
1/25

Yin Hong Chang, Sudeep Singh

DodgeBox | ThreatLabz
zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Introduction

This is Part 1 of our two-part technical deep dive into APT41’s new tooling, which includes
DodgeBox and MoonWalk. For details about MoonWalk, go to Part 2.

In April 2024, Zscaler ThreatLabz uncovered a previously unknown loader called DodgeBox.
Upon further analysis, striking similarities were found between DodgeBox and variants of
StealthVector, a tool associated with the China-based advanced persistent threat (APT) actor

https://www.zscaler.com/blogs/security-research/dodgebox-deep-dive-updated-arsenal-apt41-part-1
https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

2/25

APT41 / Earth Baku. DodgeBox is a loader that proceeds to load a new backdoor named
MoonWalk. MoonWalk shares many evasion techniques implemented in DodgeBox and
utilizes Google Drive for command-and-control (C2) communication.

This two-part blog series aims to provide detailed technical analysis of both the DodgeBox
loader and the MoonWalk backdoor. The goal is to assist blue teams in comprehending this
emerging threat and offer insights into our attribution of the threat. Part 1 will offer an in-
depth examination of the DodgeBox loader, highlighting its distinct characteristics and
resemblances to StealthVector while Part 2 will delve into the intricacies of the MoonWalk
backdoor.

Key Takeaways

APT41, a China-based nation state threat actor known for its campaigns in Southeast
Asian countries, has recently been observed deploying an advanced and upgraded
version of StealthVector. We have named this new variant DodgeBox.
DodgeBox incorporates various evasive techniques such as call stack spoofing, DLL
sideloading, DLL hollowing and environmental guardrails. These techniques work
together to significantly decrease the chances of detection by security defenses.
Upon analyzing DodgeBox, we discovered significant resemblances to the well-known
StealthVector loader used by APT41. These similarities, combined with the distinct
utilization of DLL side loading and the acquisition of telemetry data from targeted
countries, have led us to attribute this new loader to APT41 / Earth Baku with a
moderate level of confidence.

Technical Analysis

Attack chain

APT41 employs DLL sideloading as a means of executing DodgeBox. They utilize a
legitimate executable (taskhost.exe), signed by Sandboxie, to sideload a malicious DLL
(sbiedll.dll). This malicious DLL, DodgeBox, serves as a loader and is responsible for
decrypting a second stage payload from an encrypted DAT file (sbiedll.dat). The decrypted
payload, MoonWalk functions as a backdoor that abuses Google Drive for command-and-
control (C2) communication. The figure below illustrates the attack chain at a high level.

https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

3/25

Figure 1: Attack chain used to deploy the DodgeBox loader and MoonWalk backdoor.

DodgeBox analysis

DodgeBox, a reflective DLL loader written in C, showcases similarities to StealthVector in
terms of concept but incorporates significant improvements in its implementation. It offers
various capabilities, including decrypting and loading embedded DLLs, conducting
environment checks and bindings, and executing cleanup procedures. What sets DodgeBox
apart from other malware is its unique algorithms and techniques.

During our threat hunting activities, we came across two DodgeBox samples that were
designed to be sideloaded by signed legitimate executables. One of these executables was
developed by Sandboxie (SandboxieWUAU.exe), while the other was developed by AhnLab.
All exports within the DLL point to a single function that primarily invokes the main function of
the malware, as illustrated below:

4/25

void SbieDll_Hook()

{

if (dwExportCalled)

{
 Sleep(0xFFFFFFFF);

}
else

{
 hSbieDll_ = hSbieDll;

 dwExportCalled = 1;

 MalwareMain();

}
}

MalwareMain implements the main functionality of DodgeBox, and can be broken down into
three main phases:

1. Decryption of DodgeBox’s configuration

DodgeBox employs AES Cipher Feedback (AES-CFB) mode for encrypting its configuration.
AES-CFB transforms AES from a block cipher into a stream cipher, allowing for the
encryption of data with different lengths without requiring padding. The encrypted
configuration is embedded within the .data section of the binary. To ensure the integrity of
the configuration, DodgeBox utilizes hard-coded MD5 hashes to validate both the embedded
AES keys and the encrypted configuration. For reference, a sample of DodgeBox's
decrypted configuration can be found in the Appendix section of this blog. We will reference
this sample configuration using the variable Config in the following sections.

2. Execution guardrails and environment setup

After decrypting its configuration, DodgeBox performs several environment checks to ensure
it is running on its intended target.

Execution guardrail: Argument check

DodgeBox starts by verifying that the process was launched with the correct arguments. It
scans the argv parameter for a specific string defined in Config.szArgFlag. Next, it
calculates the MD5 hash of the subsequent argument and compares it to the hash specified
in Config.rgbArgFlagValueMD5. In this case, DodgeBox expects the arguments to include -
-type driver. If this verification check fails, the process is terminated.

Environment setup: API Resolution

Afterwards, DodgeBox proceeds to resolve multiple APIs that are utilized for additional
environment checks and setup. Notably, DodgeBox employs a salted FNV1a hash for DLL
and function names. This salted hash mechanism aids DodgeBox in evading static

5/25

detections that typically search for hashes of DLL or function names. Additionally, it enables
different samples of DodgeBox to use distinct values for the same DLL and function, all while
preserving the integrity of the core hashing algorithm.

The following code shows DodgeBox calling its ResolveImport function to resolve the
address of LdrLoadDll, and populating its import table.

// ResolveImport takes in (wszDllName, dwDllNameHash, dwFuncNameHash)

sImportTable->ntdll_LdrLoadDll = ResolveImport(L"ntdll", 0xFE0B07B0, 0xCA7BB6AC);

Inside the ResolveImport function, DodgeBox utilizes the FNV1a hashing function in a two-
step process. First, it hashes the input string, which represents a DLL or function name.
Then, it hashes a salt value separately. This two-step hashing procedure is equivalent to
hashing the concatenation of the input string and salt. The following pseudo-code represents
the implementation of the salted hash:

dwHash = 0x811C9DC5; // Standard initial seed for FNV1a

pwszInputString_Char = pwszInputString;

cchInputString = -1LL;

do
++cchInputString;

while (pwszInputString[cchInputString]);

pwszInputStringEnd = (pwszInputString + 2 * cchInputString);

if (pwszInputString < pwszInputStringEnd)

{

do // Inlined FNV1a hash

{
 chChar = *pwszInputString_Char;

 pwszInputString_Char = (pwszInputString_Char + 1);

 dwHash = 0x1000193 * (dwHash ^ chChar);

}
while (pwszInputString_Char < pwszInputStringEnd);

}

v17 = &g_HashSaltPostfix; // Salt value: CB 24 B4 BA

do // Inlined FNV1a hash, use previous hash as seed

{

v18 = *v17;

v17 = (v17 + 1);

dwHash = 0x1000193 * (dwHash ^ v18);

}

while (v17 < g_HashSaltPostfix_End);

A Python script to generate the salted hashes is included in the Appendix.

In addition to the salted hash implementation, DodgeBox incorporates another noteworthy
feature in its ResolveImport function. This function accepts both the DLL name as a string
and its hash value as arguments. This redundancy appears to be designed to provide

6/25

flexibility, allowing DodgeBox to handle scenarios where the target DLL has not yet been
loaded. In such cases, DodgeBox invokes the LoadLibraryW function with the provided string
to load the DLL dynamically.

Furthermore, DodgeBox effectively handles forwarded exports and exports by ordinals. It
utilizes ntdll!LdrLoadDll and ntdll!LdrGetProcedureAddressEx when necessary to
resolve the address of the exported function. This approach ensures that DodgeBox can
successfully resolve and utilize the desired functions, regardless of the export method used.

Environment setup: DLL unhooking

Once DodgeBox has resolved the necessary functions, it proceeds to scan and unhook DLLs
that are loaded from the System32 directory. This process involves iterating through
the .pdata section of each DLL, retrieving each function’s start and end addresses, and
calculating an FNV1a hash for the bytes of each function. DodgeBox then computes a
corresponding hash for the same function's bytes as stored on disk. If the two hashes differ,
potential tampering can be detected, and DodgeBox will replace the in-memory function with
the original version from the disk.

For each DLL that has been successfully scanned, DodgeBox marks the
corresponding LDR_DATA_TABLE_ENTRY by clearing the ReservedFlags6 field and setting the
upper bit to 1. This marking allows DodgeBox to avoid scanning the same DLL twice.

Environment setup: Disabling CFG

Following that, DodgeBox checks if the operating system is Windows 8 or newer. If so, the
code verifies whether Control Flow Guard (CFG) is enabled by
calling GetProcessMitigationPolicy with the ProcessControlFlowGuardPolicy parameter.
If CFG is active, the malware attempts to disable it.

To achieve this, DodgeBox locates the LdrpHandleInvalidUserCallTarget function
within ntdll.dll by searching for a specific byte sequence. Once found, the malware
patches this function with a simple jmp rax instruction:

ntdll!LdrpHandleInvalidUserCallTarget:

00007ffe`fc8cf070 48ffe0 jmp rax

00007ffe`fc8cf073 cc int 3

00007ffe`fc8cf074 90 nop

CFG verifies the validity of indirect call targets. When a CFG check
fails, LdrpHandleInvalidUserCallTarget is invoked, typically raising an interrupt. At this
point, the rax register contains the invalid target address. The patch modifies this behavior,
calling the target directly instead of raising an interrupt, thus bypassing CFG protection.

https://www.blackhat.com/docs/us-15/materials/us-15-Zhang-Bypass-Control-Flow-Guard-Comprehensively-wp.pdf

7/25

In addition, DodgeBox replaces msvcrt!_guard_check_icall_fptr
with msvcrt!_DebugMallocator<int>::~_DebugMallocator<int>, a function that returns 0
to disable the CFG check performed by msvcrt.

Execution guardrail: MAC, computer name, and user name checks

Finally, DodgeBox performs a series of checks to verify if it is configured to run on the current
machine. The malware compares the machine’s MAC address
against Config.rgbTargetMac, and compares the computer name
against Config.wszTargetComputerName. Depending on the Config.fDoCheckIsSystem
flag, DodgeBox checks whether it is running with SYSTEM privileges. If any of these checks
fail, the malware terminates execution.

3. Payload decryption and environment keying

Payload decryption

In the final phase, DodgeBox commences the decryption process for the MoonWalk payload
DAT file. The code starts by inspecting the first four bytes of the file. If these bytes are non-
zero, it signifies that the DAT file has been tied to a particular machine, (which is described
below). However, if the DAT file is not machine-specific, DodgeBox proceeds to decrypt the
file using AES-CFB encryption, utilizing the key parameters stored in the configuration file. In
the samples analyzed by ThreatLabz, this decrypted DAT file corresponds to a DLL, which is
the MoonWalk backdoor.

Environment keying of the payload

After the decryption process, DodgeBox takes the additional step of keying the payload to
the current machine. It accomplishes this by re-encrypting the payload using
the Config.rgbAESKeyForDatFile key. However, in this specific scenario, the process
deviates from the configuration file's IV (Initialization Vector). Instead, it utilizes the MD5 hash
of the current machine's GUID as the AES IV. This approach guarantees that the decrypted
DAT file cannot be decrypted on any other machine, thus enhancing the payload's security.

Loading the payload using DLL hollowing

Next, DodgeBox reflectively loads the payload using a DLL hollowing technique. At a high
level, the process begins with the random selection of a host DLL from the System32
directory, ensuring it is not on a blocklist (DLL blocklist available in the Appendix section) and
has a sufficiently large .text section. A copy of this DLL is then created
at C:\Windows\Microsoft.NET\assembly\GAC_MSIL\System.Data.Trace\v4.0_4.0.0.0__<
random bytes from pcrt4!UuidCreate>\<name of chosen DLL>.dll. DodgeBox modifies
this copy by disabling the NX flag, removing the reloc and TLS sections, and patching its
entry point with a simple return 1.

8/25

Following the preparation of the host DLL for injection, DodgeBox proceeds by zeroing the
PE headers, and the IMAGE_DATA_DIRECTORY structures corresponding to the import, reloc,
and debug directories of the payload DLL. This modified payload DLL is then inserted into the
previously selected host DLL. The resulting copy of the modified host DLL is loaded into
memory using the NtCreateSection and NtMapViewOfSection APIs.

Once the DLL is successfully loaded, DodgeBox updates the relevant entries in the Process
Environment Block (PEB) to reflect the newly loaded DLL. To further conceal its activities,
DodgeBox overwrites the modified copy of the host DLL with its original contents, making it
appear as a legitimate, signed DLL on disk. Finally, the malware calls the entrypoint of the
payload DLL.

Interestingly, if the function responsible for DLL hollowing fails to load the payload DLL,
DodgeBox employs a fallback mechanism. This fallback function implements a traditional
form of reflective DLL loading using NtAllocateVirtualMemory
and NtProtectVirtualMemory.

At this stage, the payload DLL has been successfully loaded, and control is transferred to the
payload DLL by invoking the first exported function.

Call stack spoofing

There is one last technique employed by DodgeBox throughout all three phases discussed
above: call stack spoofing. Call stack spoofing is employed to obscure the origins of API
calls, making it more challenging for EDRs and antivirus systems to detect malicious activity.
By manipulating the call stack, DodgeBox makes API calls appear as if they originate from
trusted binaries rather than the malware itself. This prevents security solutions from gaining
contextual information about the true source of the API calls.

DodgeBox specifically utilizes call stack spoofing when invoking Windows APIs that are more
likely to be monitored. As an example, it directly calls RtlInitUnicodeString, a Windows
API that only performs string manipulation, instead of using stack spoofing.

(sImportTable->ntdll_RtlInitUnicodeString)(v25, v26);

However, call stack spoofing is used when calling NtAllocateVirtualMemory, an API
known to be abused by malware, as shown below:

CallFunction(

 sImportTable->ntdll_NtAllocateVirtualMemory, // API to call

 0, // Unused

 6LL, // Number of parameters

 // Parameters to the API

 -1LL, &pAllocBase, 0LL, &dwSizeOfImage, 0x3000, PAGE_READWRITE)

9/25

The technique mentioned above can be observed in the figures below. In the first figure, we
can see a typical call stack when explorer.exe invokes the CreateFileW function. The system
monitoring tool, SysMon, effectively walks the call stack, enabling us to understand the
purpose behind this API call and examine the modules and functions involved in the process.

Figure 2: Normal example of stack trace from explorer.exe calling CreateFileW.

In contrast, the next figure shows the call stack recorded by SysMon when DodgeBox uses
stack spoofing to call the CreateFileW function. Notice that there is no indication of
DodgeBox’s modules that triggered the API call. Instead, the modules involved all appear to
be legitimate Windows modules.

10/25

Figure 3: Stack trace of DodgeBox calling CreateFileW using the stack spoofing technique.

There is an excellent writeup of this technique, so we will only highlight some implementation
details specific to DodgeBox:

When the CallFunction is invoked, DodgeBox uses a random jmp qword ptr
[rbp+48h] gadget residing within the .text section of KernelBase.
DodgeBox analyzes the unwind codes within the .pdata section to extract the unwind
size for the function that includes the selected gadget.
DodgeBox obtains the addresses of RtlUserThreadStart + 0x21
and BaseThreadInitThunk + 0x14, along with their respective unwind sizes.
DodgeBox sets up the stack by inserting the addresses of RtlUserThreadStart +
0x21, BaseThreadInitThunk + 0x14, and the address of the gadget at the right
positions, utilizing the unwind sizes retrieved.
Following that, DodgeBox proceeds to insert the appropriate return address
at [rbp+48h] and prepares the registers and stack with the necessary argument values
to be passed to the API. This preparation ensures that the API is called correctly and
with the intended parameters.
Finally, DodgeBox executes a jmp instruction to redirect the control flow to the targeted
API.

Threat Attribution

In this section, we outline the different tactics, techniques, and procedures (TTPs) that were
utilized as indicators during our threat attribution process. Through the identification of these
overlapping TTPs, we attribute this activity to a China-based threat actor known as APT41.
Our confidence level in this attribution is medium.

Abuse of DLL sideloading

https://labs.withsecure.com/publications/spoofing-call-stacks-to-confuse-edrs

11/25

DLL sideloading is a technique commonly utilized by APT groups with links to China.
Typically, this method involves three essential components: a legitimate executable (EXE) file
that is signed, a malicious DLL file, and an encrypted data file. While the specific
combination of the EXE and DLL files mentioned here has not been publicly documented as
being associated with APT41, the presence of these three components could indicate the
involvement of a group linked to China.

Targeted regions

Analysis of the telemetry available in VirusTotal reveals that DodgeBox samples have been
submitted from both Thailand and Taiwan. This observation aligns with previous instances of
APT41 employing StealthVector in campaigns primarily targeting users in the Southeast
Asian (SEA) region.

Furthermore, during the monitoring of the attacker-controlled Google Drive account utilized
for C2 communication, a spreadsheet containing the personal details of individuals from
India was discovered. This spreadsheet is publicly available from other sources, suggesting
that the threat actor may have leveraged it to identify potential additional targets.

Similarities between DodgeBox and StealthVector

During our analysis of DodgeBox, we noted a number of similarities with StealthVector. In
this section, we compare the code between variants of StealthVector uploaded to VirusTotal
in 2021 and 2024, along with DodgeBox.

Similarities in checksum and configuration decryption

Both StealthVector and DodgeBox perform an integrity check on their encrypted
configurations. This verification process consists of two essential steps. First, the hard-coded
size of the configuration is validated, ensuring it matches the expected size. Second, the
hash of the configuration is verified to ensure its integrity. Once these checks are
successfully completed, the malware proceeds with decrypting the configuration.

StealthVector (2021)

Figure 4: StealthVector uses the CRC32 hashing algorithm and the ChaCha20 algorithm for
decryption (screenshot from TrendMicro).

Old variants of StealthVector use a CRC32 hashing algorithm for integrity checks and
ChaCha20 for decryption of the configuration.

12/25

StealthVector (2024)

Figure 5: StealthVector uses the CRC32 hashing algorithm and AES-CBC algorithm for
decryption.

Newer variants of StealthVector use a CRC32 hashing algorithm, and AES-CBC for
decryption.

DodgeBox

Figure 6: DodgeBox uses the MD5 hashing algorithm and AES-CFB algorithm for decryption.

DodgeBox uses an MD5 hashing algorithm for integrity checks, and AES-CFB for decryption
of the configuration.

Similarities in decrypted configuration format

These similarities encompass various aspects such as guardrails, payload filenames, sizes
and offsets, as well as cryptographic secrets. Both the original StealthVector and DodgeBox
configurations also incorporate checksums for their encrypted payloads.

StealthVector (2021)

13/25

Figure 7: Configuration extracted from the 2021 variant of StealthVector.

The configuration extracted from the 2021 variant of StealthVector reveals several similarities
with the 2024 variant of StealthVector and DodgeBox.

StealthVector (2024)

Figure 8: Configuration extracted from the 2024 variant of StealthVector.

The configuration extracted from the 2024 variant of StealthVector reveals several similarities
with the 2021 variant of StealthVector and DodgeBox.

DodgeBox

14/25

Figure 9: Configuration extracted from DodgeBox.

The configuration extracted from DodgeBox reveals several similarities with the 2024 and
2021 variant of StealthVector.

Similarities in environment keying

Both StealthVector and DodgeBox perform environment keying by decrypting then re-
encrypting the bundled payload.

StealthVector (2021)

TrendMicro’s report did not document StealthVector utilizing environment keying.

StealthVector (2024)

15/25

Figure 10: 2024 variant of StealthVector performing environment keying, using a rolling XOR
against the computer name.

The updated version of StealthVector employs the first four bytes of the payload
(rgbDecryptedData_In_Out) to check whether the payload has been keyed. If the payload
has not been previously keyed, StealthVector proceeds to key it using the computer name of
the target machine.

This keying process involves a rolling XOR operation to encode the payload, followed by re-
encryption using AES. In the analyzed sample, StealthVector sets the first four bytes of the
payload to 0x90909090, serving as an indicator that the payload has been successfully
keyed.

DodgeBox

16/25

Figure 11: DodgeBox uses a technique called environment keying, where it uses the hash of
the machine's GUID as the AES Initialization Vector (IV).

DodgeBox employs the first four bytes of the payload (pFileData) to determine whether it
has been keyed. If the payload has not been previously keyed, DodgeBox decrypts the
payload using the AES IV from its configuration. DodgeBox then proceeds to re-encrypt it
using the MD5 hash of the target machine's MachineGUID as the new AES IV.
In the given sample, DodgeBox sets the first four bytes of the payload to 0x000000ED. This
non-zero value serves as an indicator that the payload has indeed been keyed and should
be decrypted with the new AES IV.

Similarities in disabling CFG

All three samples exhibit remarkably similar logic in their approach to patching CFG. This
similarity extends to the use of identical byte patterns for locating
the LdrpHandleInvalidUserCallTarget function, as well as applying the same patch in this
function.

StealthVector (2021)

17/25

Figure 12: Code from the 2021 variant of StealthVector disabling CFG (screenshot from
TrendMicro).

The code extracted from the 2021 variant of StealthVector showcases the disabling of CFG
with striking similarity to all three samples.

StealthVector (2024)

Figure 13: Code from the 2024 variant of StealthVector, disabling CFG.

The code extracted from the 2024 variant of StealthVector showcases the disabling of CFG
with striking similarity to all three samples.

DodgeBox

18/25

Figure 14: Code from DodgeBox disabling CFG.

The code extracted from DodgeBox showcases the disabling of CFG with striking similarity
to all three samples.

Similarities in the use of DLL Hollowing

All three samples exhibit the capability to load bundled payloads through DLL hollowing.
Notably, the 2024 version of StealthVector shares an identical list of blocklisted DLLs with
DodgeBox.

To Be Continued

DodgeBox is a newly identified malware loader that employs multiple techniques to evade
both static and behavioral detection. Based on a combination of known TTPs, potential
countries targeted, and similarities with StealthVector, we have attributed this activity to the
China-based nation state threat actor APT41 with moderate confidence. In our journey
through Part 1 of this series, we analyzed the technical details surrounding DodgeBox, and
its similarities with StealthVector. In Part 2, we will analyze the MoonWalk backdoor - which
is dropped by DodgeBox.

Indicators Of Compromise (IOCs)

MD5 Filename Description

0d068b6d0523f069d1ada59c12891c4a Music.zip ZIP archive containing
DodgeBox samples.

https://www.zscaler.com/blogs/security-research/moonwalk-deep-dive-updated-arsenal-apt41-part-2

19/25

MD5 Filename Description

b3067f382d70705d4c8f6977a7d7bee4 taskhost.exe Original Sandboxie signed
binary.

d72f202c1d684c9a19f075290a60920f Sbiedll.dll DodgeBox DLL sideloaded
by taskhost.exe.

294cc02db5a122e3a1bc4f07997956da Sbiedll.dat Encrypted payload DLL that
decrypts to the MoonWalk
backdoor.

393065ef9754e3f39b24b2d1051eab61 Atstrust.dll DodgeBox DLL which is
sideloaded by an
undetermined AhnLab
executable.

bcac2cbda36019776d7861f12d9b59c4 Atstrust.dat Encrypted payload DLL that
decrypts the MoonWalk
backdoor.

f062183da590aba5e911d2392bc29181 AppRouted.dll 2024 StealthVector loader.

4141c4b827ff67c180096ff5f2cc1474 AppRouteing.dll Encrypted shellcode and
payload DLL that decrypts
to CobaltStrike.

bc85062de0f70afd44bb072b0b71a8cc N/A 2024 StealthVector loader

72070b165d1f11bd4d009a81bf28a3e5 mscms.dll 2024 StealthVector loader

f0953ed4a679b987a2da955788737602 roboform-
x64.dll

2024 StealthVector loader

MITRE ATT&CK Framework

Tactic ID Technique Description

20/25

Tactic ID Technique Description

Defense
Evasion

T1574.002 Hijack
Execution
Flow: DLL
Side-Loading

DodgeBox samples are designed to be executed
by DLL sideloading.

Defense
Evasion

T1480 Execution
Guardrails

DodgeBox terminates execution if specific
arguments are not provided.

DodgeBox contains capabilities to restrict
execution to machines with specific MAC
addresses, computer names, and user names.

Defense
Evasion

T1480.001 Execution
Guardrails:
Environmental
Keying

DodgeBox keys the encrypted payload to a
machine, using a machine’s GUID.

Defense
Evasion

T1027 Obfuscated
Files or
Information

DodgeBox uses AES-CFB to encrypt strings,
configurations, and bundled payloads.

Defense
Evasion

T1027.007 Obfuscated
Files or
Information:
Dynamic API
Resolution

DodgeBox uses salted FNV1a hashes to
dynamically resolve APIs.

Defense
Evasion

T1620 Reflective
Code Loading

DodgeBox reflectively loads payload DLLs,
utilizing DLL hollowing.

Defense
Evasion

T1106 Native API DodgeBox uses Windows Native APIs
like NtCreateFile, LdrLoadDll,
and NtAllocateVirtualMemory, as opposed to
their Win32 counterparts.

21/25

Tactic ID Technique Description

Defense
Evasion

T1562.001 Impair
Defenses:
Disable or
Modify Tools

DodgeBox utilizes stack spoofing when calling
APIs to evade security software monitoring.

DodgeBox performs a scan within its own
address space to detect any alterations, such as
hooks or debugger breakpoints. If it identifies any
signs of modification, DodgeBox takes action to
restore the original code from disk, effectively
undoing any unauthorized changes made to its
code.

Appendix

An example decrypted configuration of DodgeBox is shown in the figure below.

22/25

The Python implementation of DodgeBox’s salted FNV1a hash is shown below.

23/25

def fnv1a_salted(data, salt, seed_value=0x811c9dc5):

 _data = data + salt

 _hash = seed_value

 prime = 0x01000193

 for byte in _data:

 _hash ^= byte

 _hash *= prime

 _hash &= 0xFFFFFFFF

 return _hash

ntdll in utf-16

ntdll = b"n\x00t\x00d\x00l\x00l\x00"

salt = b"\xba\xb4\x24\xcb"

print(hex(fnv1a_salted(ntdll, salt))) # 0xfe0b07b0

ldrloaddll = b"LdrLoadDll"

print(hex(fnv1a_salted(ldrloaddll, salt))) # 0xca7bb6ac

DodgeBox’s list of blocklisted DLLs is shown below.

advapi32.dll

bcrypt.dll

bcryptprimitives.dll

cfgmgr32.dll

combase.dll

cryptbase.dll

cryptsp.dll

dhcpcsvc.dll

dhcpcsvc6.dll

dnsapi.dll

FWPUCLNT.DLL

gdi32.dll

gdi32full.dll

iertutil.dll

imm32.dll

IPHLPAPI.DLL

kernel.appcore.dll

kernel32.dll

KernelBase.dll

locale.nls

msvcp_win.dll

msvcrt.dll

mswsock.dll

NapiNSP.dll

nlaapi.dll

nsi.dll

ntdll.dll

24/25

ntmarta.dll

oleaut32.dll

OnDemandConnRouteHelper.dll

pnrpnsp.dll

powrprof.dll

apphelp.dll

profapi.dll

rasadhlp.dll

rpcrt4.dll

rsaenh.dll

sechost.dll

SHCore.dll

shell32.dll

shlwapi.dll

sspicli.dll

ucrtbase.dll

urlmon.dll

user32.dll

userenv.dll

webio.dll

win32u.dll

windows.storage.dll

winhttp.dll

wininet.dll

winnlsres.dll

winnsi.dll

winrnr.dll

winsta.dll

ws2_32.dll

wshbth.dll

wtsapi32.dll

Thank you for reading

Was this post useful?

25/25

Yes, very!Not really

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://www.zscaler.com/privacy/company-privacy-policy

