
1/12

GrimResource - Microsoft Management Console for initial access
and evasion

elastic.co/security-labs/grimresource

https://www.elastic.co/security-labs/grimresource
https://www.elastic.co/security-labs
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/grimresource

2/12

Subscribe Start Free Trial Contact Sales

https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact
https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/grimresource

3/12

https://search.elastic.co/?location%5B0%5D=Security%20Labs&referrer=https://www.elastic.co/security-labs/grimresource

4/12

Overview

After Microsoft disabled office macros by default for internet-sourced documents, other infection vectors like
JavaScript, MSI files, LNK objects, and ISOs have surged in popularity. However, these other techniques are
scrutinized by defenders and have a high likelihood of detection. Mature attackers seek to leverage new and
undisclosed infection vectors to gain access while evading defenses. A recent example involved DPRK actors using
a new command execution technique in MSC files.

Elastic researchers have uncovered a new infection technique also leveraging MSC files, which we refer to as
GrimResource. It allows attackers to gain full code execution in the context of mmc.exe after a user clicks on a
specially crafted MSC file. A sample leveraging GrimResource was first uploaded to VirusTotal on June 6th.

Key takeaways

Elastic Security researchers uncovered a novel, in-the-wild code execution technique leveraging specially
crafted MSC files referred to as GrimResource
GrimResource allows attackers to execute arbitrary code in Microsoft Management Console (mmc.exe) with
minimal security warnings, ideal for gaining initial access and evading defenses
Elastic is providing analysis of the technique and detection guidance so the community can protect themselves

Analysis

The key to the GrimResource technique is using an old XSS flaw present in the apds.dll library. By adding a
reference to the vulnerable APDS resource in the appropriate StringTable section of a crafted MSC file, attackers can
execute arbitrary javascript in the context of mmc.exe. Attackers can combine this technique with DotNetToJScript to
gain arbitrary code execution.

https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked
https://www.genians.co.kr/blog/threat_intelligence/facebook
https://www.virustotal.com/gui/file/14bcb7196143fd2b800385e9b32cfacd837007b0face71a73b546b53310258bb
https://gist.github.com/joe-desimone/2b0bbee382c9bdfcac53f2349a379fa4
https://medium.com/@knownsec404team/from-http-domain-to-res-domain-xss-by-using-ie-adobes-pdf-activex-plugin-ba4f082c8199
https://github.com/tyranid/DotNetToJScript/tree/master

5/12

Reference to apds.dll redirect in StringTable

At the time of writing, the sample identified in the wild had 0 static detections in VirusTotal.

VirusTotal results

The sample begins with a transformNode obfuscation technique, which was observed in recent but unrelated macro
samples. This aids in evading ActiveX security warnings.

transformNode evasion and obfuscation technique

https://www.virustotal.com/gui/file/14bcb7196143fd2b800385e9b32cfacd837007b0face71a73b546b53310258bb/details
https://twitter.com/decalage2/status/1773114380013461799

6/12

This leads to an obfuscated embedded VBScript, as reconstructed below:

Obfuscated VBScript

The VBScript sets the target payload in a series of environment variables and then leverages the DotNetToJs
technique to execute an embedded .NET loader. We named this component PASTALOADER and may release
additional analysis on this specific tool in the future.

Setting the target payload environment variables

DotNetToJs loading technique

PASTALOADER retrieves the payload from environment variables set by the VBScript in the previous step:

https://github.com/tyranid/DotNetToJScript/blob/master/DotNetToJScript/Resources/vbs_template.txt

7/12

PASTALOADER loader retrieving the payload

Finally, PASTALOADER spawns a new instance of dllhost.exe and injects the payload into it. This is done in a
deliberately stealthy manner using the DirtyCLR technique, function unhooking, and indirect syscalls. In this sample,
the final payload is Cobalt Strike.

Payload injected into dllhost.exe

Detections

In this section, we will examine current behavior detections for this sample and present new, more precise ones
aimed at the technique primitives.

Suspicious Execution via Microsoft Common Console

This detection was established prior to our discovery of this new execution technique. It was originally designed to
identify a different method (which requires the user to click on the Taskpad after opening the MSC file) that exploits
the same MSC file type to execute commands through the Console Taskpads command line attribute:

Command task MSC sample

https://github.com/ipSlav/DirtyCLR/tree/7b1280fee780413d43adbad9f4c2a9ce7ed9f29e
https://www.genians.co.kr/blog/threat_intelligence/facebook

8/12

process where event.action == "start" and

process.parent.executable : "?:\\Windows\\System32\\mmc.exe" and process.parent.args : "*.msc" and

not process.parent.args : ("?:\\Windows\\System32*.msc", "?:\\Windows\\SysWOW64*.msc", "?:\\Program
files*.msc", "?:\\Program Files (x86)*.msc") and

not process.executable :

 ("?:\\Windows\\System32\\mmc.exe",

 "?:\\Windows\\System32\\wermgr.exe",

 "?:\\Windows\\System32\\WerFault.exe",

 "?:\\Windows\\SysWOW64\\mmc.exe",

 "?:\\Program Files*.exe",

 "?:\\Program Files (x86)*.exe",

 "?:\\Windows\\System32\\spool\\drivers\\x64\\3*.EXE",

 "?:\\Program Files (x86)\\Microsoft\\Edge\\Application\\msedge.exe")

It triggers here because this sample opted to spawn and inject a sacrificial instance of dllhost.exe:

GrimResource detected

.NET COM object created in non-standard Windows Script Interpreter

The sample is using the DotNetToJScript technique, which triggers another detection looking for RWX memory
allocation from .NET on behalf of a Windows Script Host (WSH) script engine (Jscript or Vbscript):

The following EQL rule will detect execution via the .NET loader:

api where

 not process.name : ("cscript.exe", "wscript.exe") and

 process.code_signature.trusted == true and

 process.code_signature.subject_name : "Microsoft*" and

 process.Ext.api.name == "VirtualAlloc" and

 process.Ext.api.parameters.allocation_type == "RESERVE" and

 process.Ext.api.parameters.protection == "RWX" and

 process.thread.Ext.call_stack_summary : (

 /* .NET is allocating executable memory on behalf of a WSH script engine

 * Note - this covers both .NET 2 and .NET 4 framework variants */

 "*|mscoree.dll|combase.dll|jscript.dll|*",

 "*|mscoree.dll|combase.dll|vbscript.dll|*",

 "*|mscoree.dll|combase.dll|jscript9.dll|*",

 "*|mscoree.dll|combase.dll|chakra.dll|*"

)

The following alert shows mmc.exe allocating RWX memory and the process.thread.Ext.call_stack_summary
captures the origin of the allocation from vbscript.dll to clr.dll :

https://github.com/tyranid/DotNetToJScript

9/12

mmc.exe allocating RWX memory

Script Execution via MMC Console File

The two previous detections were triggered by specific implementation choices to weaponize the GrimResource
method (DotNetToJS and spawning a child process). These detections can be bypassed by using more OPSEC-safe
alternatives.

Other behaviors that might initially seem suspicious — such as mmc.exe loading jscript.dll, vbscript.dll, and
msxml3.dll — can be clarified compared to benign data. We can see that, except for vbscript.dll, these WSH
engines are typically loaded by mmc.exe:

Normal library load behaviors by mmc.exe

The core aspect of this method involves using apds.dll to execute Jscript via XSS. This behavior is evident in the
mmc.exe Procmon output as a CreateFile operation (apds.dll is not loaded as a library):

apds.dll being invoked in the MSC StringTable

https://strontic.github.io/xcyclopedia/library/apds.dll-DF461ADCCD541185313F9439313D1EE1.html

10/12

Example of the successful execution of GrimResource

We added the following detection using Elastic Defend file open events where the target file is apds.dll and the
process.name is mmc.exe:

The following EQL rule will detect the execution of a script from the MMC console:

sequence by process.entity_id with maxspan=1m

[process where event.action == "start" and

 process.executable : "?:\\Windows\\System32\\mmc.exe" and process.args : "*.msc"]

[file where event.action == "open" and file.path : "?:\\Windows\\System32\\apds.dll"]

Timeline showing the script execution with the MMC console

Windows Script Execution via MMC Console File

Another detection and forensic artifact is the creation of a temporary HTML file in the INetCache folder, named
redirect[*] as a result of the APDS XSS redirection:

https://owasp.org/www-community/attacks/xss/

11/12

Contents of redirect.html

The following EQL correlation can be used to detect this behavior while also capturing the msc file path:

sequence by process.entity_id with maxspan=1m

[process where event.action == "start" and

 process.executable : "?:\\Windows\\System32\\mmc.exe" and process.args : "*.msc"]

[file where event.action in ("creation", "overwrite") and

 process.executable : "?:\\Windows\\System32\\mmc.exe" and file.name : "redirect[?]" and

 file.path : "?:\\Users*\\AppData\\Local\\Microsoft\\Windows\\INetCache\\IE*\\redirect[?]"]

Timeline detecting redirect.html

12/12

Alongside the provided behavior rules, the following YARA rule can be used to detect similar files:

rule Windows_GrimResource_MMC {

 meta:

 author = "Elastic Security"

 reference = "https://www.elastic.co/security-labs/GrimResource"

 reference_sample = "14bcb7196143fd2b800385e9b32cfacd837007b0face71a73b546b53310258bb"

 arch_context = "x86"

 scan_context = "file, memory"

 license = "Elastic License v2"

 os = "windows"

 strings:

 $xml = "<?xml"

 $a = "MMC_ConsoleFile"

 $b1 = "apds.dll"

 $b2 = "res://"

 $b3 = "javascript:eval("

 $b4 = ".loadXML("

 condition:

 $xml at 0 and $a and 2 of ($b*)

}

Conclusion

Attackers have developed a new technique to execute arbitrary code in Microsoft Management Console using
crafted MSC files. Elastic’s existing out of the box coverage shows our defense-in-depth approach is effective even
against novel threats like this. Defenders should leverage our detection guidance to protect themselves and their
customers from this technique before it proliferates into commodity threat groups.

Observables

All observables are also available for download in both ECS and STIX formats.

The following observables were discussed in this research.

Observable Type Name Reference

14bcb7196143fd2b800385e9b32cfacd837007b0face71a73b546b53310258bb SHA-
256

sccm-
updater.msc

Abused MSC
file

4cb575bc114d39f8f1e66d6e7c453987639289a28cd83a7d802744cd99087fd7 SHA-
256

N/A PASTALOADER

c1bba723f79282dceed4b8c40123c72a5dfcf4e3ff7dd48db8cb6c8772b60b88 SHA-
256

N/A Cobalt Strike
payload

https://github.com/elastic/labs-releases/tree/main/indicators/grimresource

