
1/12

Yin Hong Chang, Sudeep Singh

MoonWalk | ThreatLabz
zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

Technical Analysis

Attack chain

The focus of this blog post is the second half of the attack chain that begins with the in-
memory execution of MoonWalk backdoor. Once the MoonWalk backdoor is successfully
loaded by DodgeBox, the malware decrypts and reflectively loads two embedded plugins (C2
and Utility). The C2 plugin uses a custom encrypted C2 protocol to communicate with the
attacker-controlled Google Drive account.

A figure depicting the attack chain used to deploy MoonWalk with the DodgeBox loader is
shown below.

https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

2/12

Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

MoonWalk analysis

MoonWalk is a malware backdoor written in C that shares many code similarities with
DodgeBox, suggesting a common development toolkit. It incorporates many evasion related
functions from DodgeBox, including those related to the following:

DLL hollowing
Import resolution
DLL unhooking
Call stack spoofing

Additionally, MoonWalk utilizes the same DLL blocklist as DodgeBox.

ThreatLabz analysis reveals MoonWalk's modular design, allowing it to load different plugin
components as needed. The sample examined by ThreatLabz contains two embedded
plugins, a C2 plugin for C2 communication, and a utility plugin that provides functionality

3/12

related to compression and public-key cryptography. This modular architecture makes
MoonWalk highly adaptable, enabling attackers to customize its functionality for different
scenarios.

In the section below, we will highlight several notable capabilities of MoonWalk.

Unloading the DodgeBox loader

When MoonWalk first initializes, it resolves its imports using the same algorithms as
DodgeBox. Then, depending on the DodgeBox configuration
parameter Config.fShouldUnloadStealthVector, MoonWalk unloads the DodgeBox DLL
from memory and unlinks it from the Process Environment Block (PEB). This reduces
MoonWalk’s in-memory footprint, and obfuscates its origins, hindering memory forensic
analysis.

Using Windows Fibers

Next, MoonWalk initializes global structures used to manage Windows Fibers. Windows
Fibers are a lightweight threading mechanism, available in the Windows operating system
since Windows NT SP5. Unlike traditional threads, which are scheduled by the operating
system, fibers are cooperatively scheduled by the application itself. This allows developers to
tune an application’s performance for a specific workload. However, due to the complexity of
utilizing Windows Fibers, and performance improvements of computer hardware, Windows
Fibers were not widely adopted, and remains an obscure feature.

However, with the increased focus on cybersecurity in recent years, there has been an uptick
in interest in Windows Fibers from the research and red-teaming community. Multiple
research papers (1, 2, 3) and open-sourced proof of concepts (POCs) have been published,
abusing Windows Fibers to evade AVs/EDR solutions.

APT41 may have been following these developments, as they have incorporated Windows
Fibers into the MoonWalk backdoor. At a high level, MoonWalk maintains a global array of
fibers. When a function needs to be executed as a fiber, a fiber is created using
the CreateFiber API. This fiber is then packaged together with the address of the function
and its arguments and other metadata, and inserted into the global array. The main fiber then
schedules these fibers for execution. This use of Windows Fibers helps MoonWalk evade
AVs and EDRs which do not support the scanning of Windows Fibers, and also makes
analysis challenging by breaking up the control flow.

Configuration

MoonWalk decrypts its configuration, which is hard-coded within its .lrsrc section. Like
DodgeBox, MoonWalk uses MD5 for configuration validation and AES Cipher Feedback
(AES-CFB) for decryption.

https://www.ired.team/offensive-security/code-injection-process-injection/executing-shellcode-with-createfiber
https://github.com/JanielDary/ImmoralFiber
https://www.hopinfosec.com/evasion/2022/05/11/evasion-pt3/
https://github.com/Kudaes/Fiber/tree/main

4/12

However, MoonWalk's configuration is more complex, featuring nested structures and arrays.
This configuration contains various execution parameters including the following:

Mutex names
A fiber configuration
Heartbeat intervals
Encryption keys
C2-related data

In the sample we analyzed, MoonWalk's configuration (referred to as Config) included
OAuth secrets used to authenticate with the attacker-controlled Google Drive account, and
other notable fields as shown below:

Config.szClientID:
 XXXXXXXX3108-0pm3bsjc0mto2e1k4kp2u8817lgk3e3v.apps.googleusercontent.com

Config.szClientSecret:
 XXXXXXXXBiuo8VPZUH1dBHkv86mC1xFU_Z3

Config.szRefreshToken: XXXXXXXXiYDPmH9cCgYIARAAGAkSNwF-
L9IrcM7YiuxWrNuyIfKINyNc_pEVytGNNK750ZyyIm32qH6Wh3dGIBTvdPJ2v92xAohHwWw

Config.rgbXorKey:
 a8e6bd132daf0360b1af1f5eea15e42f8c6f1dcd7d34376ae4e83a1a4f5907c0

Config.szMutexName:
 Global\ctXjvsAxpzyqElmk

Config.szName:
 default

After loading the default configuration, MoonWalk searches for a new configuration file at
C:\ProgramData\[MD5(Config.rgbIDBytes)]. If found, the malware decrypts and loads this
file. A sample of MoonWalk's decrypted configuration is available in the Appendix of this blog
for reference.

Unpacking and loading plugins

MoonWalk then extracts embedded plugins from the .lrsrc section. In the MoonWalk
sample we analyzed, there were two plugins embedded within this section: one plugin for
C2, and another plugin which provides utility functions such as public key cryptography and
compression.

Each plugin in the .lrsrc section is prefixed with 72 bytes of metadata, which includes AES-
CFB secrets, an MD5 checksum, and plugin type information. The plugin type information
fields provide information about the features of a plugin. These fields help identify whether a

5/12

plugin serves as a command handler, C2, or utility. More details about the structure of plugin
metadata can be found in the Appendix section.

MoonWalk organizes these plugins by registering them in a global linked list. MoonWalk then
goes through this list to load the C2 plugin and its dependencies, such as the utility plugin,
using DLL hollowing. This process is similar to what we previously described in Part 1 for
DodgeBox. Like DodgeBox, this MoonWalk sample stores a copy of the host DLL
in C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace.

Network Communication

After loading the C2 plugin, MoonWalk is prepared to establish communication with the C2
server. MoonWalk utilizes Google Drive for C2 communications. This helps MoonWalk evade
detection, as traffic to and from reputable cloud services are less likely to raise suspicion,
especially if a target is already using this service. Strangely, MoonWalk uses the
string curl/7.54.0 as its User-Agent when making HTTP requests, even though it does not
utilize libcurl in its C2 plugin, and uses the WinHTTP family of APIs instead.

At a high level, MoonWalk communicates over Google Drive in the following manner:

Step Description

1 -
Initialization

MoonWalk obtains an access token from the Google Authorization Server,
by utilizing the OAuth secrets in its configuration
(Config.szClientID, Config.szClientSecret
and Config.szRefreshToken).

MoonWalk generates 16 random bytes, and hex-encodes them, resulting
in a string such as: f137da1a9019849fbc2aac49a4b6f2c3. We will
reference this string as SessionID.

MoonWalk uses the Google Drive APIs to retrieve the ID for the /data
directory.

MoonWalk retrieves the ID for the /data/temp directory.

https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1

6/12

Step Description

2 -
Cryptographic
Handshake
(Client Hello
and Server
Hello)

MoonWalk searches /data/temp for a file named after the
generated SessionID (i.e. f137da1a9019849fbc2aac49a4b6f2c3). If the
file is not found, MoonWalk generates and uploads a
file /data/temp/[SessionID] to initiate a cryptographic handshake and
exchange AES keys with the server.

MoonWalk then looks for the /data/[SessionID] directory, and its
subdirectory /data/[SessionID]/s1. The directory titled s[number]
seems to serve as the designated location where MoonWalk will retrieve
and download forthcoming C2 instructions.

Lastly, MoonWalk searches for the /data/[SessionID]/s1/1 file. As it
becomes available, MoonWalk downloads and processes it, and
completes the cryptographic handshake.

3 -
Information
Gathering

MoonWalk then checks for the existence of the
directory /data/[SessionID]/c1, and creates it if it does not exist. Then,
MoonWalk gathers information such as the computer name, user name,
and OS version, and uploads this to the file /data/[SessionID]/c1/1.

4 - Heartbeat MoonWalk then proceeds to send heartbeats regularly to the C2 server by
updating a file named “temp.txt” with the current Unix timestamp as a
string.

MoonWalk also regularly polls the /data/[SessionID]/s1 directory for
new files. If a new file is found, MoonWalk processes it and uploads its
response in the /data/[SessionID]/c1 directory. During our analysis of
MoonWalk, only ping commands were observed, where MoonWalk
responded by uploading encoded files to the /data/[SessionID]/c1
directory, containing the current Unix timestamp.

Table 1: High-level view of the MoonWalk C2 communication protocol using Google Drive.

Cryptographic Handshake (Client Hello)

During the cryptographic handshake phase, MoonWalk exchanges AES keys with the server
using a custom protocol. Because of this, it becomes very difficult or impossible to decode
encrypted C2 messages without access to these AES keys, which exist only in MoonWalk’s
process memory.

The process begins with MoonWalk generating a 32-byte AES key (rgbClientAESKey) and a
16-byte initialization vector (IV) (rgbClientAESIV) using a custom random number generator.
The AES key is then treated as an Elliptic-curve Diffie-Hellman (ECDH) private key, to

7/12

generate the corresponding ECDH public key (rgbECDHPublicKey) using
the curve25519_donna function.

MoonWalk then encodes the ECDH public key and AES IV by XORing them with the XOR
key from MoonWalk's configuration (Config.rgbXorKey). A checksum is created by
performing an MD5 hash on the concatenation of Config.rgbXorKey, ECDH public key, and
AES IV, and then taking the hash’s first four bytes. Finally, MoonWalk uploads this data to
Google Drive at the path /data/temp/[SessionID].

The figure below shows content of an uploaded file:

Figure 2: Contents of a MoonWalk Client Hello key exchange message.

 The table below provides a description of the various fields contained within the uploaded
file:

Offset
Size in
bytes Description

0x00 1 Unknown field, possibly a message type enum.

0x01 32 rgbECDHPublicKey XORed with Config.rgbXorKey

rgbECDHPublicKey before the XOR operation is:

d2 04 7b 20 60 c4 25 e2 da 01 f8 1d 5b 89 d1 8c
 ae bd 07 d3 da bc 82 41 e1 b1 14 2c 57 b5 5a 07

0x21 16 rgbClientAESIV XORed with Config.rgbXorKey

rgbClientAESIV before the XOR operation is:

c4 e9 27 7c 18 e3 67 c7 49 32 0a a6 f8 be 7a 67

0x31 4 First four bytes of MD5 (Config.rgbXorKey | rgbECDHPublicKey |
rgbClientAESIV)

8/12

Offset
Size in
bytes Description

0x35 15 Unknown bytes.

Table 2: Description of MoonWalk Client Hello key exchange message.

Cryptographic Handshake (Server Hello)

MoonWalk then downloads the file located at /data/[SessionID]/s1/1. This file contains
the server’s response to MoonWalk’s handshake above.

This file, and all subsequent uploaded or downloaded files, are encoded using a custom
scheme. Here, we walk through the decoding process of this scheme, using the Server Hello
file as an example.

The figure below is an example of the overall layout of the encoded Server Hello file:

Figure 3: MoonWalk Server Hello message format.

A description of these fields is shown in the following table.

Offset Size in bytes Description

0x00 8 rgbFileXorKey

The XOR key used to decode rgbEncodedBytes.

0x08 8 Unknown, potentially a message type field.

9/12

Offset Size in bytes Description

0x10 2 dwNumEncodedBytes

The number of encoded bytes that follows. This field is
encoded with rgbFileXorKey. Decoding this field shows
that there are 0xbc encoded bytes within this file.

85 20 XOR 85 9c = 00 bc

0x12 dwNumEncodedBytes rgbEncodedBytes

The encoded bytes within this file. These bytes appear to
contain message metadata, such as Google Drive file
IDs, message headers, or junk bytes.

To decode these bytes, rgbFileXorKey is used, starting
with the third byte of the XOR key.

18 25 ea a3 39 b4 e8 45 7f 01 99 ba 07 d6

XOR

29 44 ae cd 5f fb 85 20 29 44 ae cd 5f fb

=

31 61 44 6e 66 4f 6d 65 56 45 37 77 58 2d

0x?? variable rgbEncryptedBytes

The rest of the file is not encoded, because this section
is typically encrypted with AES-CFB, using the AES keys
exchanged during the cryptographic handshake phase.

Table 3: Description of the MoonWalk Server Hello message format.

The figure below shows the Server Hello file after decoding:

10/12

Figure 4: Example contents of a decoded MoonWalk Server Hello message.

The decoded Server Hello fields are described in the table below.

Offset
Size in
bytes Description

0x00 8 rgbFileXorKey

The XOR key, used to decode rgbEncodedBytes.

0x08 8 Unknown

0x10 2 dwNumEncodedBytes

0x12 variable szHeartBeatFileID

The Google Drive ID of the heartbeat file, temp.txt.

0x34 variable Unknown

11/12

Offset
Size in
bytes Description

0xce 48 Encoded buffer, XOR encoded with Config.rgbXorKey.

After decoding, the following fields are revealed:

rgbServerECDHBasePoint - Used as the ECDH base point, which
MoonWalk later uses to generate the shared AES key used by the
server.

77 82 64 13 04 16 94 da 35 d2 1e b8 27 d7 35 ff

02 8a 47 85 56 41 29 5b cb 3b 28 22 f2 69 3d 3a

The remaining bytes after decoding contain a checksum, and additional
unknown bytes.

0xfe 4 Checksum generated by MD5 (rgbServerECDHBasePoint |
Config.rgbXorKey.)

0x102 variable Unknown

Table 4: Description of fields within a MoonWalk Server Hello message.

With this information, MoonWalk generates a public key (rgbECDHServerPublicKey) using
the curve25519_donna function. Then, rgbECDHServerPublicKey is XORed
against Config.rgbXorKey to generate the server AES key.

Curve25519_Donna(
 a1->rgbECDHServerPublicKey,
 // Public Key (out):
 // 000001e6`246391ec b5 8f a7 ee 0b da d6 79-79 60 85 79 bf 32 ad 91
 // 000001e6`246391fc 24 a3 39 66 4c 4b 49 97-6c 71 92 d3 55 45 4b 3e
 a1->rgbClientAESKey,
 // Private Key:
 // 000001e6`2463920c 54 be fd a7 f4 0f 62 15-fb 22 9a 48 04 e3 6e 90
 // 000001e6`2463921c 85 4b b9 c7 f2 5f de 57-65 59 9c 90 18 04 d9 d1
 a1->rgbECDHServerBasepoint);
 // Basepoint:
 // 000001e6`24639251 77 82 64 13 04 16 94 da-35 d2 1e b8 27 d7 35 ff
 // 000001e6`24639261 02 8a 47 85 56 41 29 5b-cb 3b 28 22 f2 69 3d 3a

rgbServerAESKey = rgbECDHServerPublicKey ^ Config.rgbXorKey
// 1d 69 1a fd 26 75 d5 19-c8 cf 9a 27 55 27 49 be
// a8 cc 24 ab 31 7f 7e fd-88 99 a8 c9 1a 1c 4c fe

12/12

In this manner, MoonWalk exchanges AES keys with its C2, and thus concludes the
cryptographic handshake.

Information gathering

During this phase, MoonWalk collects information about the environment and uploads it to
Google Drive. The gathered data includes details such as the processor architecture,
Windows product type, version and build numbers, computer and usernames, as well as IP
addresses. This information is then compressed using LZ4. A checksum is then added, using
the 32-bit MurmurHash2 algorithm, with a customized mixing constant where r is set to 15,
and with the initial seed set to 0x12345678. These bytes are then encrypted using AES-CFB
with the server’s AES key, and packaged using the custom scheme detailed above, before
being uploaded to Google Drive.

More details of the environment information collected are provided in the Appendix of this
blog.

Heartbeat

MoonWalk also regularly sends heartbeats to the server. It uploads the current Unix
timestamp in plain text to a temp.txt file on Google Drive, using the file
ID szHeartBeatFileID retrieved as part of the cryptographic handshake.

Backdoor capabilities

In our analysis of MoonWalk, we did not observe the C2 sending any other commands or
plugins. If a command handler plugin (dwPluginTypePart2 == 1 described in the Appendix)
is not found, MoonWalk defaults to a built-in list of handlers. These handlers contain
functionality, which include the following:

Collect environment information (similar to the information gathering step above)
Steal token (token impersonation)
Create token (log on to the Windows machine using given credentials)
Download new configuration
Execute command line commands

Note: This list is not complete as further analysis is required.

