Malvertising Campaign Leads to Execution of Oyster Backdoor

prapid7.com/blog/post/2024/06/17/malvertising-campaign-leads-to-execution-of-oyster-backdoor/ Rapid7

June 17, 2024

Last updated at Fri, 21 Jun 2024 19:01:00 GMT

The following analysts contributed to this blog: Thomas Elkins, Daniel Thiede, Josh Lockwood, Tyler McGraw, and Sasha Kovalev.

Executive Summary

Rapid7 has observed a recent malvertising campaign that lures users into downloading malicious installers for popular software such as Google Chrome and Microsoft Teams. The installers were being used to drop a backdoor identified as Oyster, aka Broomstick. Following execution of the backdoor, we have observed enumeration commands indicative of hands-on-keyboard activity as well as the deployment of additional payloads.

In this blog post, we will examine the delivery methods of the Oyster backdoor, provide an in-depth analysis of its components, and offer a Python script to help extract its obfuscated configuration.

Overview

Initial Access

In three separate incidents, Rapid7 observed users downloading supposed Microsoft Teams installers from typo-squatted websites. Users were directed to these websites after using search engines such as Google and Bing for Microsoft Teams software downloads. Rapid7 observed that the websites were masquerading as Microsoft Teams websites, enticing users into believing they were downloading legitimate software when, in reality, they were downloading the threat actor's malicious software.

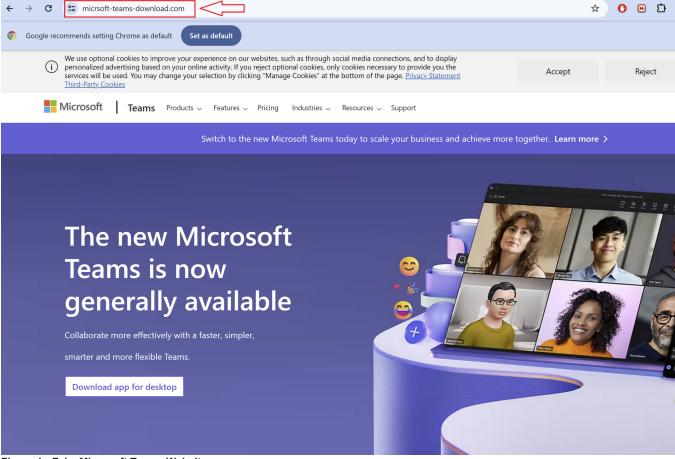


Figure 1 - Fake Microsoft Teams Website

In one case, a user was observed navigating to the URL hxxp://micrsoft-teams-download[.]com/, which led to the download of the binary MSTeamsSetup_c_1_.exe showed that the binary was assigned by an Authenticode certificate issued to "Shanxi Yanghua HOME Furnishings Ltd".

File Hash		×
Actions Info	oLevel VirusTotal External	
	MSTeamsSetup_c_lexe 5936192 3783C137EFC90636F367351069121F41 574C70E84ECDAD901385A1EBF38F2EE74C446034E97C33949B52F3A2FD Tue, May 28 2024, 23:19:01 - 64 Bit EXE 1.7.00.3315	DCD822
Signature	Shanxi Yanghua HOME Furnishings Ltd SSL.com EV Code Signing Intermediate CA RSA R3	Copy All

Figure 2 - MSTeamsSetup_c_1_.exe File Information

Searching VirusTotal for other files signed by "Shanxi Yanghua HOME Furnishings Ltd" showed the following:

् signa	ture:"Shanxi Yanghua HOME Furnishings Ltd"			Smart search ⊒≓	1 1	⑦ - <u>ኢ</u>	
	□						
		Sort by		Filter by $ \smallsetminus $	Export 🗸	Tools \vee	Help 🗸
		Detections	Size	First seen	Last see	n Submitt	ters
	e45802322835286cfe3993fe8e49a793acd705755d57d8fc007341bf3b8425	27 / 73	12.44 MB	2024-05-28 19:07:09	2024-05-2 18:47:49	2	
	574c70e84ecdad901385a1ebf38f2ee74c446034e97c33949b52f3a2fddcd8	35 / 73	5.66 MB	2024-05-28 16:44:28	2024-05-2 21:36:53	3	
_	5685ab9d495bcb14407dd23a83790a76ed1a149cac651f2b792bc775ff4cf7	28 / 70	12.45 MB	2024-05-23 17:12:56	2024-05-2 06:48:36	- 4	
	f9df69fb1fbf7c4e638a732473258bde0d5369cbaffdb139c6f3c0b2f05306…	22 / 74	4.06 MB	2024-05-23 17:19:03	2024-05-2 15:13:02	2	SC Exe
_	b1f0fa14f873735fbd0c6bf7ac29633f059a95d535904432c683835cae1929…	38 / 69	13.91 MB	2024-05-23 05:37:31	2024-05-2 17:59:00	2	exe exe
	acba553d42b295ea8dfdc96250fe2448b98647502c1c2ccc29a142f1d5ed1e	37 / 73	17.07 MB	2024-05-15 17:47:08	2024-05-: 12:22:28	3	Fus
	7c0469e049eb1eee34dc7053d5241bbceb6e0773b43a0be813a875cebbe885	29 / 74	32.52 MB	2024-05-17 20:45:31	2024-05- 12:12:18	2	exe exe

Figure 3 - VirusTotal Signature Search Results

The results indicated other versions of the installer, each impersonating as a legitimate software installer. We observed that the first installer was submitted to VirusTotal around mid-May 2024.

In a related incident that occurred on May 29, 2024, we observed another binary posing as a Microsoft Teams setup file, TMSSetup.exe, which was assigned a valid certificate issued to "Shanghai Ruikang Decoration Co., Ltd". As of May 30, 2024, that certificate has been revoked.

VirusTotal analysis of the binary MSTeamsSetup_c_1_.exe indicates it is associated with a malware family known as Oyster, dubbed Broomstick by IBM.

What is Oyster/Broomstick?

Oyster aka Broomstick aka CleanUpLoader is a family of malware first spotted in September of 2023 by researchers at IBM. While not much is known about the malware, it was delivered via a loader called Oyster Installer, which masqueraded as a browser installer. The installer was responsible for dropping the backdoor component, Oyster Main. Oyster Main was responsible for gathering information about the compromised host, handling communication with the hard-coded command-and-control (C2) addresses, and providing the capability for remote code execution.

In February, researchers on Twitter observed the same backdoor component and started to name the Oyster Main backdoor, CleanUpLoader.

In recent incidents, Rapid7 has observed Oyster Main being delivered without the Oyster Installer.

Technical Analysis

Initial analysis of the binary MSTeamsSetup_c_1.exe revealed that two binaries were stored within the resource section. During execution, a function was observed using FindResourceA to locate the binaries, followed by LoadResource to access them. These binaries were then subsequently dropped into the Temp folder. We observed that the intended names of the two binaries dropped by MSTeamsSetup_c_1.exe were CleanUp30.dll and MSTeamsSetup_c_1.exe (the legitimate Microsoft Teams installer).

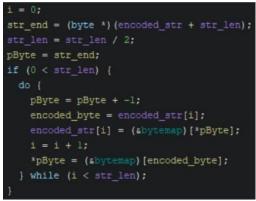
After dropping the binary CleanUp30.dll into the Temp directory, the program executes the DLL, passing the string rundll32.exe %s, Test to the function CreateProcessA, where %s stores the value CleanUp30.dll.

```
hResInfo = FindResourceA(0i64, (LPCSTR)1, "EXE");
if ( !hResInfo )
  return 0;
nNumberOfBytesToWrite = SizeofResource(0i64, hResInfo);
hResData = LoadResource(0i64, hResInfo);
if ( !hResData )
  return 0;
Block = LockResource(hResData);
if ( !Block )
  return 0;
hFile = CreateFileA(a1, 0x40000000u, 0, 0i64, 2u, 0x80u, 0i64);
if ( hFile == (HANDLE)-1i64 )
{
  free(Block);
  result = 0;
3
else
{
  NumberOfBytesWritten = 0;
  if (WriteFile(hFile, Block, nNumberOfBytesToWrite, &NumberOfBytesWritten, 0i64))
  {
    CloseHandle(hFile);
    sub_140001450(CommandLine, "rundll32.exe %s,Test", a1);
    memset(&StartupInfo, 0, sizeof(StartupInfo));
    StartupInfo.cb = 104;
    *(_OWORD *)&ProcessInformation.hProcess = 0i64;
    *(_QWORD *)&ProcessInformation.dwProcessId = 0i64;
    result = CreateProcessA(0i64, CommandLine, 0i64, 0i64, 0, 0, 0i64, 0i64, &StartupInfo, &ProcessInfor
  }
  else
  {
    CloseHandle(hFile);
    free(Block);
    result = 0;
  3
```

```
Figure 4 - Execution of CleanUp30.dll
```

After the execution of CleanUp30.dll, the program proceeds to initiate the legitimate Microsoft Teams installer, MSTeamsSetup_c_l_.exe, also located within the Temp directory. This tactic is employed to avoid raising suspicion from the user.

CleanUp30.dll Analysis


During the execution of CleanUp30.dll, Rapid7 observed that the binary starts by attempting to create the hard coded mutual exclusion (mutex) ITrkfSaV-4c7KwdfnC-Ds165XU4C-1H6R9pk1. Mutex creation is often used by programs in order to determine if the program is already running another instance. If the program is already running, the program will terminate the new instance.

After creating the mutex, the binary determines its execution path by calling the function GetModuleFilenameA. The value is stored as a string and used as a parameter for the creation of a scheduled task, ClearMngs. The scheduled task is created using the function ShellExecuteExW, passing the following as the command line:

```
schtasks.exe /create /tn ClearMngs /tr "rundll32 '<location of binary>\CleanUp30.dll',Test" /sc hourly /mo 3 /f
```

The purpose of the scheduled task ClearMngs is to execute the binary <location of binary>\CleanUp30.dll with the exported function of Test using rundll32.exe every three hours.

After the creation of the scheduled task, the binary then proceeds to decode its C2 servers using a unique decoding function. The decoding function begins by taking in a string of encoded characters, and its length is in bytes. The decoding function then proceeds to read in each byte, starting from the end of the encoded string.

Figure 5 - The DLL's Decoding Loop

Each byte of the encoded string is used as an index location to retrieve the decoded byte from a hard-coded byte map. A byte map is a byte array containing 256 bytes in a randomized order, one for each possible byte value from 1 to 256. Malware authors sometimes use this technique to obfuscate strings and other data. The iteration counter (i) used within the condition for the decoding loop is compared to half of the encoded string's length as the decoding loop swaps two bytes at a time. The bytes of the encoded string are decoded and swapped beginning at the start and end bytes of the string and the decoding loop then progresses towards the center of the string from each end.

The loop swaps the bytes to reverse the decoded string, as the original plaintext strings stored in the malware were reversed prior to encoding. When the center of the string is reached, the decoding process is complete. Due to this algorithm, all the encoded strings that are passed must be of even length to avoid further processing. Immediately after the decoded string is loaded onto the stack, the malware then re-encodes the string using a similar loop. The final result for the first decoded string is a carriage return line feed (CRLF) delimited list of C2 domains.

We constructed a Python script that can decode all the encoded strings contained within the CleanUp.dll binaries, including previous versions. The Python script can be found in our <u>GitHub repository</u>.

```
import sys
import pefile
cleanup bin = "C:\\Users\\<User>\\Desktop\\CleanUp Samples\\V2\\CleanUp30.dll"
cleanup_data = open(cleanup_bin, 'rb').read()
pe = pefile.PE(data = cleanup data)
character map = "00 80 40 C0 20 A0 60 E0 10 90 50 D0 30 B0 70 F0 08 88 48 C8 28 A8 68 E8 18 98
def relevant_encoded_data(data, sequence):
    position = data.find(sequence)
    if position != -1:
        return data[:position]
    else:
        return data
def get_encoded_data(pe):
for item in encoded_data:
    new_item = item.hex()
    new_spaced_hex = add_spaces(new_item)
    decoded_data = decode_data(new_spaced_hex,character_map)
    #print(decoded data)
∢ ||
api/connect
supfoundrysettlers.us
whereverhomebe.com
retdirectyourman.eu
```

Figure 6 - Sample Output from Python Script

Using our Python script, it revealed some of the C2 functionality, along with several JSON fields that are used to build a fingerprint of the infected system:

Hex Encoded String	Decoded String
2ec6a676766fc6f4960e86	api/connect
50b0aea6747686b64eaef69e2ec6a64e96262ea64e	supfoundrysettlers.us
50b0b6f6c674a646a6b6f6164ea66ea64ea616ee	whereverhomebe.com
50b0ceae74ce4ea6362e2ea6ce9e4e2676aef6660eaece	retdirectyourman.eu
76f6ce56f476f6962e86c696360e0e86045ca60e9e2ab42e76a62e76f6c2	Content-Type: application/json
76f696cece65cef4960e86	api/session
a61ea67426b6c63a346ceaf2eace9eca3a	\SysWOW64\cmd.exe
a61ea6744ccc36362676ae4e3a2c6ceaf2eace9eca3a	\SysWOW64\rundll32.exe
d2f2	ОК
3a0eb6a62a3a	\Temp\
445c442696fa267686b6b6f6c6443444	","command_id":"
be44	"}
445c44649644de	{"id":"
445c442e36aecea64e443444	","result":"
445c442696fa76f696cecea6ce443444	","session_id":"
445c44ceae2e862ece443444	","status":"
2e1e2e740eae7686a636c63a	\cleanup.txt
445c44a6b68676fa4e652eae0eb6f6c6443444	","computer_name":"
0ccc445c4476f696ce72a66efa363626443444	","dll_version":"30
445c44769686b6f626443444	","domain":"
be44	"}
445c44649644de	{"id":"
445c443686c6f636fa0e96443444	","ip_local":"
445c44cef6443444	","0S":"
445c44263696ae46facef6443444	","os_build":"
445c44a6e6a636656e964e0e443444	","privilege":"

After the binary decodes the C2 addresses, the program proceeds to fingerprint the infected machine, using the following functions:

Function	Description
DsRoleGetPrimaryDomainInformation	Used to gather information about the domain the compromised machine resides in. In particular, the function returns the domain name.
GetUserNameW	Provides the name of the user in which the program is running under.
NetUserGetInfo	Provides details of the user under which the program is running. In this case, the program is querying if the user is admin or user.
GetComputerNameW	Provides the name of the compromised machine in which the binary is running on.
RtlGetVersion	Returns version information about the currently running operating system including name and version number.

71376669	8D85 30F9FFFF	lea eax, dword ptr ss: [ebp-6D0]	· · · · · · · · · · · · · · · · · · ·	^		Hide FPU	
71376c6F 71376c70 71376c80 71376c81 71376c83 71376c83 71376c85 71376c85 71376c92 71376c92 71376c92 71376c94 71376c90 71376c91	50 8085 38FBFFFF C785 30F9FFFF 00010 50 FFD6 85C0 0 F84 84000000 8085 38FBFFFF 50 8040 A4 E8 E6C5FBFF 8045 A4 C645 FC 07 50	push eax lea eax,dword ptr ss:[ebp-4c8] mov dword ptr ss:[ebp-6D0],100 push eax call esi test eax,eax je cleanup30.71376D3F lea eax,dword ptr ss:[ebp-4c8] push eax lea ecx,dword ptr ss:[ebp-4c8] call cleanup30.7133280 lea ecx,dword ptr ss:[ebp-5c] mov byte ptr ss:[ebp-5c] mov byte ptr ss:[ebp-4],7 push eax		EAX EBX ECX EDX EBP ESP ESI EDI EIP EFLAG ZF 0	033D0000 02F7F268 02F7EA2C 00000000 02F7F478 71376c63	Hide FPU L"\",\"user_name\":\"" "#T{f (" "ž6Åİ" &L"{\"id\":\"0\",\"dll_version cleanup30.71376C63	\":\"30\",`
71376CA2 71376CA5 71376CAA 71376CAE 71376CB0	804D D0 E8 86C6FBFF C645 FC 08 88C8 8378 14 07	<pre>lea ecx,dword ptr ss:[ebp-30] call cleanp30.7133360 mov byte ptr ss:[ebp-4],8 mov ecx,eax cmp dword ptr ds:[eax+14],7</pre>	<pre>[ebp-30]:L"\",\"user_name\":\"" ecx:L"\",\"user_name\":\""</pre>	OF 0 CF 0	SF 0 DF 0 TF 1 IF 1 stdcall)	(ERBOR TO PENDING)	5 🕄 Unlocked
	leanup30.&GetUserNameW	>]= <advapi32.getusernamew></advapi32.getusernamew>		2: [es	p+8] 02F7F540 p+C1 28000028		, ·

cleanup30.dll:\$96c63 #96063

Figure 7 - A Selection of Contents of the CleanUp30.dll Code that Outline the Collection of System Information

While enumerating information about the host, the information is stored in the JSON fields uncovered from the encoded strings identified above.

```
{"id":"0","dll_version":"30","domain":"WORKGROUP","user name":"John
Snow","computer_name":"DROGON","privilege":"2","os":"10.0","os_build":"19081","ip_local":"19
2.168.0.1; 169.254.130.51; "}
```

Figure 8 - Example of the Data Collected and Sent via HTTP POST to the Malicious Domains

The fingerprint information is encoded using the same loop previously discussed, where the data string is reversed and encoded using a byte map before being sent.

After the information is encoded, it is sent to the domains whereverhomebe[.]com/, supfoundrysettlers[.]us/, and

retdirectyourman[.]eu/ via HTTP POST method. Rapid7 determined that CleanUp30.dll uses the open-source C++ library Boost Beast to communicate with the observed C2 domains via HTTP and web sockets.

Diverter] DNS Server]	≥*╥ ^{III} ó"D\Dª╢åv Nª . «औ ÷ [D4D. #‰6åvéD\Dª╢åv Nª╢«D4D
HTTPListener443]	
	Storing HTTP POST headers and data to http_20240528_163345.txt.
	Stopping
	svchost.exe (2428) requested UDP 192.168.30.128:53
	Received A request for domain 'whereverhomebe.com'.
	rundll32.exe (1732) requested TCP 192.0.2.123:443
HTTPListener443]	
HTTPListener443]	
HTTPListener443]	
HTTPListener443]	
HTTPListener443]	Content-Length: 199
HTTPListener443]	

Figure 9 - Captured Network Traffic Attempting to Send POST Requests to whereverhomebe[.]com/ and supfoundrysettlers[.]us/ Following the Execution of CleanUp30.dll

Follow-on Activity

In one of the incidents Rapid7 observed, a PowerShell script was spawned following the execution of another version of CleanUp30.dll, cleanUp.dll. CleanUp.dll, similar to CleanUp30.dll, was originally dropped by the other fake Microsoft Teams installer, TMSSetup.exe, which dropped the binary into the AppData/Local/Temp directory as well.

```
powershell.exe -Command "$ws = New-Object -ComObject WScript.Shell; $s =
$ws.CreateShortcut('C:\Users\<User>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\DiskCleanUp.lnk'); $s.TargetPath = 'rundll32.exe'; $s.Arguments =
'C:\Users\<User>\AppData\Local\Temp\CleanUp.dll,Test'; $s.Save()"
```

Figure 10 - PowerShell Command Creating .Ink File DiskCleanUp.lnk

The purpose of the PowerShell script was to create a shortcut LNK file named DiskCleanUp.lnk within C:\Users\ <User>\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\. By doing so, this ensured that the LNK file DiskCleanUp.lnk would be run each time the user logged in. The shortcut LNK file was responsible for executing the binary CleanUp.dll using rundll32.exe, passing the export Test.

Following the execution of the PowerShell script, Rapid7 observed execution of additional payloads:

- k1.ps1
- main.dll
- getresult.exe

Unfortunately, during the incident, we were unable to acquire the additional payloads. During the incidents, Rapid7 also observed execution of the following enumeration commands:

Enumeration	Description
systeminfo	Provides information about the system's software and hardware configuration
arp -a	Shows a list of all IP addresses that the local computer has recently interacted with, along with their corresponding MAC addresses
net group 'domain computers' /domain	Lists the "Domain Computers" group within an Active Directory domain
"C:\Windows\system32\nslookup.exe" myip.opendns.com resolver1.opendns.com	Determines the external IP address
whoami /all	Provides detailed information about the current user including user's privileges, group memberships, and security identifiers (SIDs)
nltest /dclist: <domain_name></domain_name>	Lists all the domain controllers (DCs) for a specific domain
net user admin	Provides detailed information about the user 'admin' including profile information, group memberships, local group memberships, etc
reg query HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall /s	Queries the registry to find information about installed software
findstr "DisplayName"	Used to filter information, showing only items contained under "DisplayName"

Rapid7 Customers

InsightIDR and Managed Detection and Response customers have existing detection coverage through Rapid7's expansive library of detection rules. Rapid7 recommends installing the Insight Agent on all applicable hosts to ensure visibility into suspicious processes and proper detection coverage. Below is a non-exhaustive list of detections that are deployed and will alert on behavior related to this malware campaign:

- Persistence SchTasks Creating A Task Pointed At Users Temp Or Roaming Directory
- Suspicious Process: RunDLL32 launching CMD or PowerShell
- Persistence Schtasks.exe Creating Task That Executes RunDLL32
- Network Discovery NItest Enumerate Domain Controllers
- Attacker Technique Determining External IP Via Command Line
- Suspicious Process .Ink in PowerShell Command Line

MITRE ATT&CK Techniques

Tactic	Technique	Description
Resource Development	Acquire Infrastructure: Domains (T1583.001)	Threat Actor set up typo-squatted domain micrsoft-teams-download[.]com in order to aid in the delivery of the executable MSTeamsSetup_c_lexe
Execution	Command and Scripting Interpreter: Powershell (T1059.001)	Used to create .Ink file DiskCleanUp.Ink and execute the PowerShell payload k1.ps1
Execution	User Execution: Malicious File (T1204.002)	User executes the binary MSTeamsSetup_c_lexe
Persistence	Scheduled Task (T1053.005)	CleanUp30.DLL and CleanUp.DLL create scheduled task ClearMngs
Defense Evasion	Masquerading: Match Legitimate Name or Location (T1036.005)	MSTeamsSetup_c_lexe masquerades as legitimate Microsoft Teams installer
Defense Evasion	Virtualization/Sandbox Evasion: Time Based Evasion (T1497.003)	Execution delays are performed by several stages throughout the attack flow

Tactic T	Technique		Description			
Collection E	Data from L	.ocal System (T1005)	Threat Actors enumerated information about compromised hosts using the backdoor CleanUp DLL's			
Command E and Control E	0		CleanUp DLL's send encoded data to C2's using unique encoding function			
OCs						
IOC		Hash		Description		
TMSSetup.exe		9601f3921c2cd270b6da0	ba265c06bae94fd7d4dc512e8cb82718eaa24accc43	The malicious executable downloaded from prodfindfeatures[.]com/		
MSTeamsSetup_	_c_lexe	574C70E84ECDAD90138	35A1EBF38F2EE74C446034E97C33949B52F3A2FDDCD822	The malicious executable downloaded from prodfindfeatures[.]com/		
CleanUp30.dll		CFC2FE7236DA1609B0E	DB1B2981CA318BFD5FBBB65C945B5F26DF26D9F948CBB4	The .dll file that is run by run32dll.exe following the execution of MSTeamsSetup_c_lexe		
CleanUp.dll		82B246D8E6FFBA1ABAF	FFBD386470C45CEF8383AD19394C7C0622C9E62128CB94	The .dll file that is run by run32dll.exe following the execution of TMSSetup.exe		
DiskCleanUp.Ink	:			An .Ink file that was created following the execution of CleanUp30.dll		
prodfindfeatures	[.]com/	-		The domain hosting the malicious files TMSSetup (1).exe and MSTeamsSetup_c_lexe		
micrsoft-teams- download[.]com/		-		The typo-squatted domain that users visited		
impresoralaser[.]	pro/	-		Part of the domain redirect chain for downloads of TMSSetup (1).exe and MSTeamsSetup_c_lexe		
whereverhomebo	e[.]com/	-		Domain that CleanUp30.dll and CleanUp.dll attempts to communicate with		
supfoundrysettle	rs[.]us/	-		Domain that CleanUp30.dll and CleanUp.dll attempts to communicate with		
retdirectyourman	n[.]eu/	-		Domain that CleanUp30.dll and CleanUp.dll attempts to communicate with		
149.248.79[.]62		-		Resolving IP for whereverhomebe[.]com/		
64.95.10[.]243		-		Resolving IP for supfoundrysettlers[.]us/		
206.166.251[.]11	4	-		Resolving IP for retdirectyourman[.]eu/		
References						

Article

URL

https://exchange.xforce.ibmcloud.com/malware-analysis/guid:08822f57c12416bc3e74997c473d1889

Twitter Mention of CleanUpLoader <u>https://x.com/RussianPanda9xx/status/1757932257765945478</u>

NEVER MISS AN EMERGING THREAT

Broomstick Malware Profile

Be the first to learn about the latest vulnerabilities and cybersecurity news.

Subscribe Now

Never miss a blog

Get the latest stories, expertise, and news about security today.