 6C 75 65 57 @@ 52 65 67 43 eleteValuel.RegC
4B 65 79 00 00 00 00 09 53 6C 65 65 loseKey..... Slee
56 69 72 74 75 61 6C 41 6C 6C 6F 63 p...VirtualAlloc
56 69 72 74 75 61 6C 46 72 65 65 00VirtualFree.
00OO7FF8C1DAA530 00 00 00 56 69 72 74 75 61 6C 50 72 6F 74 65VirtualProte
©0007FF8C1DA4540 63 74 00 43 72 79 70 74 41 63 71 75 69 72 65 ct..CryptAcquire
PO 7FF8C1DA4A550 43 6F 6E 74 65 78 74 57 00 00 00 00 43 72 79 70 ContextW....Cryp
000O7FF8CIDA4560 74 49 6D 70 6F 72 74 4B 65 79 00 00 43 72 79 70 tImportKey..Cryp
P00 7FF8CIDA4AS70 74 44 65 63 72 79 70 74 00 00 00 00 43 72 79 70 tDecrypt....Cryp
PORO7FF8CIDAAS80 74 44 65 73 74 72 6F 79 4B 65 79 00 43 72 79 70 tDestroyKey.Cryp
PP0O7FF8CIDA4590 74 52 65 6C 65 61 73 65 43 6F 6E 74 65 78 74 00 tReleaseContext.

88887 ¢

00007FF8CIDA4SA0 00 00 00 00 43 72 65 61 74 65 54 68 72 65 61 64CreateThread
0P0O7FF8CIDA4SBO 00 00 00 00 45 78 69 74 54 68 72 65 61 64 00 00ExitThread..
00007FF8CIDAASCO 00 @0 00 @0 53 65 74 53 65 72 76 69 63 65 53 74SetServiceSt
00007FF8C1DA45D8 61 74 75 73 00 00 00 00 00 00 09 00 53 65 74 50 atus........ SetP

00007FF8CIDAASE® 72 6F 63 65 73 73 4D 69 74 69 67 61 74 69 6F 6E rocessMitigation
P00O7FF8CIDAASFA 50 6F 6C 69 63 79 00 00 00 00 00 00 01 00 00 60 Policy........ o

P@G@?FFSClDAAGBB 01 00 00 00 00 00 00 00 [l BCURCRURCURCURIY ---ccone... |

Memory view of the decrypted configuration, showing the list of functions

00007FF8C1DA4260 ©0 00 00 00 00 00 00 00 ©00 00 00 00 00 00 00 00
@00O7FF8C1DA4270 ©O 00 90 @0 S3 00 6F 90 66 00 74 90 77 00 61 80S.o.f.t.w.a.
P0RO7FF8C1DA4280 72 00 65 00 SC 00 4D 00 69 00 63 00 72 00 6F 00 r.e.\.M.i.c.r.o
00007FF8C1DA4290 73 00 6F 00 66 00 74 60 5C 00 77 00 6F 00 77 00 s.o.f.t.\.w.o.w.
000O7FF8CIDAA2A0 36 00 34 00 00 00 00 0O 00 00 00 00 00 00 00 0@ 6.4.............
00007FF8C1DA42BE ©0 00 00 00 00 00 00 00 00 00 00 00 0O GO GO 0O
00GO7FF8C1DA42C0 ©0 00 00 00 G0 00 00 00 ©0 00 00 00 00 00 0@ 0O
00007FF8CIDA4A2D0 ©0 00 00 00 GO 00 00 00 00 00 00 00 00 G0 00 00
00007FF8C1DA42EQ ©O 00 00 00 00 00 00 00 ©00 00 00 00 00 @0 00 0O
000O7FF8CIDAA2FO ©0 00 00 00 @0 00 00 60 00 00 00 00 00 00 00 0O
P0007FF8C1DA4300 @0 00 00 00 00 00 00 00 ©0 00 00 00 00 GO 00 O
00007FF8C1DA4A310 00 00 00 00 @0 00 00 00 ©0 00 00 00 00 00 00 00
@OCO7FF8CIDA4320 ©0 00 00 00 00 V0 00 00 ©0 00 00 00 09 GV G0 PO
00007FF8C1DA4330 ©0 00 00 00 00 00 00 00 ©0 00 00 00 00 00 00 00
@ORO7FF8C1DA4340 ©0 00 00 G0 00 00 00 00 ©0 00 00 00 00 00 00 @O
PORO7FF8CIDA4350 00 00 00 00 00 00 00 OO 00 00 00 00 00 G0 00 0O
00007FF8C1DA4360 ©0 00 00 00 00 00 00 20 00 00 00 00 00 00 €0 90
POPO7FFSC1DA4370 ©0 00 00 OO0 69 00 6E 00 70 00 75 00 74 00 6C 00i.n.p.u.t.1l.
00007FF8C1DA4380 6F 00 67 00 G0 00 00 00 ©0 00 00 00 00 @G0 00 0@ o0.8.............
00007FF8C1DA4390 @0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O

Memory view of the decrypted configuration, showing the path of the encrypted shellcode

After setting up an anti-hooking technique (which will be described in the next section), the
service
initiates the next stage by spawning a new thread. It then sleeps for 15 seconds before

9/14

attempting to decrypt and execute the next stage, which is retrieved from the registry keys
set by the batch file. In case of failure, it retries at intervals of 30 to 60 seconds until

successful execution is achieved.

seed = time64(0164);

start time = seed;
srand(seed);

while (time64(0i64) - start time < 15)
Sleep(1000u) ;

while (decrypt reg run _stage2() < 0)

fl

random_number = rand();
Sleep(1000 * (random number % 30 + 30));

}
Sleep(OxFFFFFFFF);

Snippet of code showing the decryption loop

EDR Evasion and Anti-User-Mode Hooking Technique

Antivirus and EDR solutions typically inject DLLs into the address space of running
applications to facilitate user-mode hooking, thus identifying and preventing malicious activity

within the processes.
During our investigation we observed that the threat actor added an evasion technique to the

Service DLL by setting a specific mitigation policy to the process:

if (mem_decrypted & & is_SPMP_resolved)
{

lpBuffer.Flags = 1;

SetProcessﬂltlgatlonpolicy(ProcessSignaturePolicy, &lpBuffer, 4uib4);
}

Calling SetMitigationPolicy with ProcessSignaturePolicy as parameter to set the mitigation policy

Mitigation policies, such as ASLR, DEP and CFG, are security measures implemented by the
OS to mitigate attacks and vulnerabilities such as Buffer Overflows and Code Injections.
Some of these mitigation policies are enabled in the process by default. In our investigation,
the threat actor set up a particular mitigation named “ProcessSignaturePolicy” which forbid
loading DLLs that are not signed by Microsoft to the process.

This means that any security solution trying to inject a DLL not signed by Microsoft will fail to
do so. This technique helps circumvent analysis tools by limiting user-mode hooking.

10/14

Process
Command line: C:\Windows\System32\svchost.exe -k WdiSystemhost

£

Current directory: | |Mitigation Policies

Started: A~
- | Policy

PEB address: | | ASLR (high entropy)
| | CF Guard

Parent:
{ | DEP (permanent)

Mitigation Signatures restricted (Microsoft only)

Strict handle checks
Protection: None

Description:

Image signature restrictions are enabled for this process.
Only Microsoft signatures are allowed.
This is an opt-in restriction.

Service’s mitigation policies

The fact that many antivirus vendors employ DLLs with a legitimate Microsoft signature, and
that some security solutions inject their DLLs prior to the invocation of
SetProcessMitigationPolicy, limits the effectiveness of this method.

Shellcode and Reflective loader

The Service DLL reads two encrypted registry keys that were set by the batch file:
“‘AKey” — an AES decryption key
“‘inputlog” — an AES-encrypted shellcode containing the core-implant.

Registry (18)

Operation Key

Read Value HKEY_LOCAL_MACHINE\Software\Microsoft\AKey

Read Value HKEY_LOCAL_MACHINE\Software\Microsoftwow64\inputlog

Snippet from Sandbox execution of the threat actor’s malicious service showing the read activity
performed by the service of the two registry keys

11/14

The service employs the AES algorithm to decrypt the encrypted shellcode retrieved from the
“‘inputlog” registry key. It sets the decryption key from the “AKey” value and uses a null byte
array as the Initialization Vector (IV). The shellcode consists of a Position-Independent
shellcode functioning as a reflective loader, alongside a corrupted Portable Executable (PE)
file, positioned at offset 0x4000. Certain headers within the PE file have been deliberately
stripped to enhance resistance to analysis and detection. Specifically, the “MZ” and “PE”
headers have been nullified, and the DOS Stub has been removed.

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF Decoded text
00000000 F8 DA 00 CC o 5ol 5 3 & CCCCCCCC wé....I1iiiiiiii
00000010 4C 89 4C 24 20 4C 89 44 24 18 48 89 54 24 10 48 L%LS$ L%DS.H®TS.H
00000020 89 4C | Disassembly: 00 C7 44 24 40 FF %LS.H.i"...CDS@V
00000030 FF FF 00 00 00 00 00 48 9YYHC,SA....... H

0: f8 cle -

1: 9 0a 00 00 00 jmp 0x10

6: cc int3

7: ¢ int3

Jump\trampoline at the Start of the shellcode

Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF Decoded text
00003FBO 69 F2 4A D7 9E B2 SD 97 98 €D 75 2E E1 ED DE 54 ieJdx%,]—"mu.aibT
00003FCO DB 15 3D E3 BE CC 1C 70 71 SD E4 1B FD AF 8E 22 U.=8%i.pqgl&.v 2*
00003FDO F6é FA 9D 90 62 SB EE 4F 1B 81 59 %A BE 3C 60 BO &4..b[i0..Y#%<°
O0003FE0 B7 18 19 93 59 12 C2 E4 AA 58 52 AA 45 50 31 -.."Y.A&*XRE2EP1
O0003FF0 1E 69 B7 04 D7 92 15 86 2A S1 AA 18 8C 7F 54 AR .i-.x’ . t*Q*.E.T?
00004000 [00 0C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...cevevccccncns
00004010 E00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...ccveeeccoccns
00004020 PSSR IO0 00 00 00 00 00 00 00 00 00 00 00 00 00 .ecoeeeeeaccccens
00004030 00 00 00 00 00 00 00 00 00 00 00 O0'E8 00 00 00/ +oeevvecanes é...
00004040 00 00 00 00 00 00 00 00 00 00 00 00 OPEENEENNENO0 ..ecvececassanns
00004050 00 00 00 00 00 00 00 00 00 00 00 00 OF s 3T [e S A
00004060 00 00 00 00 00 00 00 00 00 00 00 00 OPPEHERdErO0 cececcccscssaans
00004070 00 00 00 00 00 00 00 00 00 00 00 00 00 UU OO0 00 .soesseeecasasanas
00004080 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 .oesvveensasanes
00004090 00 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 .+eesveseessnsanes
000040R0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .ececeeeancacacscs
000040BO 00 00 00 00 00 00 00 00 ORuESmBO00 00 00 00 00 ...ceeveccccsses
000040CO0 00 00 00 00 00 00 00 00 O H;;H_ D B0 0D 00 B0 cusisasseaEEETes
000040D0 00 00 00 00 00 00 00 00 OUSICESUMH0 00 00 00 00 .veveessasscsanes
000040E0 00 00 00 00 00 00 00 00 [00 00 00 O] 64 86 05 00 ..eeeeeeenans dt..
Q00040F0 90 OA BE S5€ 00 00 00 00 00 00 00 FO o e L IR L T T 8."

Corrupted PE file located at offset 0x4000

The shellcode loads the core-implant DLL using a reflective loader which performs the
following steps:

» Allocates memory for the core-implant DLL.
o Parses the custom PE headers of the core-implant.
* Moves each section to its proper location in the allocated memory.

12/14

memset(hMem_stage3, 0i64, stage3 size);
for (1 =0; 1 < stage2 conf->numSections; ++i)

{
section 9 = &,,~ C ':.r-—->5ection_tab1F_'{49 ¥ 3 594 ___(cor _‘>SeCti0nBaSQOFfSet];
if (section_0->SizeOfRawData)
{
vl7 = section_@->VirtualAddress + hMem_stage3;

ion_0->VirtualAddress + hlMem
ion_B->PointerToRawData + data
on_0->SizeOfRawData);
tion 0->Misc.PhysicalAddress = v17;

Code snippet parsing DLL sections and relocating them to the appropriate memory locations

e Performs relocation of the code and data sections to match the new base address.
¢ Resolves the import table.
o Sets proper memory protections.

for (sectionIndex = @; sectionIndex < stage? nf->numSections; ++secti ndex)
{
ction = &stage2 conf-»section_table[40 * ctionIndex + 2 + stage? conf-»sectionBaseOffset];
if (section->SizeOfRawData)
{
IphewProtect = PAGE_READWRITE;
if ((section->Characteristics & IMAGE_SCN_MEM_EXECUTE) == 0x20000000)
if ((section->Characteristics & IMAGE_SCN_MEM_WRITE) == ©x80000000)
IplewProtect = PAGE_EXECUTE_READWRITE;
else
t = PAGE_EXECUTE_READ;
if (VirtualProtect(section->VirtualAddress + hMem_stage3, section->SizeOfRawData, lpNewP: t, 1lpOldProtect))
{
3 e = -251;
goto remove_stage3;
}
}
}
Code snippet applying correct protections for each section
Executes the now-ready Core-Implant by calling its Entry Point.
Core-Implant

The Core-Implant handles two main tasks — managing Command and Control (C2)
communication and installing the Demodex kernel rootkit. To load Demodex, the threat actor
had to bypass the Driver Signature Enforcement (DSE) security feature, which blocks
unsigned drivers.

To do that, the threat actor leveraged “Cheat Engine”, an open-source tool used for video
game cheating, and utilized its signed driver, dbk64.sys, to manipulate memory and execute
code in kernel space. the threat actor used this driver to map and execute a shellcode in
kernel space which patches the IOCTL Dispatcher of the dbk64.sys driver. This modification
adds functionality to the driver that enables it to load the Demodex driver.

13/14

An analysis of the Core-Implant’s metadata shows that the threat actor modified the
compilation and export-table timestamp of the Core-Implant to 12 Feb 2016. However, the
timestamp of the debug section is set to 02 July 2021, which might indicate that this is the
actual time this implant was created.

samps

compiler-stamp

debug-stamp

export-stamp

Fri Feb 12 16:38:40 2016 | UTC
FriJul 02 13:57:24 2021 | UTC

Fri Feb 12 16:38:40 2016 | UTC

Core-Implant’s timestamps retrieved from PE Studio

Appendix — 10C

Description

Service DLL — prints1m.dll

Hash

MD5: 4bb191c6d3a234743ace703d7d518f8f
SHA1: 43f1c44fa14f9ce2c0ba9451de2f7d3dd1a208de

PowerShell script — service.ps1

MD5: 95e3312de43c1dad4cc3be8fad7ab9fad
SHA1: a59cca28205eeb94c331010060f86ad2f3d41882

Cheat Engine driver —

MD5: d8ebfd26bed0155e7c4ec2ca429¢c871d

dbk64.sys SHA1:
bab2ae2788dee2c41065850b2877202e57369f37

C2 Domain imap.dateupdata[.]Jcom

C21IP 193.239.86.168

14/14

