
1/19

ThreatLabz

SmokeLoader History | ThreatLabz
zscaler.com/blogs/security-research/brief-history-smokeloader-part-1

Zscaler Blog

Get the latest Zscaler blog updates in your inbox

Subscribe

Security Research

A Brief History of SmokeLoader, Part 1

THREATLABZ
June 11, 2024 - 15 min read

https://www.zscaler.com/blogs/security-research/brief-history-smokeloader-part-1
https://www.zscaler.com/blogs?type=security-research
https://www.zscaler.com/author/threatlabz

2/19

Introduction

This is Part 1 in our series on the history of SmokeLoader. Stay tuned for Part 2.

In May 2024, Zscaler ThreatLabz technical analysis of SmokeLoader supported an
international law enforcement action known as Operation Endgame, which remotely
disinfected tens of thousands of infections. In the process of providing assistance to law
enforcement for the operation, ThreatLabz has documented SmokeLoader for nearly all
known versions.

In this two-part blog series, we explore the evolution of SmokeLoader. Initially used as a first-
stage downloader to deploy other malware families, SmokeLoader has evolved to include its
own framework and expand its capabilities with information stealing functionalities. Over the
years, the malware has undergone significant development and improvements, with the
latest known version appearing in 2022. This blog provides an overview of SmokeLoader’s
origins and initial transformation into a modular operation.

Key Takeaways

SmokeLoader is a modular malware family that was first advertised on criminal forums
in 2011.
Smoke’s primary function is to serve as a downloader and execute second stage
malware.
SmokeLoader possesses the capability to download a range of additional modules that
enhance the malware's capabilities, enabling it to perform tasks such as stealing data,
launching distributed denial of service attacks, and mining cryptocurrency.
SmokeLoader detects analysis environments, generates fake network traffic, and
obfuscates code to evade detection and hinder analysis.
SmokeLoader has undergone extensive evolution over the years, with new features,
alongside improved encryption, compression, and hash algorithms.

Timeline

The figure below is a comprehensive timeline of SmokeLoader’s evolution from 2011 to the
present.

https://www.zscaler.com/blogs/security-research/operation-endgame-smoke

3/19

Figure 1: A timeline of SmokeLoader’s evolution from 2011 to 2022.

2011-2013: Prehistoric

The first SmokeLoader samples we analyzed date back to 2011. These samples display
notable differences and are more rudimentary compared to subsequent iterations. We refer
to the earliest SmokeLoader samples as prehistoric because they do not contain a version
number.

These early versions of SmokeLoader include an initial module that serves as the foundation
for establishing initial communication with the command-and-control (C2) server. The
malware achieves this through the utilization of two embedded shellcodes that are injected
into two newly created instances of svchost.exe. During this prehistoric period, the code

4/19

was modified several times, with some samples performing process injection by creating
shared sections (using ZwCreateSection and ZwMapViewOfSection) and resuming the main
process thread (using ZwResumeThread) to execute the injected code.

Another sample dating to 2012 uses an Asynchronous Procedure Calls (APC) queue
technique to inject SmokeLoader into the hollowed svchost.exe processes. The figure
below shows SmokeLoader’s process of building the shellcode and injecting it into
svchost.exe using the APC queue injection technique.

Figure 2: Early version of SmokeLoader building and injecting shellcode into svchost.exe.

5/19

One of the shellcodes sends the getload (with the argument login) command to the C2
server, while the other shellcode queries the C2 server with the getgrab command.

The figure below shows the svchost.exe shellcodes for the SmokeLoader sample under
analysis.

Figure 3: The svchost.exe shellcodes for a Smokeloader sample circa 2012.

Using the getload command, the bot registers itself within the C2 server using HTTP GET
requests. Example network traffic from this early Smoke version is shown below.

6/19

Figure 4: Example C2 requests from the SmokeLoader version 2012.

SmokeLoader sends two parameters to the C2 server using the getload command as
shown in the table below:

Argument Description

login This specifies the bot ID, which is calculated as a simple MD5 hash of the
victim’s computer name.

sel This specifies the hardcoded seller ID (a.k.a., affiliate ID), which varies per
sample (e.g., 77777).

Table 1: SmokeLoader 2012 parameters for the getload command.

In modern versions, SmokeLoader still continues to send a bot ID and seller ID to register
itself with the C2 server. Once registered, the server responds to the getload command with
a payload that the malware writes to disk and executes.

In addition, the getgrab command can download an additional SmokeLoader grabber
module. In this case, the data returned by the C2 server is encrypted with a simple XOR
algorithm. Once decrypted, the Portable Executable (PE) file is mapped directly in the
current process context by the shellcode.

Information stealer plugins

The source code for the SmokeLoader 2012 panel was leaked. The code sample below
shows how the panel manages the various commands it supports.

7/19

if ($command == "getgrab") {
 getmodule("./mods/grab");
 exit;
} elseif ($command == "getproxy") {
 getmodule("./mods/socks");
 exit;
} elseif ($command == "getspoof") {
 getmodule("./mods/hosts");
 exit;
} elseif ($command == "getcmdshell") {
 getmodule("./mods/shell");
 exit;
} elseif ($command == "getload" && isset($cmd["doubles"])) {
…
} elseif ($command == "getload" && isset($cmd["final"])) {
…
} elseif ($command == "getload" && isset($cmd["personal"])) {
…

The getgrab command retrieves the content of the file ./mods/grab on the C2 server. The
first 4 bytes of this file correspond to the XOR key used for decrypting the remaining content.
The grab executable is a fully-featured information stealer module that is capable of stealing
email, FTP, and email passwords.

Unlike the primary SmokeLoader communication channel which uses HTTP GET requests,
the communication between the grabber and the C2 is conducted through HTTP POST
queries.

Within the mods folder of the leaked panel, there is also a ./mods/shell file that implements
a simple remote shell. The leaked panel's source code references other modules including
those mentioned by the getproxy and getspoof commands.

First anti-analysis techniques

SmokeLoader is notorious for employing various anti-analysis techniques, which have been
incrementally improved with each new version. This section examines the initial anti-analysis
techniques observed in the 2012 version of SmokeLoader.

Instead of storing the names of exported functions, the malware utilizes a hash-based
approach to locate the addresses of the required APIs. In this version, the algorithm used to
hash the API names is relatively simple, as shown in the Python code sample below.

def calc_hash_smoke2012(apiname):
 hash = 0
 for byte in apiname:
 hash = (hash << 8 | hash >> (32 - 8)) & 0xFFFFFFFF
 hash = byte ^ hash
 return hash

8/19

The strings used by the malware’s first stage are encrypted. Each encrypted string in the
binary is structured as follows: the initial 4 bytes correspond to an XOR key, which is then
followed by the encrypted data.

The Python implementation of the algorithm to decrypt the strings is shown in the code
sample below.

def smoke2012_string_decrypt(data, key):
 aligned = data
 unaligned = b''
 unaligned_dec = b''
 if n_unaligned := len(data) % 4:
 aligned = data[0:-n_unaligned]
 unaligned = data[-n_unaligned:]
 aligned_dec = xor(aligned, key)
 unaligned_dec = xor(unaligned, key[0:1])
 return aligned_dec + unaligned_dec

In this version, the Smoke C2 URLs are stored among the list of encrypted strings.

2014: Ancient Modularizations

The following section covers new features and modifications to SmokeLoader version 2014,
which include a multi-stage loading process, an updated algorithm for generating the bot ID,
a separate encrypted C2 list, and more.

During the analysis of a sample dating back to 2014, we discovered the introduction of the
string s2k14 that is used as the name of a file mapping. We believe s2k14 is a reference to
SmokeLoader version 2014. The figure below shows this string referenced in the code.

Figure 5: SmokeLoader version 2014 string for a file mapping name called s2k14.

9/19

One of the most interesting features in this version of SmokeLoader is the malware was split
into several loading stages. The introduction of a stager component marked a significant
change that became standard in all subsequent versions. Each version since 2014 consists
of a stager, a main module, and plugins that implement additional features.

In SmokeLoader version 2014, the ./mods/ folder in the panel includes a ./mods/plugins
file that combines multiple plugins into a single file. The prior ./mods/grab information
stealing module from previous SmokeLoader versions was split into multiple stealing
modules like an FTP/mail stealer module, browser stealer module, and keylogger module,
and then packaged in this plugins file. This modification to the plugins persists from this
version onward until the most recent version of SmokeLoader.

aPLib stager

The stager introduced in SmokeLoader version 2014 is quite simple. The stager performs the
following actions:

Decrypts a section of data using a single byte XOR key.
Decompresses the data using aPLib.
Maps the main module in a buffer allocated in the same process context.
Executes some simple anti-analysis measures by checking the Process Environment
Block (PEB) such as the BeingDebugged and NtGlobalFlags fields.

Then, the stager transfers execution to the main module, creates an instance of
svchost.exe, and injects SmokeLoader into this newly created svchost.exe process using
APC queue code injection.

The figure below shows how the 2014 version of the SmokeLoader aPLib stager works.

10/19

Figure 6: SmokeLoader version 2014 code unpacking and injecting into svchost.exe.

SmokeLoader’s stager underwent significant evolution in subsequent versions, incorporating
advanced obfuscation techniques and additional anti-analysis measures. Nevertheless, even
in this version, we can observe the presence of rudimentary obfuscation tricks.

For instance, SmokeLoader employs non-polymorphic decryption loops to unravel layers of
XOR encryption for functions that are invoked, as shown in the figure below.

Figure 7: SmokeLoader version 2014 stager function decryption.

11/19

Persistence

The SmokeLoader seller has provided threat actors with an option to build a sample with (or
without) persistence. SmokeLoader’s approach to achieve persistence on the victim's system
has undergone numerous changes over time. In earlier versions (2011-2017), SmokeLoader
would leverage common Run registry keys and create a startup shortcut as a fallback option
(if setting the registry values failed). In addition, SmokeLoader would establish two dedicated
threads responsible for safeguarding the modified registry keys.

Bot ID

In the initial version of SmokeLoader, dating from approximately 2011 to 2012, we observed
that the bot ID was generated by taking a simple MD5 hash of the victim machine's computer
name. Over time, the algorithm to generate the bot ID has undergone slight modifications.
Notably, in version 2014, SmokeLoader employed a CRC32 and XOR based algorithm.

Starting from 2014, all versions of SmokeLoader calculate the ID using both the computer
name and the volume information, as shown in the figure below.

Figure 8: SmokeLoader version 2014 bot ID generation.

Anti-analysis tricks and plain text strings

Interestingly, SmokeLoader version 2014’s main module stored the malware’s strings in
plaintext as shown in the figure below. This is a departure from the initial version where the
strings were encrypted.

https://cyb3rsleuth.blogspot.com/2011/08/smoke-loader.html

12/19

Figure 9: SmokeLoader version 2014 plaintext strings.
This is the first version of the malware that searches for sbiedll, dbghelp, qemu, virtual,
vmware, and xen strings to check for libraries and processes related to malware analysis
environments. If an analysis environment is detected, SmokeLoader terminates itself to
evade detection.

Encrypted C2s

The algorithm used to decrypt the list of encrypted C2s is one of the SmokeLoader
components that has undergone the most changes across versions.

13/19

While the strings in the main module of SmokeLoader version 2014 are stored in plaintext,
the list of C2 servers is encrypted. To decrypt the list, a custom XOR-based decryption
algorithm is employed. The code contains a table of pointers, with each pointer referencing a
string that is prepended by a byte that is used as an XOR key, which is followed by three
unused bytes. The next byte is the size of the encrypted C2 URL and the remaining bytes
are the encrypted C2 URL. The Python code below demonstrates the C2 decryption
algorithm used in SmokeLoader version 2014.

def smoke2014_c2_xor_decrypt(enc_data):
 key = enc_data[0]
 size = enc_data[4]
 enc = enc_data[5:]
 dec = b''
 for i in range(0, len(enc)-1, 2):
 dec += (0xff&((enc[i] ^ key) -
 (enc[i+1] ^ key))).to_bytes(1, 'little')
 return dec

Anti-C2 patching mechanism

An interesting addition to SmokeLoader version 2014 is the implementation of what appears
to be a simple copy-protection mechanism as shown in the figure below.

Figure 10: Simple copy-protection mechanism implemented in SmokeLoader version 2014
version.

The malware calculates the CRC32 value of the C2 URL string and compares it with a
predefined expected value at various points in the code. This mechanism is likely designed
to prevent other hackers from creating a builder that patches samples with new C2s, and
therefore reduce potential sales of SmokeLoader.

Communication

The communication protocol for SmokeLoader version 2014 is similar to prior versions.
SmokeLoader uses a simple text-based protocol that is encrypted and sent to a C2 server.
The syntax for the protocol is the following:

14/19

arg1=value1&arg2=value2…&argN=valueN

SmokeLoader’s version 2014 panel recognizes the following arguments:

Argument Description

cmd The C2 panel accepts a set of commands. Depending on the specified
command additional arguments must be specified.

login This argument is the bot ID and its length must be 40 bytes.

info Additional information given with some commands.

ver Operating system version.

bits Victim’s Windows operating system architecture.

file Mainly used together with the getload command to request updates or tasks.

run Used in different commands for different purposes. For example, to ask for an
update or to indicate that the update was successfully executed.

port Used together with the getsocks command to specify the proxy’s port.

procname Process name included with the procmon command.

doubles Additional flag that may be sent with the getload command.

removed Additional flag that may be sent with the getload command.

personal Additional flag that may be sent with the getload command.

shell If the getshell command is sent to the server, this argument contains the
results of the executed commands.

grab Used together with the formgrab, ftpgrab, and keylog commands. This
argument contains the stolen information.

15/19

Argument Description

filedata If a file is submitted, the filedata argument contains the content of the file.

Table 2: SmokeLoader version 2014 network protocol.

The panel is able to handle the following commands (i.e., the command name specified in
the cmd argument):

Command
(cmd) Description

getload

*with additional
arguments

One of the main commands and differs depending on specified
arguments:

file: If the getload command is included with the fileargument, the
panel handles the command in different ways depending on the
value of the file argument:

If the fileargument's value is u and the run argument is not
set, the bot asks for an update. The server could return the
update executable or a URL to download the update from.
If the fileargument's value is u and the run argument is set,
the bot confirms the successful execution of the update.
If the fileargument's value is not u and the run argument is
not set, the bot asks for the next task. The server tracks in its
database the last task given to each bot. When this
command is received, the server returns the next task (if
any).
If the fileargument's value is not u and the run argument is
set, SmokeLoader confirms whether the last task was
executed correctly.

doubles: If the bot specifies this argument together with
the getload command, the panel sets the doubflag in the database
for the associated victim ID. The purpose of this flag is unknown.
removed: The bot can specify a removedargument together with
the getload command to confirm an uninstall request was received
from the server. The panel deletes the bot ID from the database
upon receipt.
personal: A personalargument can be given together with
the getloadcommand to ask for personal tasks. The argument
should contain the ID of the personal task. If the configured task is
set as local in the database, the server would return a file in the
response to be executed by the bot. Otherwise, a URL is provided
and the bot downloads and executes the content from the given
URL.

16/19

Command
(cmd) Description

getload

*without
arguments

If this command is received without arguments, it could be interpreted as
a hello or knock query, and used by the bot to start the conversation
with the server. When a server receives a getload command without
arguments, the response could vary depending on the database
configuration.

If there is a pending update for the bot, the server responds with
the string “Smku”.
If there is a personal task for the bot, the server responds with the
string “Smki”.
If there is a pending removal request for the bot, the server
responds with the string “Smkr”.
In the remaining cases, the server responds with the total number
of configured tasks followed by the configuration’s rules for each
plugin. Each configuration item starts with the “|:|” string followed
by the name of the ruleset and the plugin’s rules:

|:|socks_rules=
|:|hosts_rules=
|:|shell_rules=
|:|fakedns_rules=
|:|filesearch_rules=
|:|procmon_rules=
|:|ddos_rules=
|:|keylog_rules=

getsocks Used by the bot to inform the server that it has enabled the SOCKS
proxy feature. The server will attempt to validate the bot proxy is active
by connecting to the bot’s IP address on the specified port.

gethosts Confirms that the hosts specified in the hosts_rules have been
successfully spoofed.

getshell The bot submits results from executed shell commands to the server.
The shell argument contains the results.

formgrab Submits the results from the form grabber plugin to the server. The grab
argument must contain a base64 encoded string that, once decoded,
contains a comma separated list of grabbed data.

ftpgrab Submits the results from the ftp grabber plugin to the server. The grab
argument must contain a base64 encoded string with the stolen data.

17/19

Command
(cmd) Description

grab Submits stolen information to the server. The argument data contains the
stolen information.

avinfo Submits information about installed security products to the server. The
information is submitted in the info argument. The submitted string is
split by the delimiter 777. The first substring contains information about
the installed antivirus. The second substring contains information about
installed firewalls.

procmon If one of the processes configured with the rules in the procmon_rules
configuration item is found on the victim machine, the bot notifies the
server about the presence of the process, submitting the name of the
process in the procname argument. The server could respond with a file
to be executed or a URL to download the file from.

ddos Confirms the DDoS attack configured with the ddos_rules has been
successfully performed.

keylog Submits the information captured by the keylogger plugin to the server.
The grab argument must contain a base64 encoded string with captured
data.

getfilesearch If the HTTP query is application/bin, and the command
is getfilesearch, the bot submits to the server the content of the files
that were found by the filesearch plugin according to the rules
specified in the filesearch_rules configuration item. The content of the
file is given in the filedata argument.

Table 3: The commands supported by SmokeLoader’s 2014 C2 server.

SmokeLoader version 2012 sent commands and arguments as plaintext using HTTP GET
requests. In version 2014, the network protocol was updated to send the command and
argument data via HTTP POST requests. The POST request body consists of an initial
DWORD containing the size of the data, followed by a DWORD that functions as an RC4 key
required to decrypt the remaining data.

To Be Continued

18/19

In our journey through Part 1 of this series, we explored the early versions of SmokeLoader,
from its initial rudimentary framework to its adoption of a modular structure and encrypted
network protocol. In Part 2 (coming soon), we dive deeper into SmokeLoader’s progression
toward a more sophisticated, modular malware family with advanced anti-analysis
techniques.

Zscaler Coverage

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects
indicators related to SmokeLoader at various levels with the following threat names:

Win32.Downloader.Smokeloader

Thank you for reading

Was this post useful?

Yes, very!Not really

https://threatlibrary.zscaler.com/threats/aeeaad8d-35e1-4c09-8da8-36b3128beb21

19/19

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://www.zscaler.com/privacy/company-privacy-policy

