
1/13

Muhammed Irfan V A, Manisha Ramcharan Prajapati

New Updates to ValleyRAT | ThreatLabz
zscaler.com/blogs/security-research/technical-analysis-latest-variant-valleyrat

Introduction

ValleyRAT is a remote access trojan (RAT) that was initially documented in early 2023. Its main objective is to infiltrate and
compromise systems, providing remote attackers with unauthorized access and control over infected machines. ValleyRAT is
commonly distributed through phishing emails or malicious downloads. In the latest version, ValleyRAT introduced new commands,
such as capturing screenshots, process filtering, forced shutdown, and clearing Windows event logs. Zscaler ThreatLabz recently
identified a new campaign delivering the latest version of ValleyRAT, which involves multiple stages.

In this blog, we will provide a technical analysis of a campaign utilized to deliver ValleyRAT, diving into details and updates observed
in the ValleyRAT sample.

Key Takeaways

Zscaler ThreatLabz discovered a new campaign used to deliver ValleyRAT, which is developed by a China-based threat actor.
The initial stage downloader utilizes an HTTP File Server (HFS) to download the files required for the subsequent stages of the
attack.
The downloader and loader utilized in the campaign employ various techniques, including anti-virus checks, DLL sideloading,
and process injection.
The configuration to communicate to the command-and-control (C2) server is identified by a specific marker. The configuration
data is then parsed to identify the C2 IP, port, and communication (UDP or TCP-based) protocol.
The ValleyRAT sample delivered within the campaign has modifications when compared to the previously documented version.
These changes have been observed in areas such as device fingerprinting, bot ID generation, and the commands supported by
the RAT.

Technical Analysis

The campaign we analyzed delivers ValleyRAT as the payload in the final stage. The figure below illustrates the attack chain for this
particular campaign.

https://www.zscaler.com/blogs/security-research/technical-analysis-latest-variant-valleyrat

2/13

Figure 1: Attack chain for the campaign, where ValleyRAT is delivered as the payload in the final stage.

First stage

Downloader

ValleyRAT uses an initial stage downloader that proceeds to retrieve five files from an HFS server (that is also used later for C2
communications), as shown in the figure below.

3/13

Figure 2: HFS server hosting second stage files for ValleyRAT.

The downloader first checks for the presence of the file NTUSER.DXM. If the file is not found, the malware downloads it from the web
and saves it to disk using the following APIs:

URLOpenBlockingStreamW - Utilized to download the files as an IStream.
SHCreateStreamOnFileEx - Used to create a file and write the downloaded IStream into it.

The downloaded file, NTUSER.DXM, is then decrypted using a combination of XOR decryption and RC4 decryption. The XOR key [9F
4B 27 D3 51 8E CD 2A BF 3C A1 56 E4 78 9A 3D] and RC4 key [21 72 53 14 85 96 A7 B8 C9 DA EB FC 0D 1E 2F 30] are
loaded as stack strings.

The code sample below shows the decryption algorithm replicated in Python.

4/13

from Crypto.Cipher import ARC4

def xor_decrypt(ciphertext, xor_key, key_length):

 decrypted = bytearray()

 for i, byte in enumerate(ciphertext):

 decrypted.append(byte ^ xor_key[i % key_length])

 return bytes(decrypted)

def rc4_decrypt(ciphertext, rc4_key):

 cipher = ARC4.new(rc4_key)

 decrypted = cipher.decrypt(ciphertext)

 return decrypted

def decrypt_file(filename, xor_key, xor_key_length, rc4_key):

 with open(filename, 'rb') as file:

 ciphertext = file.read()

 xor_decrypted = xor_decrypt(ciphertext, xor_key, xor_key_length)

 decrypted_payload = rc4_decrypt(xor_decrypted, rc4_key)

 with open("second_stage_sample.bin", 'ab') as write_file:

 write_file.write(decrypted_payload)

 print("[+] Second stage successfully written to disk as second_stage_sample.bin")

The file decrypted using the algorithm above is a DLL. Once the DLL is decrypted, the malware invokes the export function
_MainLogic@0 from within the DLL file.

The decrypted DLL first checks for the existence of the path C:\Program Files\TCLS. If the path does not exist, it proceeds to
download client.exe from the HFS server using the WinINet library, with Processkiller set as the UserAgent.

Anti-AV checks

The decrypted DLL includes an anti-AV check to detect, and terminate Qihoo security software and the Winrar utility. It retrieves a list
of all processes running on the system and compares the process names with the names below:

ZhuDongFangYu

SoftMgrLite

DumpUper

Winrar

safesvr

The process names ZhuDongFangYu, SoftMgrLite, DumpUper, and safesvr are associated with Qihoo security software. We suspect
that ValleyRAT is terminating Winrar due to its ability to integrate with antivirus software to scan archive files for malicious content.
Previous campaigns have utilized zipped executables as first stage downloaders, which may explain this behavior. If a process name
matches, the malware opens a handle to the process and sends a WM_QUIT message to all the threads within the process, effectively
terminating them.

Following this, the malware downloads WINWORD2013.EXE, wwlib.dll, and xig.ppt from the HFS server, saving them to the disk at
the location C:\Users.

The malware deletes the directory C:\Program Files\TCLS and the file client.exe.

Finally, the malware attempts to execute WINWORD2013.EXE with administrative privileges using the runas command, leading to the
second stage.

Second stage

Loader (wwlib.dll)

The file WINWORD2013.EXE is the legitimate Microsoft Word processor. However, the malware utilizes it to sideload a malicious DLL
called wwlib.dll. The wwlib.dll serves as a malicious loader, responsible for checking the presence of C:\Users\xig.ppt (an
encrypted DLL) on the disk. If the file is found, the malware loads it into memory and decrypts it using the same decryption algorithm
mentioned in the first stage using the same XOR and RC4 keys. The malware copies the decrypted xig.ppt DLL to another memory
location with PAGE_EXECUTE_READ permission.

Process injection

From here, the decrypted xig.ppt continues the execution process as a mechanism to decrypt and inject shellcode into
svchost.exe.

5/13

The malware creates svchost.exe as a suspended process, allocates memory within the process, and writes shellcode there. The
malware uses the SetThreadContext API to change the instruction pointer to the address of the allocated shellcode.

Finally, the malware calls the ResumeThread function, leading to the next stage of the process. The figure below shows the
decompiled code the malware uses for injection.

Figure 3: Process injection used in the second stage.

Persistence

The second stage is also responsible for establishing persistence. The malware accomplishes this by adding
C:\Users\WINWORD2013.EXE to the autorun key Software\Microsoft\Windows\CurrentVersion\Run with the name “WINWORD2013”.

Additionally, the malware sets the attributes of WINWORD2013.EXE, wwlib.dll, and xig.ppt to FILE_ATTRIBUTE_SYSTEM |
FILE_ATTRIBUTE_HIDDEN.

Third stage

Injected shellcode

The shellcode injected contains essential configuration information and resolves APIs to establish a connection with the C2 server.
This connection is utilized to download the next stage of the malware.

Dynamic API resolving

The shellcode injected into svchost.exe dynamically resolves APIs by traversing the Process Environment Block (PEB) and parsing
PE headers using the BKDR hashing algorithm below.

def BKDRHashing(apiName):

finalHash = 0

for i in apiName:

 finalHash = (finalHash* 0x83) & 0xFFFFFFFF

 finalHash = (finalHash + ord(i)) & 0xFFFFFFFF

finalHash = finalHash & 0x7FFFFFFF

print(hex(finalHash))

>>>BKDRHashing("GetProcAddress")

0x1ab9b854

Configuration format

After resolving the APIs for kernel32.dll and ntdll.dll, the code checks for the string codemark in the memory of the shellcode.
This string serves as a placeholder to store the configuration of the malware. The configuration we observed is shown in the code
sample below.

6/13

Hex ASCII

63 6F 64 65 6D 61 72 6B 00 00 00 00 00 00 00 00 codemark........

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0F 00 00 00 0A 1A 00 00 01 00 00 00 0F 00 00 00

B8 22 00 00 01 00 00 00 31 30 31 2E 33 33 2E 31 ¸"......101.33.1

31 37 2E 32 30 30 00 31 30 31 2E 33 33 2E 31 31 17.200.101.33.11

37 2E 32 30 30 00 7C 00 30 00 3A 00 64 00 62 00 7.200.|.0.:.d.b.

7C 00 30 00 3A 00 6C 00 6B 00 7C 00 30 00 3A 00 |.0.:.l.k.|.0.:.

68 00 73 00 7C 00 30 00 3A 00 6C 00 64 00 7C 00 h.s.|.0.:.l.d.|.

30 00 3A 00 6C 00 6C 00 7C 00 30 00 3A 00 68 00 0.:.l.l.|.0.:.h.

62 00 7C 00 30 00 3A 00 70 00 6A 00 7C 00 30 00 b.|.0.:.p.j.|.0.

32 00 2E 00 33 00 20 00 2E 00 34 00 32 00 30 00 2...3. ...4.2.0.

32 00 3A 00 7A 00 62 00 7C 00 30 00 2E 00 31 00 2.:.z.b.|.0...1.

3A 00 62 00 62 00 7C 00 A4 8B D8 9E 3A 00 7A 00 :.b.b.|.¤.Ø.:.z.

66 00 7C 00 31 00 3A 00 6C 00 63 00 7C 00 31 00 f.|.1.:.l.c.|.1.

3A 00 64 00 64 00 7C 00 31 00 3A 00 33 00 74 00 :.d.d.|.1.:.3.t.

7C 00 30 00 38 00 3A 00 33 00 6F 00 7C 00 31 00 |.0.8.:.3.o.|.1.

2E 00 30 00 2E 00 30 00 2E 00 37 00 32 00 31 00 ..0...0...7.2.1.

3A 00 33 00 70 00 7C 00 31 00 3A 00 32 00 74 00 :.3.p.|.1.:.2.t.

7C 00 38 00 38 00 38 00 38 00 3A 00 32 00 6F 00 |.8.8.8.8.:.2.o.

7C 00 30 00 30 00 32 00 2E 00 37 00 31 00 31 00 |.0.0.2...7.1.1.

2E 00 33 00 33 00 2E 00 31 00 30 00 31 00 3A 00 ..3.3...1.0.1.:.

32 00 70 00 7C 00 31 00 3A 00 31 00 74 00 7C 00 2.p.|.1.:.1.t.|.

36 00 36 00 36 00 36 00 3A 00 31 00 6F 00 7C 00 6.6.6.6.:.1.o.|.

30 00 30 00 32 00 2E 00 37 00 31 00 31 00 2E 00 0.0.2...7.1.1...

33 00 33 00 2E 00 31 00 30 00 31 00 3A 00 31 00 3.3...1.0.1.:.1.

70 00 7C 00 00 00 00 00 00 00 00 00 00 00 00 00 p.|.............

Description of configuration options

The table below lists and describes the configuration format used for C2 communication.

Offset Description Example Value

0x0 Placeholder codemark

0x20 C2 IP length
[Option 1].

0xF

0x24 C2 port
[Option 1]
stored as 16-
bit number in
host byte
order.

0x1A0A (6666)

0x28 Boolean value.
If the value is
0, ValleyRAT
utilizes UDP
for C2
communication
[Option 1]. If
the value is 1,
it employs
TCP for C2
communication
[Option 1].

0x1

0x2c C2 IP length
[Option 2].

0xF

7/13

Offset Description Example Value

0x30 C2 port
[Option 2]
stored as 16-
bit number in
host byte
order.

0x22B8 (8888)

0x34 Boolean value.
If the value is
0, ValleyRAT
utilizes UDP
for C2
communication
[Option 2]. If
the value is 1,
it employs
TCP for C2
communication
[Option 2].

0x1

0x38 C2 IP data
buffer [Option
1].

101.33.117.200

0x38 +
Value
Stored in
offset 0x20

C2 IP data
buffer [Option
2].

101.33.117.200

0x38 +((
value
stored in
offset 0x20

value
stored
in
offset
0x2C
) * 2)

The
configuration
string is stored
in reverse,
where p1,
o1, p2, and o2
are related to
C2
communication
(explained in
the next
section). The
values of cl
and dd are
multiplied by
1000 and used
as arguments
for the sleep
function.

|0:db|0:lk|0:hs|0:ld|0:ll|0:hb|0:pj|02.3.4202:zb|0.1:bb|认
默:zf|1:lc|1:dd|1:3t|08:3o|1.0.0.721:3p|1:2t|8888:2o|002.711.33.101:2p|1:1t|6666:1o|002.711.33.101:1p|

Table 1: The configuration format used for ValleyRAT C2 communication.

The sample analyzed utilizes TCP for communication with the C2 server. Subsequently, the malware sends the data 32 to the C2 in
order to receive a 32-bit shellcode. We confirmed this by sending data as 64 and receiving a 64-bit shellcode. The 32-bit shellcode is
received as encrypted data with a size of 0x4B00E. The encrypted data is decrypted using a simple XOR operation with the key value
0x36. The decrypted 32-bit shellcode is then executed, leading to the next stage.

Fourth stage

DLL received from the C2

8/13

The shellcode employs the same BKDR hashing algorithm mentioned in the third stage to dynamically resolve the APIs. It proceeds
to reflectively load an embedded DLL (using the dynamically resolved APIs) from the decrypted C2 data into memory. The DLL
contains four exports, DLL entrypoint, load, run, and zidingyixiugaidaochuhanshu. Among these, the DLL entrypoint and load
functions are executed.

The load export function copies the observed configuration string in a specific format, reverses the string, and proceeds to parse it.
The string is stored in the format |key:value|, where the key represents the configuration attribute and the value represents its
corresponding value.

Below is an example:

|p1:101.33.117.200|o1:6666|t1:1|p2:101.33.117.200|o2:8888|t2:1|p3:127.0.0.1|o3:80|t3:1|dd:1|cl:1|fz:默
认|bb:1.0|bz:2024.3.20|jp:0|bh:0|ll:0|dl:0|sh:0|kl:0|bd:0|

Keys p1 | o1 stores the value C2 IP [Option 1] | C2 port [Option 1].
Keys p2 | o2 stores the value C2 IP [Option 2] | C2 port [Option 2].
Keys cl | dd stores the value of how many times the process sleeps, in seconds.

The objective of this stage is to download and execute the final payload. After parsing the C2 configuration and implementing the
sleep duration specified in the configuration data, the malware checks if the final payload is already present on the victim host. This is
done by opening the registry key HKEY_CURRENT_USER\Console\0 and querying for the value with the name
d33f351a4aeea5e608853d1a56661059.

If the size of the value is greater than 0xA44, it indicates that the final payload is already on the victim host. In such cases, the
malware proceeds to allocate a PAGE_EXECUTE_READWRITE memory section and copies the data from the value of
d33f351a4aeea5e608853d1a56661059 into it.

If the final payload does not already exist on the victim host, the malware proceeds to send a DLL named “(登录模块.dll_bin (
Login module.dll_bin)” to the C2 to download the final payload. The DLL name is encrypted by performing an XOR operation with
the same key (0x36) used in the third stage.

The response to this request contains the final payload embedded within it. This data is then copied to a PAGE_EXECUTE_READWRITE
memory section and saved in the registry as a value with the name d33f351a4aeea5e608853d1a56661059 within the key
HKEY_CURRENT_USER\Console\0.

The embedded DLL is subsequently loaded into memory and executed, serving as the final payload.

Final Payload

The final payload delivered is ValleyRAT, which was initially identified by Qi An Xin and attributed to the threat actor The Great Thief of
Valley, also known as Silver Fox. In this section, we discuss the changes we observed in ValleyRAT, as compared to the previously
documented version.

Device fingerprinting

In the latest version of ValleyRAT, the malware developers added new data fields for improved device fingerprinting. The new data
collected and sent to the C2 server is bolded in the table below.

Offset Description Format (if any)

0x0 Hard coded value (set to 0x06)

0x2 System IP address

0x278 Idle time %d min

0x296 Computer name

0x2FA Windows version

https://www.secrss.com/articles/52018
https://www.proofpoint.com/us/blog/threat-insight/chinese-malware-appears-earnest-across-cybercrime-threat-landscape

9/13

Offset Description Format (if any)

0x35E ntdll.dll version

0x39A Number of processors %d

0x412 HDD & storage device info HDD:%d WW %d Gb Free %d Gb Mem: %d Gb %sFree%d
Gb

0x5A2 GPU info %s%s %d %d

0x6CE Foreground window name

0x8CC Value of name GROUP of reg key Network/AppEvents
(默认 by default)

0x930 Hardcoded value (set to 1.0)

0x994 Value of name REMARK of reg key Network/AppEvents
(2024.3.6 by default)

0x9F8 System uptime 运:%s 开:%d.%d.%d %d:%d:%d

0xA5C RAT architecture (hardcoded X86) followed by victim
system architecture.

X86 %s

0xA70 Integrity level to check privilege followed by victim
system username.

低/%s (Low), 中/%s (Medium), 高/%s(High), 系
统/%s(System)[one of this values]

0xAD4 Full path of the current process.

0xCDC Is camera available 有(have), “X”[one of this values]

0xCE4 Tencent QQ data

0xEE2 Anti-virus data

0xF46 System language

0xF86 Monitor resolution

0x1184 System directory

0x11E8 System ID

Table 2: Device fingerprinting information collected by ValleyRAT.

Bot ID generation

The malware developers also made changes to the bot ID generation process. While the hashing algorithm remained the same, the
data utilized for the algorithm was modified. The malware now creates an MD5 hash with the following values as arguments:

computerName

numberOfProcessors

10/13

ntdllVersion

systemIP

integrityLevelfollwedbyUsername

profileGuid

The code sample below shows the algorithm written in Python.

import hashlib

def botIDGeneration(computerName, numberOfProcessors, ntdllVersion, systemIP, integrityLevelfollwedbyUsername,
profileGuid):

 data = computerName.encode("utf-16le")

 data += ntdllVersion.encode("utf-16le")

 data += systemIP.encode("utf-16le")

 data += b'\x20\x00'

 data += numberOfProcessors.encode("utf-16le")

 data += "X86".encode("utf-16le")

 data += integrityLevelfollwedbyUsername.encode("utf-16le")

 data += profileGuid.encode("utf-16le")

 data += b'\x00\x00'

 result = hashlib.md5(data).hexdigest()

 print(result)

New commands

Finally, the malware developers introduced new commands, which are bolded in the table below.

Opcode Description

0x1 Load plugin.

0x3 Capture a screenshot of the desktop window and retrieve the name of the foreground window and last input
time.

0x4 Capture a screenshot of the entire desktop window.

0x5 Drop and execute a file.

0x6 Download and execute a file from a specified URL using InternetReadFile.

0x7 Set the values of the names GROUP and REMARK in the registry key Network/AppEvents.

0x8 Process filtering using CreateToolhelp32Snapshot.

0xA Capture a screenshot of the desktop window, where the x and y coordinates of the upper-left corner of the
destination rectangle used by the StretchBlt API are determined by C2.

0xB Clear the Windows event log using the ClearEventLogW function.

0xC Restart the current process by creating the same process as a child process and subsequently terminating the current
process.

0xD Exit the current process.

0xE Forced logoff.

0xF Forced reboot.

0x10 Forced shutdown.

11/13

Opcode Description

0x11 Change the loading method to a puppet process or an exported function.

0x12 Configuration migration.

0x64 Set the value of the name "IpDatespecial" in the registry key HKEY_CURRENT_USER\Console.

0x65 Delete the value named "IpDatespecial" from the registry key HKEY_CURRENT_USER\Console.

0xC9 Retrieve the name of the foreground window and last input time.

Table 3: Commands implemented by ValleyRAT.

Conclusion

ValleyRAT is developed by a China-based threat group that continues to update the code including the ability to capture screenshots
of an infected system and manipulate system events (which are common RAT features). ValleyRAT utilizes a convoluted multi-stage
process to infect a system with the final payload that performs the majority of the malicious operations. This staged approach
combined with DLL sideloading are likely designed to better evade host-based security solutions such as EDRs and anti-virus
applications.

The Zscaler Cloud Sandbox has consistently been successful in detecting this campaign and its many variants. Zscaler ThreatLabz
will continue to monitor and track these loaders as well as ValleyRAT, and share its findings with the wider community.

Zscaler Coverage

The figure below depicts the Zscaler Cloud Sandbox, showing detection details for ValleyRAT.

Figure 4: Zscaler’s multilayered cloud security platform detects indicators related to ValleyRAT at various levels.

In addition to sandbox detections, Zscaler’s multilayered cloud security platform detects indicators related to ValleyRAT at various
levels with the following threat name:

Win32.RAT.ValleyRAT

Indicators Of Compromise (IOCs)

https://threatlibrary.zscaler.com/?threatname=ValleyRAT

12/13

Host indicators

Type Stage Indicators Description

MD5 First stage 984878f582231a15cc907aa92903b7ab
56384012e4e46f16b883efe4dd53fcb0
8c0cde825ee2d3c8b60cd2c21d174d4c
85f1c63c40918eb300420152eaf78e2c
0b63f0b83f78dff04ae26fe6b1da3b29
81ab4d6b9a07e354b52a18690f98b8aa
b79c69bb5d309b07e10a316ee9c2223e
ddb3c71de77a18421f6e86bc9fec6697
eb953e5f2a3eb68756f779b3fa4d5c4e

Packed first stage downloader.

MD5 First stage 8995fbb4679ddd1516eacb3e453cb1ba
58f7311956c41e99f630286baa49d0ac
cc31928547ea412b9c7655ce958574bd
043b4cbe238bcf0b242dc2874e275bbc
019a5c4e67492e412f08758a06b3b354
abf0e40513a9d614266359e56ca54f90
2c6a865a746ca9f37f9381aa64c2c1eb
00296149b1ec62f8280ba0b3d08152ee
02c1f92036278dfeabdc89d1a17da28f
c2ad2a683ff1898dd692e7d856c13d44
e9c4b65d39f73033d6ec3ee79bd39083
4df3bf214daaaafee88c455a384a4421
0d222e3084f9359a555acc3205c789fb
92ae1aff368611d62afe51d43c91bf0b

First stage downloader.

MD5 Second stage 9aec2351a3966a9f854513a7b7aa5a13 Second stage loader DLL.

MD5 Third stage 0a55af506297efa468f49938a66d8af9 Third stage shellcode.

MD5 Fourth stage 442f4ea7a33d805fb8944eb267b1dfad Fourth stage DLL.

MD5 Final payload C563f62191ea363259939a6b3ce7f192 ValleyRAT

Network indicators

Type Indicator Description

URL hxxp[:]//hotshang[.]com/
hxxp[:]//119[.]28[.]41[.]143/
hxxp[:]//124[.]156[.]134[.]223/
hxxp[:]//101[.]33[.]117[.]200/
hxxp[:]//43[.]129[.]233[.]146/
hxxp[:]//43[.]132[.]212[.]111/
hxxp[:]//43[.]129[.]233[.]99/
hxxp[:]//119[.]28[.]32[.]143/
hxxp[:]//43[.]132[.]235[.]4/

C2 URL.

URL hxxps[:]//2024aasaf[.]oss-cn-hongkong[.]aliyuncs[.]com/TARE961424[.]exe
hxxp[:]//wenjian2024[.]com/57683653%E5%87%BD%E6%95%B0[.]exe
hxxps[:]//2024aasaf[.]oss-cn-hongkong[.]aliyuncs[.]com/TARE965624%20[.]exe
hxxps[:]//2024fapiao[.]oss-cn-
hongkong[.]aliyuncs[.]com/82407836%E5%87%BD%E6%95%B0[.]exe
hxxps[:]//scpgjhs[.]com/TARE965624[.]exe
hxxps[:]//tzsxr[.]com/customer[.]exe
hxxp[:]//mtw[.]so/6oAUvN
hxxp[:]//kfurl[.]cn/kvukj
hxxp[:]//mtw[.]so/5Fytvq
hxxps[:]//fpwenj[.]zhangyaodong5[.]com/TARE985624[.]exe
hxxps[:]//2024aasaf[.]oss-cn-hongkong[.]aliyuncs[.]com/TARE967124[.]exe

Parent URL for
downloader.

MITRE ATT&CK Techniques

13/13

ID Technique Name

T1036 Masquerading

T1574.002 Hijack Execution Flow: DLL Side-Loading

T1055 Process Injection

T1140 Deobfuscate/Decode Files or Information

T1010 Application Window Discovery

T1057 Process Discovery

T1082 System Information Discovery

T1083 File and Directory Discovery

T1120 Peripheral Device Discovery

T1518.001 Security Software Discovery

T1071 Application Layer Protocol

T1659 Content Injection

T1113 Screen Capture

T1529 System Shutdown/Reboot

Get the latest Zscaler blog updates in your inbox

By submitting the form, you are agreeing to our privacy policy.

https://attack.mitre.org/techniques/T1036
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1055
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1010
https://attack.mitre.org/techniques/T1057
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/techniques/T1083
https://attack.mitre.org/techniques/T1120
https://attack.mitre.org/techniques/T1518/001
https://attack.mitre.org/techniques/T1071
https://attack.mitre.org/techniques/T1659/
https://attack.mitre.org/techniques/T1113/
https://attack.mitre.org/techniques/T1529/
https://www.zscaler.com/privacy/company-privacy-policy

