
1/11

July 12, 2024

Malware Analysis - Rhadamanthys
0xmrmagnezi.github.io/malware analysis/Rhadamanthys/

3 minute read

Sample:

fb6402d3ef1fcdd5af327668fa8d41b4


Background

https://0xmrmagnezi.github.io/malware%20analysis/Rhadamanthys/


2/11

Rhadamanthys malware has been notably associated with the threat actor group known as
Sandworm.
Sandworm, believed to have ties to Russian intelligence, It allows them to gain
unauthorized access to computers, enabling them to execute commands, steal data, and
surveil victims through webcams and microphones.
It spreads via phishing emails and
exploits software vulnerabilities.

Static Analysis - Stage 1




The first stage contained a relatively short PowerShell script that was somewhat obfuscated,
as shown in Figure 2.




After cleaning up the code and deobfuscating it, we were left with clear code, as shown in
Figures 3 and 4.

Figure 1: Malware Bazaar Entry

Figure 2: Obfuscated PowerShell



3/11







The first URL downloads a PDF and opens it, while the second URL downloads a VBS file
and executes it in the background.
Browsing to this URL revealed a lengthy, obfuscated VBS
script.

Second Stage




After examining the code, I uncovered clues about the obfuscation technique employed.
The
method involved filling the code with junk code, and in the middle of the script, a long string
was constructed.
Once I identified the execution point, I disarmed it and echoed the final
command to the console using CScript.

Figure 3: After Cleaning

Figure 4: After Deobfuscation

Figure 5: Long VBS Script



4/11




After cleaning up the code, I discovered an important function that functions similarly to a
regex.
This ‘regex’ essentially counts every sixth character and concatenates them into a
new string.
In Figure 7 you can find that specific function.




Understanding that function led me to construct a regex in CyberChef, through which I
successfully extracted the next stage of the malware.

Figure 6: CScript Output

Figure 7: Regex Function



5/11







As indicated in Figure 8 and 9, two URLs have been identified containing the next stage of
the malware.

Third Stage

Browsing to those URLs revealed the next stage along with additional files containing other
variants as shown in Figure 10 and 11.

Figure 8: Regex in CyberChef

Figure 9: After Decoidng the Whole code



6/11







The content of the file was loaded into the previous script and decoded from Base64.
Using
CyberChef, I decoded the Base64 content of the file. At the end of the file, the actual code
was revealed, as shown in Figure 11.




Figure 10: First URL

Figure 11: Second URL - Revealed 3 variants

Figure 12: CyberChef Base64 Decode



7/11

This part also utilized the previously analyzed regex function.
Using the same technique to
decode a new function was revealed.




After analyzing this function, I discovered that it utilized XOR with the key 84 in Hex.
An
example can be found in figure 14.




Before Decoding:

Figure 13: XOR Function Revealed

Figure 14: Using XOR



8/11




After Decoding:




That stage revealed memory manipulation and code injection techniques.

Figure 15: Before XOR

Figure 16: After XOR



9/11




Network Analysis

Using Wireshark and Fiddler I was able to extract Network IOC’s:

Figure 17: Process Tree Using Procmon



10/11







Virus Total

Figure 18: Wireshark DNS Requests

Figure 19: Fiddler Output



11/11







IOCs

Hash:

41961596aa91e91c8e4415cff137b345

4555c60872fad83c47c29b2052c978fd

d298368760f646f852027f697df07ee6

fb6402d3ef1fcdd5af327668fa8d41b4

05ed7b3d821af8e38b861b21ad567c1d


URL:

kuthbaneng[.]com

pineappletech[.]ae

almrwad[.]com


IP:

184[.]171[.]244[.]231

103[.]21[.]59[.]27

91[.]195[.]240[.]94


Figure 20: VT Url

Figure 21: VT Url


