
1/21

June 30, 2024

Deep Analysis of Snake
zw01f.github.io/malware analysis/snake/

20 minute read

Meet Snake keylogger

Snake, also known as the 404 Keylogger and Snake Keylogger, is a . NET-based info-stealing malware that was first
discovered in late 2020, commonly spread via phishing scams, and remains a major threat in 2024.

The name ‘Snake’ comes from strings in its log files and code. Threat actors use the snake’s builder to select features
and create new attacks. This means the capabilities of different versions can vary.

https://zw01f.github.io/malware%20analysis/snake/

2/21

Snake has evolved from basic keystroke logging to include advanced data capture capabilities. Over time, it has
improved its stealth and persistence techniques. Recent campaigns have increasingly targeted critical infrastructure
and used legitimate services to mask malicious activities.

Technical in Points

Snake operates in multiple stages, where each stage decrypts and loads the next payload. This staged
approach involves using.NET assemblies and dynamic analysis to reveal the core payload.

Host Profiling: Snake will gather information about the infected host; it collects the following information: the PC
name, date and time, client IP address, country name, country code, region name, region code, city, time zone,
latitude, and longitude, which are put in the header of the collected stolen information.

Snake makes use of timers to execute specific tasks at regular intervals, such as repeatedly capturing
keystrokes, screenshots, and clipboard contents, as well as scheduling data exfiltration to remote command-and-
control servers to avoid detection.

Snake steals sensitive data from applications installed on infected systems, including email clients and browsers,
capturing credentials and other information. It also targets FTP clients such as FileZilla and communication apps
like Discord.

Configuration Extraction: Snake comes with embedded configuration; in this variant, the configuration is Base64
encoded and encrypted using DES with a hard-coded key. These configurations contain the host, port,
username, and password, which determine the set-up used for its server to exfiltrate the gathered information.

Snake sends stolen data to its server using various methods, including SMTP, FTP, and Telegram, in plain text or
encrypted using the DES algorithm.

Sample Basic Information

The sample is identified as a PE32 executable (GUI) Mono/.Net assembly designed for the x86 architecture. It was
created on July 25, 2082, at 14:24:59 UTC, and according to Virus Total, it first appeared in the wild on June 11, 2024,
at 18:32:45 UTC.

https://learn.microsoft.com/en-us/dotnet/standard/threading/timers

3/21

Figure(1): sample on VirusTotal

Unpacking

Stage 1

Packed .NET samples usually hide a further-stage payload that is unpacked in memory at runtime and loaded as byte
reflection without writing it to disk.

In Snake, when the main entry point is called, it creates a form (Form1). The form’s constructor then loads and creates
a type from the decrypted payload.

The process starts with Activator.CreateInstance, which dynamically creates an instance of a type during program
execution.

The type is determined through DefaultJsonNameTable.Anterne, which then starts loading the second stage
assembly or module using AppDomain.CurrentDomain.Load. This assembly/module is decrypted from an embedded
resource (Resources.Example) using a simple XOR encryption method with the hard-coded key YPrALKXmrr.

https://zw01f.github.io/assets/images/malware-analysis/snake/virus_total.png
https://zw01f.github.io/assets/images/malware-analysis/snake/stage_1_1.png

4/21

Figure(2): Decrypting the second stage

To extract the binary after unpacking, we can do a dynamic analysis session by stepping through the code and
breakpoint at the line where the module is loaded and saving it to disk; however, we could keep working with the
dynamic session until we get our final payload.

Figure(3): Next stage: Example.dll is loaded into memory.

Stage 2

By analyzing the interesting function BMfMTiULrwrQOTDiGxUMZ(), we see that it uses reflection to load an assembly
and invoke a method from it dynamically.

Figure(4): Stage 2 Entry Point

The encrypted data (Resources.AQipUvwTwkLZyiCs) is retrieved using a ResourceManager
(Resources.ResourceManager) and decrypted using AES encryption with the ECB mode and a SHA-256 hashed key
to get the assembly to load.

Figure(5): Decrypting the third stage

Then,the type (class) and method to be invoked are decrypted using the same technique.

https://zw01f.github.io/assets/images/malware-analysis/snake/stage_1_2.png
https://zw01f.github.io/assets/images/malware-analysis/snake/stage_1_3.png
https://zw01f.github.io/assets/images/malware-analysis/snake/stage_2_1.png
https://zw01f.github.io/assets/images/malware-analysis/snake/stage_2_2.png

5/21

The decryption method uses the AES encryption algorithm (RijndaelManaged). It initializes with a predefined salt for
key derivation and uses Rfc2898DeriveBytes to derive the encryption key and IV from a provided password.

Figure(6): Decryption of the class name and method using AES.

After loading the assembly and getting the method, the malware runs it with specific parameters. These parameters
are: a PE file fetched from ‘Resources.Scrivens’, decrypted using the previously mentioned AES decryption method,
as the first parameter, and the file path of the application’s executable as the second parameter.

Figure(7): The third stage, AQipUvwTwkLZyiCs.dll, is loaded into memory.

Stage 3

This DLL is more obfuscated than the previous stages, and it dynamically decrypts using a simple XOR and loads
APIs.

https://learn.microsoft.com/en-us/dotnet/api/system.security.cryptography.rfc2898derivebytes?view=net-8.0
https://zw01f.github.io/assets/images/malware-analysis/snake/stage_2_3.png
https://zw01f.github.io/assets/images/malware-analysis/snake/stage_2_4.png
https://zw01f.github.io/assets/images/malware-analysis/snake/load_api.png

6/21

Figure(8): Decrypting and loading APIs

By looking into the code, this stage uses process hollowing to inject the main Snake payload into a newly created child
process and execute it to evade detection.

Figure(9): Third stage main code

First, the file path passed as the first argument is used to start a new process in suspended mode and hollows out the
memory using ZwUnmapViewOfSection() and then allocates it again using VirtualAllocEx() with RWX permissions.

Next, it writes the final stage executable that is passed as the first argument of the previous stage to the allocated
memory region using two calls to WriteProcessMemory().

Finally, it’s making the necessary modifications; the thread context is updated using SetThreadContext and the
suspended thread is resumed with ResumeThread, allowing the new process to run with the injected malicious code.

By dumping the data injected into the process, we can extract the final Snake payload and start examining the
malware’s exact behavior.

Anti Analysis

Code Obfuscation

Snake’s final payload uses obfuscation tools like Deep Sea Obfuscator and Ben-Mhenni-Protector to make its code
quite challenging to understand. The names of classes and functions are scrambled, making the code difficult to
analyze.

Figure(10): Obfuscated Code

https://zw01f.github.io/assets/images/malware-analysis/snake/inj.png
https://zw01f.github.io/assets/images/malware-analysis/snake/obfuscation.png

7/21

To better understand the code, we can use the tool de4dot to de-obfuscate the payload file. This made the code easier
to read, allowing us to analyze it more effectively.

Date check

Snake checks the current date it runs on to ensure that if a specified date has passed, then the executable will
schedule its deletion to avoid detection or analysis.

Figure(11): Date check and self-deletion

Detect Analysis Environment

Snake uses specific IP addresses to check for monitoring or analysis. If these IPs are detected, the malware alters its
behavior to avoid detection. If the environment is considered clean, the malware sends the collected data to its server.

Figure(12): Check for Analysis Environment

Checking Processes

Snake loops through running processes on the system and compares their executable names against a list of
processes that are generally associated with antivirus software, firewalls, network monitoring tools, and other security-
related applications and malware analysis tools, and terminates any running processes whose names match any of
those listed.

https://zw01f.github.io/assets/images/malware-analysis/snake/check_date.png
https://zw01f.github.io/assets/images/malware-analysis/snake/anti_env.png

8/21

Figure(13): Check running processes

full processes list

Expand to see more
 zlclient
 egui

 bdagent
 wireshark

 olydbg

Main Snake Functionality

Host Profiling

Snake builds a detailed profile of the infected system; it gathers important details from infected machines, starting with
basic information like the machine’s name and current date/time. Also, it retrieves sensitive geolocation data such as
the machine’s public IP address, country name/code, region name/code, city name, time zone, and precise latitude
and longitude coordinates.

Figure(14): Host profiling of the compromised machine

KeyLogging

Snake performs keylogging and employs a timer to periodically send this data to its server.

In programming, timers run a specific piece of code at regular intervals. In .NET, the System.Windows.Forms.Timer
class is often used in Windows Forms applications to trigger events at set intervals.

Timers allow asynchronous execution, enabling actions to happen independently of the main program’s flow.

https://zw01f.github.io/assets/images/malware-analysis/snake/process_check.png
https://zw01f.github.io/assets/images/malware-analysis/snake/get_sys_info.png

9/21

Figure(15): Timer used for sending keylogs

Snake’s keylogger runs continuously in the background by using the SetWindowsHookExA API to set up a Windows
hook _hook). This hook monitors keyboard events and integrates itself into the keyboard hook chain. The hook is
associated with the callback method _hookCallback, which handles keyboard events. Whenever a key is pressed, this
callback function is triggered. It records the keystroke and then forwards the call to the next hook in the chain.

Figure(16): Keylogger function

It also regularly monitors and logs the title of the active window in the foreground using APIs like
GetForegroundWindow() and GetWindowText(). By recording the active window’s title alongside keystrokes, the
keylogger gains valuable context about where and when the keystrokes occur. This is important for improving the
information captured by the keylogger and helping the attacker understand what apps or windows are in use when the
user types.

Figure(17): Capture the title of the current active window.

Screenshot

https://zw01f.github.io/assets/images/malware-analysis/snake/keylog_1.png
https://zw01f.github.io/assets/images/malware-analysis/snake/keylog_2.png
https://zw01f.github.io/assets/images/malware-analysis/snake/keylog_3.png

10/21

Snake periodically captures screenshots of the user’s screen, which may capture sensitive information such as
documents or login credentials, saving them initially as “Screenshot.jpg” in a folder “SnakeKeylogger” within the user’s
Documents directory. The captured images are stored until they are sent to the attacker before they are deleted from
the system. This process is triggered by a timer set to run every 100 milliseconds.

Figure(18): hashdb result

Clipboard

Snake uses a timer to capture and process clipboard contents. It retrieves text from the clipboard using
Class2.Class1_0.Clipboard. GetText() checks if the text is already stored in a global variable before adding it, to
ensure that each unique clipboard entry is logged only once. Periodically, another timer sends the collected clipboard
data to its server. This capability allows Snake to capture sensitive information, such as passwords or credit card
numbers, that users have copied.

Figure(19): Capture and parse clipboard contents.

Steal Email Clients credentials

Snake retrieves Outlook email credentials from Microsoft Outlook profiles stored in the Windows Registry and gets
values associated with various email protocols such as IMAP, POP3, HTTP, and SMTP. If these values are found, it
decrypts the passwords using a helper method and retrieves the associated email addresses and email information.

https://zw01f.github.io/assets/images/malware-analysis/snake/keylog_3.png
https://zw01f.github.io/assets/images/malware-analysis/snake/clipboard.png
https://zw01f.github.io/assets/images/malware-analysis/snake/outlook.png

11/21

Figure(20): Extract and log Outlook's credentials

With a similar method, Snake targets Foxmail to extract stored credentials by retrieving the Foxmail installation path
from the registry and constructing the path to the storage directory where account information is stored. It loops
through the directories within Storage, looking for Account.rec0 files that contain account credentials (e-mail and
password).

Path Description

SOFTWARE\Microsoft\Office\15.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676 Outlook
profile
registry
(Office 15.0)

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows Messaging
Subsystem\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676

Outlook
profile
registry
(Windows
NT)

SOFTWARE\Microsoft\Windows Messaging Subsystem\Profiles\9375CFF0413111d3B88A00104B2A6676 Messaging
profiles
(Windows)

SOFTWARE\Microsoft\Office\16.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676 Outlook
profile
registry
(Office)

SOFTWARE\Classes\Foxmail.url.mailto\Shell\open\command Foxmail
registry

\\Accounts\\Account.rec0 Account
data file
path

The extracted information is then formatted and appended to the stolen info global variable to be sent to the attacker.

Steal Browsers Credentials

Browsers store saved login credentials in encrypted files. Snake has a predefined list of common browsers and checks
for their existence on the system. It can access these storage locations to extract these credentials and send them to
the attacker.

Chromium-based browsers

Chromium-based browsers, such as Chrome, use SQLite databases to store saved login credentials in a file called
‘Login Data’ in the user’s profile directory.

Snake scans the system for browser profiles and accesses the SQLite databases used by these browsers, then
parses the ‘logins’ table within the SQLite database, iterating through each row to retrieve the website URL
(origin_url), the username (username_value), and the encrypted password (password_value). Depending on the
encryption version, it tries to decrypt passwords. Both the username and decrypted password are formatted into a
string and appended to the stolen info global variable to be sent to the attacker.

12/21

Figure(21): Extract and decrypt the Chrome credential.

The full list of browsers :

Expand to see more
 Google Chrome

 Chrome Canary
 BraveSoftware (Brave-Browser)

 360Browser
 Chromium

Gecko-based browsers

Gecko-based browsers use JSON files to store saved login credentials in ‘logins.json’.

Snake scans directories to find profiles of Gecko-based browsers, such as Firefox. Then, it accesses the logins.json
file within each profile directory, which stores encrypted login credentials, including usernames and passwords.

Figure(22): Extract and decrypt the Mozilla browser credential.

https://zw01f.github.io/assets/images/malware-analysis/snake/browsers_1.png
https://zw01f.github.io/assets/images/malware-analysis/snake/browser_2.png

13/21

It decrypts these credentials using cryptographic libraries (mozglue.dll and nss3.dll), which are dynamically loaded
from the installation directories of Mozilla Firefox and related browsers. Once loaded, these libraries enable Snake to
initialize the NSS (Network Security Services) library, creating the necessary cryptographic contexts that decrypt and
extract usernames and passwords.

Figure(23): Snake tries to load moazglue.dll and nss3.dll by checking installed paths.

The decrypted information is formatted into strings and appended to the stolen info global variable to be sent to the
attacker.

The full list of Gecko-based browsers is :

Mozilla Firefox
SeaMonkey
IceDragon
Cyberfox
Pale Moon
Waterfox
icecat

Steal FTP clients credentials

The FileZilla software program is a free-to-use (open source) FTP utility, allowing a user to transfer files from a local
computer to a remote computer.

FileZilla is targeted by Snake to get the saved configurations of previously accessed servers.By parsing the
recentservers.xml file located in the user’s AppData directory, it tries to retrieve stored server details such as
hostnames, usernames, encrypted passwords, and ports. It uses XML parsing techniques to extract these elements
and decrypt the Base64-encoded password.

https://zw01f.github.io/assets/images/malware-analysis/snake/browser_3.png

14/21

Figure(24): Extract and log FileZilla info.

Obtain discord tokens

Discord uses a token-based authentication system. Each user session is identified by a token that is stored locally. By
accessing the leveldb files, Snake can extract these tokens and use them to mimic the user, gaining access to their
account without needing their password. This can lead to unauthorized access to personal messages, servers, and
other sensitive information.

The code checks if the leveldb directory exists. If found, it iterates through its files to locate .ldb files containing the
substring “oken” (part of “token”). It then extracts the token by splitting the text around the “oken” substring and
reassembling the parts to separate the token. Finally, it logs the result to be sent to the attacker.

Figure(25): Steal discrod login tokens

Stealing Wi-Fi Credentials:

Snake extracts Wi-Fi profile information and passwords using netsh commands. It starts by fetching a list of Wi-Fi
profiles on the system.

https://zw01f.github.io/assets/images/malware-analysis/snake/steal_ftp.png
https://zw01f.github.io/assets/images/malware-analysis/snake/discord.png

15/21

Figure(26): Retrieve Wi-Fi profiles on the system.

Then it parses each profile to retrieve its name and clear-text password. This information is logged and sent to the
attacker.

Figure(27): Extracting and Formatting Wi-Fi Profile Passwords.

By gathering Wi-Fi credentials, Snake can secretly connect to networks, monitor traffic for sensitive data, and get
access to activities like botnet operations or data theft.

Snake’s data exfiltration Functionality

Configuration Extraction

Snake contains an embedded DES-encrypted configuration within its binary.

https://zw01f.github.io/assets/images/malware-analysis/snake/wifi_1.png
https://zw01f.github.io/assets/images/malware-analysis/snake/wifi_2.png

16/21

Figure(28): Encrypted configuration

Snake malware uses embedded DES in ECB mode encryption with a hard-coded key. It first decodes the data using
Base64 encoding. For decryption, it hashes the key using MD5 and uses only the first 8 bytes of the hashed key as
the final key to decrypt the data.

Figure(29): Encrypted Algortihms used in configuration

We can use CyberChef to simulate the decryption process statically. First, the key will be MD5 hashed =
{6fc98cd68a1aab8b24c517549e658115}, and the first 8 bytes are used to decrypt the data.

https://zw01f.github.io/assets/images/malware-analysis/snake/config_1.png
https://zw01f.github.io/assets/images/malware-analysis/snake/config_2.png

17/21

Figure(30): The actual decrypted configuration the malware uses.

These configurations determine the setup used by the sample for its server.

the host set to ‘valleycountysar[.]org’ .
port:’26’.
username : ‘rightlut@valleycountysar[.]org’ .
password ‘fY,FLoadtsiF’ .

Data Exfiltration

Malware needs to connect to servers to exfiltrate stolen data.

Snake can transmit gathered information in plaintext or DES-encrypted format to its server through several
communication methods, including SMTP, FTP, or even sending it to a specific Telegram bot.

SMTP

Snake uses SMTP (Simple Mail Transfer Protocol) in two different approaches for data exfiltration.

The first approach creates an email (a mail message) with the following configurations: sender, recipient, subject
(including PC name and a tracking identifier), and a body containing stolen information. This email is sent using an
SmtpClient configuration: host, port, and authentication credentials (username and password).

https://zw01f.github.io/assets/images/malware-analysis/snake/dec_config.png

18/21

Figure(31): Using SMTP for data exfiltration, the body mail approach

The second approach is to create an email (MailMessage2) with similar sender and recipient details. But instead of
adding data directly, it attaches files containing stolen information. This method also uses an SmtpClient2 configured
similarly to the first way.

Figure(32): Using SMTP for data exfiltration (attachments)

FTP

The FTP request is configured with credentials (user name and password) to authenticate access to the FTP server
and a dynamic method to create an FtpWebRequest. It builds a filename by combining the machine name with a
random string and adding a.txt extension that helps uniquely identify the data.

19/21

Figure(33): Using FTP for data exfiltration

Telegram

Snake uses Telegram’s bot API as a C2 channel by creating and communicating with a bot hosted on Telegram
servers. It starts by creating a message containing stolen information, which is URL-encoded, and sends via HTTPS
POST requests to a remote endpoint (Class6.string_1 + "/_send_.php?L") where the encoded message is
directed for transmission.

Figure(34): Using telegram bot for data exfiltration

Persistence

Snake adds a startup entry to the Windows Registry, ensuring that the malware runs automatically on the system boot.

20/21

Figure(35): Persistence function

Conclusion

Analyzing Snake revealed its true purpose as a sophisticated keylogger and data stealer that targets sensitive data
from various applications like browers, email clients, FTP clients, and messaging apps, demonstrating its broad data
theft capabilities.

YARA Rule

rule detect_unpacked_snake
{
 meta:
 description = "A rule for detecting unpacked snake samples"
 author = "Mohamed Ezzat (@ZW01f)"
 hash1 = "e81ff60c955d9f232d4812a68ef4335f204be923d6aa75c5d309e8fe76eed1ed"
 hash2 = "fc20db86eea0db054491e5739e93153c5548ed933e0df6a139582e0b8569e737"
 hash3 = "461bcd6658a32970b9bd12d978229b8d3c8c1f4bdf00688db287b2b7ce6c880e"
 strings:

 $mz = {4D 5A} //PE File
 $s0 = "YFGGCVyufgtwfyuTGFWTVFAUYVF" ascii wide
 $s1 = "Snake Keylogger Stub New" ascii wide
 $s2 = "\\SnakeKeylogger" wide
 $s3 = "Open Network" ascii wide
 $s4 = "- Clipboard Logs ID -" ascii wide
 $s5 = "| Snake Tracker" wide
 $s6 = "/C choice /C Y /N /D Y /T 3 & Del \"" ascii wide
 $s7 = "wlan show profile" ascii wide
 $p1 = {1D 8D ?? 00 00 01 25 16 72 ?? ?? 00 70 A2 25 17 09 A2 25 18 72 ?? ?? 00 70 A2 25 19 11 04 A2 25
1A 72 ?? ?? 00 70 A2 25 1B 11 05 A2 25 1C 72 ?? ?? 00 70 A2 28 ?? 00 00 0A 13 0D} // pattern used in sending
info
 condition:
 ($mz at 0) and (all of ($p*)) and (5 of ($s*)) and filesize < 500KB
}

IoCs

Stage Hash

Stage 1 faebc09f47203bbe599ac368f12622f38255e957d1435e6763c80bf2ebd988bf

Stage 2 8a520450581de3e9987f53c54723fdf9d4af32571769c49af7c18d985ef52fb0

Stage 3 45c7b64a55dca23ee1239649e03a7c361813dbcfc2a0817b0d8e94c907d6ed4b

Main payload 68df92cd19e5587a799a54bc21ddd95a27223faf972c6a914c818c99d3332a84

21/21

Stage Hash

URL hxxp://103[.]130[.]147[.]85

URL valleycountysar[.]org

Email / UserName rightlut@valleycountysar[.]org

Password fY,FLoadtsiF

References

