
1/8

RevEng Binary Analysis Team June 24, 2024

Latrodectus Affiliate Resumes Operations Using Brute Ratel C4
Post Operation Endgame

blog.reveng.ai/latrodectus-distribution-via-brc4/

Jun 24, 2024 7 min read malware

Executive Summary

RevEng.AI observed a Latrodectus sample (a.k.a. Unidentified 111, Lotus, BLACKWIDOW, IceNova)
delivery chain using a malicious JavaScript (JS) stager uploaded to a third-party public malware scanning
service on 23 June 2024. Since early January until the present, RevEng.AI has observed versions 1.1 to
1.3 in operational use by the adversary (although earlier versions do exist, as documented by industry
reporting [1]).

Latrodectus is a loader typically delivered by phishing emails containing a shortened link to a likely
compromised captcha-gated WordPress website, masquerading as legitimate services such as Cloudflare.
The use of a captcha-gated delivery website is likely to circumvent automated payload retrieval. The user
is prompted to download and execute an MSI (Microsoft Windows Installer), and in some cases, the
delivery chain also contains a PDF to socially engineer the user. The malware borrows code heavily from
the open-source BlackLotus malware [2], which contains a ready-to-use bot and command-and-control
(C2) component.

Latrodectus was one of the many malware families targeted by Operation Endgame, an international law
enforcement effort against malware loader infrastructure [5]. Since the operation, Latrodectus has quickly
rebuilt its infrastructure and returned to its standard mode of operation.

This blog post covers the most recent distribution chain, noteably the use of Brute Ratel, and the anti-
analysis methods employed by the malware.

Latrodectus Delivery Chain

1. JavaScript - Download & Execute MSI

https://blog.reveng.ai/latrodectus-distribution-via-brc4/
https://blog.reveng.ai/tag/malware/
https://portal.reveng.ai/analyses/49225-4?ref=blog.reveng.ai

2/8

The JavaScript-based stager (SHA-256:
3ac8decd825d1ed7a86ed86d7789b44c0f0c467d4f482ab0863df1b7b1e3e8cc), named Form_Ver-11-58-
52.js, for this distribution campaign is configured with the msiPath of
http[:]//85.208.108[.]63/BST.msi. The JS file is consistent with previous campaigns used to
download and execute Latrodectus MSIs. The Installer.InstallProduct API is used [3], which natively
handles the download and execution of local and remote MSIs (HTTP, UNC path, etc.).

2. MSI Package

The MSI creates a child process to decompresses the contents of a bundled CAB archive (SHA-256:
c89d15789fd9e0b23e62bbf038d2ddbcea5618573517f3382790b4b0434933df) named disk1.cab to
%APPDATA%. The CAB file contains the malicious DLL file aclui.dll (SHA-256:
c5dc5fd676ab5b877bc86f88485c29d9f74933f8e98a33bddc29f0f3acc5a5b9), which is a packed Brute
Ratel C4 (BRC4) badger implant. The DLL export edit is then executed using rundll32.exe by the MSI
installer, i.e: rundll32.exe C:\Users\Ivan\AppData\aclui.dll,edit.

Although Brute Ratel is a legitimate red-teaming tool, it has been previously used by threat actors [4].

3. BRC4 Badger

After BRC4 unpacks itself (SHA-256:
0d3fd08d237f2f22574edf6baf572fa3b15281170f4d14f98433ddeda9f1c5b2) and self-injects, a long sleep
is likely used to avoid immediate execution by automated sandbox solutions. The C2 configuration for the
BRC4 badger can be observed below in Table 1.

Key Value Channel

C2 barsen[.]monster:7444
 kurvabbr[.]pw:7444

HTTPS

Table 1 - Badger Configuration

The configuration hosts, at the time of writing, resolve to 94.232.249[.]86.

4. Latrodectus 1.3 via BRC4

The BRC4 badger is configured to execute a Latrodectus payload upon a victim connecting. The
Latrodectus core bot component
(dbd85d5dd501bb7fad3990f0801d32da438a5bc60bd7cf6999d5bc535291146c) is injected into the common
target explorer.exe. The full configuration of this Latrodectus sample is avaliable in the Latrodectus
Configuration section.

The stealer module is also downloaded and injected into the current process, explorer.exe, (SHA-256:
44ccc3fbd3e15e8bdb063616d9baa37b1f9ab9121759fd467c943b7611860f72), targeting Microsoft Edge,
Microsoft Internet Explorer, Microsoft Outlook, Firefox, Google Chrome, 360 Browser, Yandex Browser,
and more.

RevEng.AI AI binary code similarity engine was able to quickly recover SQLite debug symbols within the
stealer module and aid in the reverse-engineering process:

https://portal.reveng.ai/analyses/49225-4?ref=blog.reveng.ai

3/8

Figure 1 - SQLite Symbol Recovery

Anti-Analysis Techniques

Latrodectus leverages several anti-analysis methods to hinder reverse-engineering efforts and detection
by security solutions.

String Obfuscation

The malware makes heavy use of string obfuscation to hide artifacts from analysts. Latrodectus 1.1
utilized a pseudorandom number generator (PRNG), using a hardcoded seed, to derive the XOR key for
deobfuscation. Obfuscated strings within Latrodectus 1.2 and 1.3 are stored using a relatively simple
structure and deobfuscated when required. The strings are stored using the following binary format in
Figure 2.

struct latrodectus_string {
_DWORD dwKey;
_WORD wSeed;
_UCHAR uBuf[];

};

Figure 2 - Obfuscated string binary format

The obfuscation algorithm is simple, and makes use of XOR and ADD operations. A reimplemented
version in Python of the deobfuscation algorithm can be observed below in Figure 3. It is noteworthy that
the actual size of the obfuscated string is derived from the XOR operation of the wSeed and dwKey fields.

4/8

def latro_deobf(buffer: bytes) -> str:
 string = cparser._latrodectus_string(buffer)

 size = (string.wSeed ^ string.dwKey) & 0xFFF
 out_buf = bytearray(size)

 for i in range(size):
 string.dwKey += 1
 out_buf[i] = (string.uBuf[i] + 10) & 0xFF
 out_buf[i] = (string.dwKey ^ string.uBuf[i]) & 0xFF

 return out_buf.decode("utf-8")

Figure 3 - String deobfuscation routine reimplementation

Dynamic API Resolution via Windows API Hashing

Latrodectus uses CRC32 to resolve Windows APIs at runtime by walking the InMemoryOrderModuleList
found within the PEB to first retrieve the addresses of loaded ntdll.dll (0x26797E77) and kernel32.dll
(0x2ECA438C) modules.

The structure and control-flow used by Latrodectus is reminiscent of the BlackLotus' API resolution routine,
which is avaliable in open-source.

struct latrodectus_api_entry
{

_DWORD dwFuncHash;
_HMODULE* hModule;
_LPVOID* pFunc;

};

Figure 4 - API Table Entry

The API table is built sequentially during the initialisation phase of the malware. The building of the API
table in C-pseudocode can be seen below in Figure 5.

api_tbl[0].FunctionHash = 0xE0762FEB; /* NtAllocateVirtualMemory */
api_tbl[0].Module = &pNtdll;
api_tbl[0].Function = &NtAllocateVirtualMemory;
api_tbl[1].FunctionHash = 0xB46508B5; /* RtlGetVersion */
api_tbl[1].Module = &pNtdll;
api_tbl[1].Function = &RtlGetVersion;

Figure 5 - Building of Windows API function table based on CRC32 hash

Anti-Debug

Latrodectus makes use of the well-known and documented method of checking if the IsDebugged flag is
set within the processes' PEB [6]. This is a common and effective method regularly employed to evade
debuggers. A reimplementation in C-pseudocode can be observed in Figure 6. This is also likely borrowed
code from the BlackLotus open-source project. [2]

int64 latro::is_debugged()
{
 return util::current_peb()->IsDebugged;
}

https://github.com/ldpreload/BlackLotus/blob/main/src/Shared/api.c?ref=blog.reveng.ai#L84

5/8

Figure 6 - PEB based anti-debugging measure employed by Latrodectus

Host Environment Process Count Checks

The host environment checks within Latrodectus includes checking the number of processes which are
running, with different thresholds per Windows NT version. It is likely these checks are used to evade
sandbox, emulation-based approaches, or other analysis environments in which the number of processes
would be irregular.

If the number of processes and version constraint matches, as defined in Table 2, the malware will simply
exit. This anti-analysis technique is not unique to Latrodectus, and has been used by the likes of the
EvilBunny implant.

Windows Version Constraint Process Number Trigger

>= Windows 10 Less than 75

=> Windows Server 2003 R2 && <= Windows Server 2012/R2 Less than 50

Table 2 - Process check constraints per version

NTFS Visibility Obscured via Alternate Data Stream (ADS)

Latrodectus makes use of a trick to delete itself while the process is still running, making use of an
alternative data stream (ADS) and a specific chain of API calls. The following sequence of events occurs
to achieve this:

1. The path to the current running process is gathered using GetModuleFileName. A HANDLE to the file is
then acquired via CreateFile with DELETE access.

2. Call SetFileInformationByHandle with the FileRenameInfo class FileName member set to
:wtfbbq.

3. Again, call SetFileInformationByHandle, however with the FileDispositionInfo class member
DeleteFile set to TRUE

4. Close the HANDLE to trigger the DeleteFile
5. The HANDLE is duplicated, then renamed to an ADS - in this instance, :wtfbbq.

This code has likely been borrowed from an open-source project [7] and slightly modified to use
Latrodectus' API resolution and string obfuscation routine. The ADS name (:wtfbbq) remains unchanged.
This is also used by RaspberryRobin, HelloXD Ransomware, DarkPower Ransomware and implemented
in the Offensive Nim project.

Conclusion

Latrodectus is a now-prominent malware loader that leverages a variety of anti-analysis techniques to
avoid detection and thwart reverse engineering efforts. Its reliance on open-source projects like
BlackLotus, combined with the ability to quickly adapt and incorporate such code, demonstrates the
adversary's commitment to leveraging publicly available resources to enhance their malware capabilities.

The adversary behind Latrodectus has operational resilience in the face of takedowns, demonstrating the
adversary's commitment to maintaining a robust malware delivery infrastructure.

6/8

RevEng.AI Platform

RevEng.AI cuts down on the reverse-engineering time in the analysis stage by using our state of the art
binary AI model. Using our AI Binary Analysis platform, analysts were quickly able to identify the
differences between each Latrodectus sample based at a function-level and binary-level to provide an
overview of differences implemented by the malware developer version-to-version. Alongside this, the
overlaps with BlackLotus.

Figure 7 - RevEng.AI-identified Latrodectus and BlackLotus similarity analysis

RevEng.AI allows analysts to quickly and easily cluster malware samples based on the code similarity
observed between binaries.

IOCs (Indicators of Compromise)

Host IOCs

SHA-256 Filename Description

3ac8decd825d1ed7a86ed86d7789b44c0f0c467d4f482ab0863df1b7b1e3e8cc Form_Ver-
11-58-52.js

Malicious
JavaScript
Downloader

4586250dbf8cbe579662d3492dd33fe0b3493323d4a060a0d391f20ecb28abf1 vpn.msi MSI file

c89d15789fd9e0b23e62bbf038d2ddbcea5618573517f3382790b4b0434933df disk1.cab CAB archive
containing
packed
BRC4
Badger

c5dc5fd676ab5b877bc86f88485c29d9f74933f8e98a33bddc29f0f3acc5a5b9 aclui.dll Packed
Brute Ratel
Badger

0d3fd08d237f2f22574edf6baf572fa3b15281170f4d14f98433ddeda9f1c5b2 N/A, in-
memory

Unpacked
Brute Ratel
Badger
Stager

dbd85d5dd501bb7fad3990f0801d32da438a5bc60bd7cf6999d5bc535291146c N/A,
injected into
explorer.exe

Latrodectus
1.3

https://portal.reveng.ai/analyses/49225-4?ref=blog.reveng.ai

7/8

SHA-256 Filename Description

44ccc3fbd3e15e8bdb063616d9baa37b1f9ab9121759fd467c943b7611860f72 N/A,
injected into
explorer.exe

Latrodectus
Stealer
Module

Table 3 - Host IOCs

Network IOCs

Host Description

https[:]//lettecoft[.]com/live/ Latrodectus C2 Endpoint

https[:]//ultroawest[.]com/live/ Latrodectus C2 Endpoint

https[:]//kalopvard[.]com/live/ Latrodectus C2 Endpoint

https[:]//filomeranta[.]com/live/ Latrodectus C2 Endpoint

ultroawest[.]com Latrodectus C2 Host

lettecoft[.]com Latrodectus C2 Host

kalopvard[.]com Latrodectus C2 Host

filomeranta[.]com Latrodectus C2 Host

185.93.221[.]108 Latrodectus C2 IP

81.99.162[.]48 Latrodectus C2 IP

barsen[.]monster:7444 Brute Ratel C2

kurvabbr[.]pw:7444 Brute Ratel C2

94.232.249[.]86 Brute Ratel C2 IP

http[:]//85[.]208.108[.]63/BST.msi MSI used by JavaScript Dropper

Table 4 - Network IOCs

Latrodectus Configuration

Key Value

C2 https[:]//ultroawest[.]com/live/
 https[:]//lettecoft[.]com/live/

 https[:]//kalopvard[.]com/live/

RC4 Key qNfSHTVKEU7mknHSFrQCwp0mmQfXUNPIcA66gezNz49qQOVX0P

Group Mercury (0x88e6542e)

Version 1.3

8/8

Table 5 - Latrodectus Configuration

Footnotes

[1] - https://medium.com/walmartglobaltech/icedid-gets-loaded-af073b7b6d39,
https://www.proofpoint.com/uk/blog/threat-insight/latrodectus-spider-bytes-ice

 [2] - https://github.com/ldpreload/BlackLotus
 https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/

 [3] - https://learn.microsoft.com/en-us/windows/win32/msi/installer-installproduct
 [4] - https://news.sophos.com/en-us/2023/05/18/the-phantom-menace-brute-ratel-remains-rare-and-

targeted/
 [5] - https://www.operation-endgame.com/

 [6] - https://github.com/ldpreload/BlackLotus/blob/main/src/Bot/antidebug.c
 [7] - https://github.com/LloydLabs/delete-self-poc/tags

https://medium.com/walmartglobaltech/icedid-gets-loaded-af073b7b6d39?ref=blog.reveng.ai
https://www.proofpoint.com/uk/blog/threat-insight/latrodectus-spider-bytes-ice?ref=blog.reveng.ai
https://github.com/ldpreload/BlackLotus?ref=blog.reveng.ai
https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/?ref=blog.reveng.ai
https://learn.microsoft.com/en-us/windows/win32/msi/installer-installproduct?ref=blog.reveng.ai
https://news.sophos.com/en-us/2023/05/18/the-phantom-menace-brute-ratel-remains-rare-and-targeted/?ref=blog.reveng.ai
https://www.operation-endgame.com/?ref=blog.reveng.ai
https://github.com/ldpreload/BlackLotus/blob/main/src/Bot/antidebug.c?ref=blog.reveng.ai
https://github.com/LloydLabs/delete-self-poc/tags?ref=blog.reveng.ai

