New Threat: A Deep Dive Into the Zergeca Botnet

@ blog.xlab.gianxin.com/a-deep-dive-into-the-zergeca-botnet

Alex.Turing June 19, 2024

Background

On May 20, 2024, while everyone was happily celebrating the holiday, the tireless xLab
CTIA(Cyber Threat Insight Analysis) system captured a suspicious ELF file around 2
PM, located at /usr/bin/geomi. This file was packed with a modified UPX, had a magic
number of 0x30219101, and was uploaded from Russia to VirusTotal, where it was not
detected as malicious by any antivirus engine.

Later that evening at 10 PM, another geomi file using the same UPX magic was uploaded to
VT from Germany. The suspicious file path, modified UPX, and multi-country uploads
caught our attention. After analysis, we confirmed that this is a botnet implemented in
Golang. Given that its C2 used the string "ootheca," reminiscent of the swarming Zerg in
StarCraft, we named it Zergeca.

Functionally, Zergeca is not just a typical DDoS botnet; besides supporting six different
attack methods, it also has capabilities for proxying, scanning, self-upgrading, persistence,
file transfer, reverse shell, and collecting sensitive device information. From a network
communication perspective, Zergeca also has the following unique features:

e Supports multiple DNS resolution methods, prioritizing DOH for C2 resolution.
e Uses the uncommon Smux library for C2 communication protocol, encrypted via XOR.

During the investigation of Zergeca's infrastructure, we found that its C2 IP address,
84.54.51.82, has been serving at least two Mirai botnets since September 2023. We
speculate that the author behind Zergeca accumulated experience operating the Mirai
botnets before creating Zergeca.

On June 10, xLab command tracking system captured a vector 7 DDoS command that the
current samples did not support, indicating that Zergeca's author is actively developing and
updating, with new samples yet to be discovered. Our persistence paid off when we captured
a new sample on the 19th that supports the vector 7. Currently, the detection rates for
Zergeca samples and C2 are very low. Considering Zergeca's potential threat in DDoS
attacks, we have decided to release this article to share our findings with the community.

Sample & C2 Detection

1/20

https://blog.xlab.qianxin.com/a-deep-dive-into-the-zergeca-botnet

From the sample perspective, we captured a total of 5 Zergeca samples. While their

functions are nearly identical, there is a significant discrepancy in their detection rates. How

can this anomaly be explained? Most antivirus vendors have categorized the sample

23ca4ab1518ff76f5037eal12f367a469 as Generic Malware. \We speculate that the detection

of Zergeca by antivirus software is based on file hash. Therefore, as long as the hash
changes, the detection effectiveness diminishes.

MD5 Detection First Seen Telemetry
23ca4ab1518ff76f5037ea12f367a469 28/64 2024.05.20 Russian
9d96646d4fa35b6f7c19a3b5d3846777 0/67 2024.05.20 Germany
d78d1c57fb6e818eb1b52417e262ce59 1/67 2024.05.22 China
604397198f291fa5eb2c363f7c93c9bf 1/66 2024.06.11 France
60f23acebf0ddb51a3176d0750055¢cf8 0/67 2024.06.18 France

To verify our hypothesis, we appended the 4-byte string "Xlab" to the end of the file
23ca4ab1518ff76f5037ea12f367a469 and re-uploaded it to VirusTotal. The detection rate
changed to 9/67, partially confirming our speculation.

\

@ 9/67 security vendors and no sandboxes flagged this file as malicious

9 A Follow~ C Reanalyze & Download »/ = Similar ~ More v
/67
ceabedaal5d7c6a2b2c794a660afaf96d43462e0b74436600a. .. Size Last Modification Date &Q
- 2.81 MB 4 minutes ago ELF
Community 7db9189afd00c2b60b7f892ef1b86d040fb1cf02145c7d2e414. .. g

Score of eabits

Additionally, the current detection is based on the packed samples, after unpacking, the
detection rate drops to 0.

@ No security vendors and no sandboxes flagged this file as malicious
0 Follow~ C Reanalyze & Download = Similar v More Vv

c51cf3173da4fbfabas32efb2ae2479969694022d77816c174a6. .. Size Last Modification Date L&Q
8.42 MB a moment ago ELF
Community 7db9189afd00c2be0b7f892ef1b86d040fb1cf02145¢c7d2e414. .. &
Score elf 64bits

DETECTION DETAILS RELATIONS BEHAVIOR C CONTENT TELEMETRY COMMUNITY

2/20

From the Domain Perspective, the four samples share two C2 domains that were created
on the same day. The samples prioritize using DOH (DNS over HTTPS) for C2 resolution,
which obscures the relationship between the samples and the C2 domains to some extent.
Because of this, VirusTotal couldn't even associate the C2 domains with the
samples, resulting in a naturally low detection rate.

Domain Detection Create date

ootheca.pw 1/93 2024.04.28

ootheca.top 1/93 2024.04.28
Profile of 84.54.51.82

The two C2 servers of Zergeca point to the same IP address, 84.54.51.82. According to our
data, this IP has been in use since September 2023, serving a variety of roles. During this
period, it has acted as a Scanner, Downloader, Mirai botnet C2, and Zergeca botnet C2.

Scanner

Starting from September 18, 2023, scanning activities commenced, primarily targeting
protocols such as Telnet, HTTP, and socks4. The main ports scanned include23, 8080,
3128, 80, and 8888.

18.4K © ByDay By Hour

| Ports Scanned List Sort by Scanning Count

scan protacol (4) ')

sockss 788« Scanned Ports FirstSeen = LastSeen & Count * Tags payload

HTTP 5884

TELNET 3018 TELNET/23 2023-10-18 20240422 3618 [rever [rener |
Tcp 134
Teprz 2023-10-18 20240422 72 [rceinin.. |
scan port (205) HTTR/SSSS 2024.03-17 2024.04-10 59 :] :]
23 3690
HTTP/80B 2024-03-17 20240410 70 [Hrreer.. [sockss... |
8080 1461
3128 819 HTTP/83 2024-0317 20240410 6 [Hrreer.]
80 804
HTTPi6a 2024-03-17 20240410 12 [Hrreer.. [sockss... |
8288 494
More HTTP/59394 2024-0317 20240410 17 [Hrreer.]

Mirai Downloader&C2

From September and October 2023 to April 2024, 84.54.51.82 was primarily used as the
Loader IP and Downloader IP for the Mirai botnet.

3/20

e 2023.09 - 2023.10, it was used as the Loader and Downloader IP to implant the
following related samples.

#Downloader

http://84.54[.51.82/jaws

http://84.54[.51.82/bin
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.x86
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/dh0fa4b8db0333367e9bdal3ah68
b8042.spc
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.sh4
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/dh0fa4b8db0333367e9bdal3ah68
b8042.ppc
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.mpsl
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.mips
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fadb8db0333367e9bda3ab68
b8042.m68k
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.1686
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fadb8db0333367e9bda3ab68
b8042.arm7
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.armé6
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fadb8db0333367e9bda3ab68
b8042.arm5
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bdal3ah68
b8042.arm
http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fadb8db0333367e9bda3ab68
b8042.arc

#CC

mirai://bot.hamsterrace.space:59666

e 2024.04, it was used as the Loader IP to implant the following related samples.

#Downloader

http://145.239[.108.150/Fantazy.sh

http://145.239[.108.150/Fantazy/Fantazy.armb
http://145.239[.108.150/Fantazy/Fantazy.armé
http://145.239[.108.150/Fantazy/Fantazy.mpsl
http://145.239[.108.150/Fantazy/Fantazy.sh4
http://145.239[.108.150/Please-Subscribe-To-My-YT-Channel-VegaSec/lisequal9.x86
http://145.239[.108.150/cache

CC

mirai://145.239.108.150:63645

4/20

Zergeca C2

Starting from April 29, 2024, 84.54.51.82 began being used as the C2 server for Zergeca.
The relevant C2 domains and their resolution records are as follows:

| Resolution Records

Domain Name FirstSeen = LastSeen & Count =

Tag
cotheca.pw 2024-04-29 22:23:32 2024-06-1319:13:26 9120 :]

ootheca.top 2024-05-23 04:33:06 2024-06-13 19:12:57 9235

bot hamsterrace space 2023-09-18 04:34:25 2023-10-12 19:23:06 153 Ly | I < |

Exploits

In our observation, the primary methods used by 84.54.51.82 to propagate samples are
Telnet weak passwords and certain known vulnerabilities. The relevant vulnerability
identifiers are as follows:

Telnet Weak Password
CVE-2022-35733
CVE-2018-10562
CVE-2018-10561
CVE-2017-17215
CVE-2016-20016

DDoS Statistics

From early to mid-June 2024, the Zergeca botnet primarily targeted regions such as
Canada, the United States, and Germany. The main type of attack was ackFlood (atk_4),
with victims distributed across multiple countries and different ASNs.

5/20

| Attack Instruction Trends | Targeted IP Location Distribution Global | China

attack_count victim_count
110 41 O ByDay () By Hour ﬁ -
/w .
9-12
5-8
1-4
| Attack Instructions List
CC Server (3) Export as CSV car o,
5 Botnet Fami Targeted € Targeted A
pesastez A StartTime = Duration Count = C&C Server CBC IP Port Type o "
- ly ountries SN
. 202406152 AS1627610V
> 1 cothecapw BAS45182 63041 ZergOoth atk 4 Canada
3:25:03 HsAs
CC Port (1) 2024-06-15 1 AS16276I0V
> 1 BA545182 BASASIE2 63041 ZergOoth atk 4 Canada
9:26:23 ¢ HSAS
63041 110
2024-06-15 1 AS1627610V
> 1 84545187 84545182 63041 ZergOoth atk 4 Canada
attack_type (7) 9:26:25 - HSAS
atk 4 54 2024-06-15 1 AST6276/0V
» 1 84545187 BASAS1E2 63041 ZergOoth atk 4 Canada
5 2 9:26:28 HSAS
a3 v 20240615 1 AS1627610V
> 1 84545182 84545182 63041 ZergOoth atk 4 Canada
atk 7 6 0:52:16 HsAs
_2 4
2024-06-151 AS1627610V
More. » 1 cothecapw BA545182 63041 ZergOoth k4 Canada
0:54:35 HSAS
2024-06-151 AS16276I0V
> 1 cothecatop 84545182 63041 ZergQoth atk 4 Canada
0:55:34 HSAS
37
29 AS212317H
2024-06-150 United State
> 1 84545187 84545182 63041 ZergOoth atk 4 etzner Onlin
2 4:33:00 c s of America
e GmbH
5
4 AS24940He
2024-06-150
> e 1 84545187 84545182 63041 ZergOoth atk 4 Germany tzner Online
) GmbH
victim asn (12) AS2123171
, 0206150 1 th 84545187 63041 ZergOoth et rted State ol
AS16278IOVH SAS “ > Gesu ootheca top 5: ergOot atk s of Aoy PUer ORl
& GmbH
AS24940Hetzner Online GmbH 23
AS212317[Hetzner Online GmbH 15 202406150 AS24940lHe
AS006EIDatacamp Limited . > st 1 cothecatop BAS45182 63041 ZergOoth atk 4 Germany ‘Gmc;sr e
mi

ASB34IPXO 5

Reverse Analysis

The four Zergeca samples in our observation are all designed for the x86-64 CPU
architecture and target the Linux platform. The presence of strings like "android," "darwin,"
and "windows" in the samples, along with Golang's inherent cross-platform capabilities,
suggests that the author may eventually aim for full platform support.

This article focuses on the earliest captured sample for detailed analysis. The sample is
packed with UPX and has a magic number of 0x30219101. For this type of modified UPX
packer, simply changing the magic back to the standard "UPX!" allows for unpacking with the
command upx -d.

MD5:23cad4ab1518ff76f5037eal2f367a469

Mgaic:ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
corrupted section header size

Packer: UPX

Version:0.0.01c

After unpacking, it becomes evident that Zergeca is a botnet implemented in Go language.
The symbols are not obfuscated, making reverse analysis relatively straightforward.

6/20

geomi_bot silivaccine Sibling();
geomi_bot silivaccine Start();
geomi_bot persistence service();
geomi_bot proxy Start();

geomi bot zombie New();

The figure above shows a code snippet of the main_main function. Functionally, it can be
broken down into four distinct modules. The persistence and proxy modules are self-
explanatory, with the former ensuring persistence and the latter handling proxying. The
silivaccine module is used to remove competing malware, ensuring exclusive control over
the device. The most crucial module is zombie, which implements the full botnet functionality.
It reports sensitive information from the compromised device to the C2 and awaits
commands from the C2, supporting six types of DDoS attacks, scanning, reverse shell, and
other functions.

0x00: String Decryption

Zergeca uses XOR encryption for many sensitive strings. Using IDA, we found that the XOR
key is referenced 240 times across various functions. Each decryption involves two uses of
the XOR key: one for initialization and one for decryption. So there are 120
decryption operations needed.

I@ xrefs to xor_key ‘ O X
Direction Typ Address Text]
E= geomi_bot revshell determineShell:loc 7C5BCE mov rdi, cs:xor_key
= po.. T geomi_bot revshell determineShell+14F mov 18, cs:xxor_key
E= geomi_bot revshell determineShell:loc 7C5CEE mov rdi, cs:xxor_key
= po.. T geomi_bot revshell determineShell+26F mov r8, csxor_key
= po.. T geomi_bot revshell determineShell:loc_7C5EQE mov rdi, cs:xxor_key
62 po.. T geomi_bot zombie Zombie Connect+566 mov r11, cs:xor key
= po.. r aeomi bot zombie Zombie Connect:loc 7C6F73 mov r8, csxor key VY
Cancel Search Help

The XOR key is initially setto EC 22 2B A9 F3 DD DF 1C CD 46 AC 1E, but only the first six
bytes (EC 22 2B A9 F3 DD) are used.

7/20

{

for (1 =0LL; 1 < 5; ++1)

if (lvil)
runtime_panicdivide();
vl3 = vi1l;

vid = i % v11;

}

if (vl4 >= xorkey len)

runtime panicIndex();
*(_BYTE *)(vie + 1) = geomi[1] ™ *((BYTE *)xor_key + vi14);
vlil = v13;

Manually decrypting 120 times is impractical. Although the decryption process isn't confined
to a single function, CFG analysis revealed a specific pattern in most decryption-related code
blocks:

1.
2.

The XOR block has one predecessor and one successor.
The predecessor block's first instruction is mov, with the first operand being an address
pointing to the original length of the XOR key.

. The successor block's first instruction is cmp, with the first operand being a number

indicating the ciphertext's length.

. The predecessor block's predecessor's first instruction is 1ea, with the first operand

being an address pointing to the ciphertext's starting address.

8/20

s

loc_7BB792:

cmp rcx, OAh|
jge loc_7BB3A9

rsi, byte_ 89BBC2 |

esi, byte ptr [rcx+rsi]
rdx, rdx

loc_7BB860

loc_7BB778:

mov rdi, cs:xor_key

movzx edi, byte ptr [rdi+rdx]
xor edi, esi

mov [rbx+rcx], dil

inc rcx

mov rax, rbx

- : : mov rdx, rg XOI block
rdx, rdi Pl
short loc_7BB778

rdi, cs:xorkey len
rbx, rax

rax, rcx

ré, rdx

By identifying these patterns, we can automate the decryption process and restore all
encrypted strings efficiently.We implemented IdaPython decryption script in the Appendix
with the following results: 111 successful decryptions and 9 mismatches.

geomi_bot_silivaccine_init @x722bcé matched, ciphertext at ex895aef <----> b'kaiten’
geomi_bot_silivaccine_init @x722cf8 matched, ciphertext at @x89b8ac <----> b'kdevtmpfsi'
geomi_bot_silivaccine_init @x722e2a matched, ciphertext at @x896b33 <----> b'kinsing'
geomi_bot_silivaccine_init @x722f66 matched, ciphertext at @x899c¢71 <----> b'kthreaddi’
geomi_bot_silivaccine_init 6x723098 matched, ciphertext at ©x89b8b6 <----> b'meminitsrv’
geomi_bot_silivaccine_init @x7231ca matched, ciphertext at @x895al5 <----> b'minerd’
geomi_bot_silivaccine_init @x723306 matched, ciphertext at @x895alb <----> b'mozi.a’
geomi_bot_silivaccine_init 6x723438 matched, ciphertext at ©x895a2l <----> b'Mozi.a’
geomi_bot_silivaccine_init @x72356a matched, ciphertext at @x895a27 <----> b'mozi.m’
geomi_bot_silivaccine_init 6x7236a6é matched, ciphertext at ©x895a2d <----> b'Mozi.m’

geomi_bot_silivaccine_init @x7237d8 matched, ciphertext at @x895a33 <----> b'Nbrute’
geomi_bot_silivaccine_init @x72390a matched, ciphertext at ©x898la7 <----> b'pdenferd'
geomi_bot_silivaccine_init @x723a46 matched, ciphertext at ©x894e9b <----> b'srvee’
geomi_bot_silivaccine_init @x723b78 matched, ciphertext at @x895a39 <----> b'start_’
geomi_bot_silivaccine_init 6x723caa matched, ciphertext at @x898laf <----> b'startapp'

The 9 mismatched codes are distributed across six functions. Among them, the
packets__cursor Read/WriteString functions handle network packet encryption/decryption
and can be ignored.

9/20

gomi_bot_zombie__Zombie_Connect
geomi_common_utils_init_0_funcl,
geomi_bot_discovery_Run,
geomi_common_packets__Cursor_WriteString,
geomi_common_packets__Cursor_ReadString,
geomi_common_utils_RandomUserAgent

For the remaining four functions, the issue was that the ciphertexts were arrays rather than
single entries, causing the pattern match to fail. For example, in the RandomUserAgent
function, the user_agent_1list contains 1000 encrypted user agents.

data:0000000000C56FA0 user _agent list dg offset off C668C0O
data:0000000000C56FA0

data:0000000000C56FA8 qword CS56FA8 dg 1000
data:0000000000C56FA8

data:0000000000C56FBO dg 1000

For such cases, we can use the manual decode function, where the first parameter is the
starting address of the ciphertext array and the second parameter is the number of array
elements.

ey=b"\XEC\x22\x2B\XA9\xF3\xDD"

def manual_decode(base,cnt):
for 1 in range(cnt):
start=idc.get_qword(base)
addr=idc.get_qword(start+i*16)
size=idc.get_qgword(start+8+i*16)
buff=idc.get_bytes(addr, size)
out=bytearray()
for k,v in enumerate(buff):
out.append(v N key[k%6])

print(out.decode())

manual_decode(0Ox000000000C56FAD, 1000) #user agent

manual_decode (Ox0000000000C56F80, 0xc) #opennic dns
manual_decode (0Ox000000000C56C40,2) # c2

Decrypted examples include various user agents, OpenNIC DNS server, and C2s.

10/20

Mozilla/5.@ (X11; Ubuntu; Linux x86_64; rv:37.0) Gecko/20100101 Firefox/37.8
Mozilla/5.@ (X11; Ubuntu; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.8
Mozilla/5.@ (X11; Ubuntu; Linux x86_64; rv:39.8) Gecko/208180101 Firefox/39.8
Mozilla/5.@ (X11; Ubuntu; Linux x86_64; rv:48.80) Gecko/208180101 Firefox/4@.8

Mozilla/5.© AppleWebKit/999.8 (KHTML, like Gecko) Chrome/99.@ Safari/999.e@
168.235.111.72
152.53.15.127
194.36.144.87
80.152.283.134
217.160.70.42
178.254.22.166
81.169.136.222
185.232.68.212
287.89.1e2.10
185.181.61.24
137.220.52.23
51.158.188.203
ootheca.pw:63041
ootheca.top:63041

With all strings successfully decrypted, we can now begin reverse-engineering Zergeca's
various functionalities.

0x01: Persistence Module

Zergeca achieves persistence on compromised devices by adding a system service
geomi.service. This service ensures that the Zergeca sample automatically generates a
new geomi process if the device restarts or the process is terminated.

[Unit]

Description=
Requires=network.target
After=network.target
[Service]
PIDFile=/run/geomi.pid
ExecStartPre=/bin/rm -f /run/geomi.pid
ExecStart=/usr/bin/geomi
Restart=always

[Install]
WantedBy=multi-user.target

Experiment A

When running the Zergeca sample on a virtual machine and restarting the device,
geomi.service automatically launches the Zergeca sample. The resulting process named

geomi had a PID of 897. Terminating this process with kill -9 897 immediately spawned a

new geomi process with PID 8460.

11/20

fhome/kali

Active Internet connections (w/o servers)
Proto Recv-0Q Send-0Q Local Address Foreign Add State PID/Program name
tcp 4] @ 192.168.96.129:59744 84, DL ESTABLISHED |8 i

Shome/kali

897

fhome/kali

Active Internet connections (w/o servers)
! Send-0 Local Address Foreign Address State PID/Program name
2 b 34 7. .19 3 TABLISHED 8

SYN_SENT
ESTABLISHED 8!

When network administrators discover a geomi process and suspicious traffic on a device,
they can attempt the following cleanup steps:

1. Delete /etc/systemd/system/geomi.service
2. Delete the sample file referenced by the ExecStart parameter
3. Terminate the geomi process

0x2: Silivaccine Module

To monopolize the device, Zergeca includes a list of competitor threats, covering miners,
backdoor trojans, botnets, and more. Some familiar names on the list include mozi, kinsing,
and various mining pools. Zergeca continuously monitors the system and terminates any
process whose name or runtime parameters match those on the list, deleting the
corresponding binary files.

Mozi.a com.ufo.miner Kkinsing kthreaddi
kaiten srv00 meminitsrv .javae
solr.sh monerohash minexmr c3pool
crypto-pool.fr f2pool.com xmrpool.eu

Experiment B

We renamed the system program /bin/sleep to Mozi.a and ran it. The Mozi.a process was
killed, and the corresponding binary file was deleted.

12/20

fhome/kali/Zergeca
/bin/sleep Mozi.a

fhome/kali/Zergeca

/home/kali/Zergeca
666
killed ./Mozi.a 666

fhome/kali/Zergeca

0x3: Zombie Module

Zergeca resolves the C2 IP address using the geomi_common_utils Resolve function, which
supports four resolvers: Public DNS, Local DNS, DoH (DNS over HTTPS), and OpenNIC.

5= xrefs to geomi_common _utils_doh U K
Direction Tye Address Text

[p égeomi_common_utiIs_ResoIve+1 AC écall geomi_common_utils doh

[po.. j .text:00000000006CAEF9 jmp geomi_common _utils doh

Line 1 of 2

Cancel Search Help
Zergeca prioritizes two DoH resolvers, masking C2 domain resolution in DNS traffic.

https://cloudflare-dns.com/dns-query
https://dns.google/resolve

DNS gStandard query Oxddfd A cloudflare-dns.com OPT

DNS Standard query response @xd4f4 A cloudflare-dns.com A 164.16.248.249 A 164.16.249.249 OPT

DNS Standard query response @x5da5 AAAA cloudflare-dns.com AAAA 2606:4700::6810:f8F9 AAAA 26086:47060::6810:F9F9 OPT
DNS Standard query @x7db8 A checkip.amazonaws.com OPT

DNS Standard query response @x7db8& A checkip.amazonaws.com CNAME checkip.check-ip.aws.a2z.com CNAME checkip.ap-sou
DNS Standard query @x5d@d AAAA api.opennic.org OPT

DNS Standard guery @x4837 A api.opennic.org OPT

DNS Standard guery @x5dd5 A ipinfo.io OPT

DNS Standard guery response @x5dd5 A ipinfo.io A 34.117.186.192 OPT

DNS Standard guery response @x4837 A api.opennic.org A 116.283.98.199 OPT

After obtaining the C2 IP, the bot reports device sensitive information encapsulated in a
DeviceInfo structure, including details like "country, public IP, OS, user groups, runtime
directory, and reachability".

13/20

struct DevicelInfo

{

Country string
PlucAddress byte[]
MAC string

0S string

ARCH string

Name string
MachineId string
Numcpu uint32
CPUMODEL string
username string
uid string

gid string

Users []string
Uptime time.Duration

PID

uitn32

Path string
checksum [Juint8
version string
Reachable bool

}

The bot then awaits commands from the C2, processing them with different handlers.

The supported functions are as follows:

ID
0x01

| £] geomi bot proxy Handle

[E geomi_bot filetransfer Handle
Eﬂgeom[botfmmhdLHandb

[E geomi_bot zombie Zombie HandleAttack
[E geomi_bot zombie HandleUpdate

| 7] geomi_bot zombie handleDiscovery

Task

Proxy

0x02

Reverse Shell

0x03

FileTransfer

0x05

Self-update

0Oxa0

DDoS

Oxb0

Stop Discovery

Oxb1

The DDoS functionality supports the following seven attack vectors:

Start Discovery

text
text
text
text
text
text

000000000071E400
00000000007C57A0
00000000007C5B40
00000000007C6340
00000000007C68A0
00000000007C6B40

14/20

Sub-ID Attack Vector

1 minecraft

2 httpPPS

3 synFlood

4 ackFlood

5 pushFlood

6 rstFlood

7 pushOVHFlood

Communication Protocol

Zergeca uses smux for Bot-C2 communication. Smux(Simple MUItipleXing) is a Golang
multiplexing library that relies on underlying connections like TCP or KCP for reliability and
ordering, providing stream-oriented multiplexing. Smux packets feature an 8-byte header:
VERSION(1B) | CMD(1B) | LENGTH(2B) | STREAMID(4B) | DATA(LENGTH).

From an analysis perspective, only the LENGTH and DATA fields are of primary concern. The
captured traffic includes various messages such as online status, device information
reporting, command 0xb0, and heartbeat messages.

0O00GEEO 01 00 00 00 03 @@ @@ @0 ...
00000000 01 02 04 00 03 00 00 00 13 3a 1279 = Y
0000000C 01 02 d5 00 03 00 00 00
0000001C :
0000002C
0000003C
0000004C
0000005C
0000006C
0000007C
0000008C
0000009C
©0OBROAC
000000BC
000000CC
©00000DC
OOOBOOES @1 02 ©5 00 03 00 00 00 02 00 02 01 00 L.iiieees eeaes
0000PEP8 01 92 98 00 03 00 00 00 |bO 6@ @5 00 00 00 00 e0
0000OOF6 ©1 02 ©5 00 03 00 00 00 02 00 02 01 00 .iieeeen eenes
00000103 01 02 03 00 03 00 00 00
©000010E ©1 02 03 00 03 00 00 00
00000119 ©1 03 00 00 00 00 00 00 il

15/20

https://github.com/xtaci/smux?ref=blog.xlab.qianxin.com

Online Message:

¢ Length: 0x04 bytes
e Content: Hardcoded 13 3a 12 79

Device Info Report:

o Length: Oxd5 bytes (varies by device)
e Content (excluding IP): XOR encrypted with key EC 22 2B A9 F3 DD
o Decrypted Devicelnfo as follows

pos:

pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:

pos:

0x4 len:
pos 0x7 len:
Oxc len:

Ox1f
0x26
Ox2d
0x35
0x5b
0x86
0x86
Oxa2
Oxab
Oxb6

Oxcc len:

len:
len:
len:
len:
len:
len:
len:
len:
len:
len:
b' rAxbd>\xcfY\x15[\xd9]\xa4\xe7m\x86\x9f\xbf\x895\xaa\x19\xe8"'
OX7 <----> b'0.0.01c’

OX2 <----> b'JP'

4 <----> 45,14 . XX.XX
0x11 <----> b'72:ba:
0x5 <----> b'linux'
OXx5 <----> b'amd64'

Command 0xb0 Message:

e Length: 0x08 bytes
e Function: Stop scanning

Heartbeat Message:

e Length: 0x03 bytes
e Content: ff 00 00

29:€9:b8:08"'

OX6 <----> b's22262"
0X20 <----> b'b19642a3c672d4f20chdb5b1569bF98f "
0x29 <----> b'Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz'

Ox4 <----> b'root'

Ox4 <----> b'root'

OXx2 <----> b'\x92\xf1'

Oxe <----> b'/usr/bin/geomi’
0x14 <---->

Let's take a look at the DDoS-related packets. The formatis cmd (1 byte) + length (2
bytes) + sub_cmd (1 byte) + target_info (length-1), where cmd is 0xa0, indicating a
DDoS command, and sub_cmd is 0x4, indicating an ACK flood attack. The target_info field
focuses on the first 4 bytes, which represent the target IP. For example, 1f 06 10 21
corresponds to the IP address 31.6.16.33.

00000128
00000138
00000148
00000158

01 02 [2d 00| 03 00 00 0O
00 00 00 Pa df 13 05 9f dd ec da @c 18 9a 00 01

C3 00 00 00 00 00 00 of
01 00 00 01 f4

a0 00 2a P4 1f @6 10 21

a0 00 G0 00 00 00 BB 00

16/20

When the Bot receives the aforementioned command, the resulting attack traffic aligns
perfectly with our analysis.

No. Time Destination Protocol Info

1599.. 1942 .489651 31.6.16.33 TCP 1752 = 38238 [ACK] Seq=1 Ack=1 Win=32847 Len=8
1599.. 1942 .409699 31.6.16.33 TCP 51880 - 24181 [ACK] Seq=1 Ack=1 Win=1880 Len=8
1599.. 1942 .4@9757 31.6.16.33 TCP 38306 » 22145 [ACK] Seq=1 Ack=1 Win=1162 Len=8
1599.. 1942 .409785 31.6.16.33 TCP 5495 + 16618 [ACK] Seq=1 Ack=1 Win=1137 Len=@
1599.. 1942 .409385 31.6.16.33 TCP 11323 = 48861 [ACK] Seq=1 Ack=1 Win=473 Len=@
1599.. 1942 409823 31.6.16.33 TCP 59824 -+ 20129 [ACK] Seq=1 Ack=1 Win=122 Len=0@
1599.. 1942.409854 31.6.16.33 TCP 41283 - 26981 [ACK] Segq=1 Ack=1 Win=1830 Len=0
1599.. 1942 .489873 31.6.16.33 TCP 14417 - 49839 [ACK] Seq=1 Ack=1 Win=1686 Len=@
1599.. 1942.4@9924 31.6.16.33 TCP 24953 = 38618 [ACK] Seq=1 Ack=1 Win=53 Len=8
1599.. 1942 .489958 31.6.16.33 TCP 38929 = 35511 [ACK] Seq=1 Ack=1 Win=1162 Len=8
1599.. 1942 .409968 31.6.16.33 TCP 31741 » 22459 [ACK] Seq=1 Ack=1 Win=131 Len=@
1599.. 1942 .409985 31.6.16.33 TCP 56153 =+ 11883 [ACK] Seq=1 Ack=1 Win=467 Len=@
1599.. 1942 .418812 31.6.16.33 TCP 36535 = 17117 [ACK] Seq=1 Ack=1 Win=5811 Len=8
1599.. 1942 416622 31.6.16.33 TCP 41579 = 17043 [ACK] Seq=1 Ack=1 Win=1773 Len=0
1599.. 1942.418835 31.6.16.33 TCP 5563 = 59525 [ACK] Segq=1 Ack=1 Win=2868 Len=8
1599.. 1942.416858 31.6.16.33 TCP 48399 = 25736 [ACK] Seq=1 Ack=1 Win=521 Len=08
1599.. 1942.418856 31.6.16.33 TCP 59117 = 41886 [ACK] Seq=1 Ack=1 Win=3898 Len=8

Experiment C

Based on our network protocol analysis, we implemented a fake C2 to control the Bot and
observe its behavior upon receiving different commands. In this experiment, we sent the Bot
a 0xb1 command, which is to "start scanning."

0POOOREC ©1 02 05 00 03 00 00 60 02 00 02 00 00

00000008 ©1 02 08 00 03 00 00 00 bl @0 @5 @0 00 00 00 00
POOOOOFO ©O1 02 05 00 03 00 00 00 ©2 00 02 00 01
00000106 01 02 03 00 03 00 00 00 ff @0 00

Upon receiving this command, the Bot immediately began scanning 16 ports on randomly
generated IP addresses.

Destination Protocel Destination Port Info

Summary

Through reverse analysis, we gained initial insights into Zergeca's author. The built-in
competitor list shows familiarity with common Linux threats. Techniques like modified UPX
packing, XOR encryption for sensitive strings, and using DoH to hide C2 resolution

17/20

demonstrate a strong understanding of evasion tactics. Implementing the network protocol

with Smux showcases their development skills. Given this combination of operational

knowledge, evasion tactics, and development expertise, encountering more of their work in

the future would not be surprising.

This is our basic intelligence of Zergeca. We welcome unique insights from other companies,

such as Init Access. And readers can contact us on Twitter for more details.

I0C

Sample

23cad4ab1518ff76f5037eal2f367a469
9d96646d4fa35b6f7¢c19a3b5d3846777
d78d1c57fb6e818eb1b52417e262ce59
604397198f291fa5eb2c363f7c93¢c9bf

£68139904e127b95249ffd40dfeedd21
d7b5d45628aa22726fd09d452a9e5717
6ac8958d31542274596bd5206ae8fa96

pathced with "xlab" at the end of file
980cad4be8bf20fea5c34c5195013200

sample captured on 2024.06.19, support ddos vector 7

60f23acebf0ddb51a3176d0750055c T8

Domain

ootheca.pw
ootheca.top
bot.hamsterrace.space

IP

84.54.51.82 The Netherlands|None|None

Appendix

AS202685|Aggros Operations Ltd.

IdaPython Script

18/20

https://twitter.com/Xlab_qax?ref=blog.xlab.qianxin.com

Test script, only for 23ca4abl1518ff76f5037eal2f367a469
Modidy keyaddr,sizeaddr in your case

def decode(buf):
key=b"\XEC\Xx22\x2B\XA9\xF3\xDD"
out=bytearray()
for 1 in range(len(buf)):
out.append(buf[i]Akey[i%6])
return out

count=0
notcount=0
failedfunc=[]
successedfunc=[]

keyaddr=0x0000000000C56FCO
Sizeaddr=0x0000000000C56FC8

refs=XrefsTo(keyaddr, flags=0)
for ref in refs:
f_blocks = idaapi.FlowChart(idaapi.get_func(ref.frm), flags=idaapi.FC_PREDS)
for blk in f_blocks:
if blk.start_ea!=ref.frm:
continue
if len(list(blk.preds()))!=1 and len(list(blk.succs()))!=1:
continue
predblk=1ist(blk.preds())[0]
succsblk=1list(blk.succs())[0]

if idc.get_operand_value(predblk.start_ea,1)!=sizeaddr:

continue
if idc.get_operand_type(succsblk.start_ea,1)!=0x5:
print(idc.get_func_name(ref.frm), hex(ref.frm), "not matched")
notcount+=1
failedfunc.append(idc.get_func_name(ref.frm))
continue
ppredblk=1ist(predblk.preds())
if len(ppredblk)!=1:
continue
addr=idc.get_operand_value(ppredblk[0].start_ea,1)
size=idc.get_operand_value(succsbhlk.start_ea,1)
buf=idc.get_bytes(addr, size)
out=decode (buf)
count+=1
print(idc.get_func_name(ref.frm), hex(ppredblk[0].start_ea), "matched,
ciphertext at", hex(addr), "<---->" bytes(out))
successedfunc.append(idc.get_func_name(ref.frm))

print("\n-------------------- Statistic-------------------- ")
print(f'Success:{count}, Failed: {notcount}\n')
print("--------- Success Function--------- ")

19/20

print(set(successedfunc), '\n')
print("--------- Failed Function--------- ")
print(set(failedfunc), '\n")

20/20

