
1/20

Alex.Turing June 19, 2024

New Threat: A Deep Dive Into the Zergeca Botnet
blog.xlab.qianxin.com/a-deep-dive-into-the-zergeca-botnet

Background

On May 20, 2024, while everyone was happily celebrating the holiday, the tireless XLab
CTIA(Cyber Threat Insight Analysis) system captured a suspicious ELF file around 2
PM, located at /usr/bin/geomi. This file was packed with a modified UPX, had a magic
number of 0x30219101, and was uploaded from Russia to VirusTotal, where it was not
detected as malicious by any antivirus engine.

Later that evening at 10 PM, another geomi file using the same UPX magic was uploaded to
VT from Germany. The suspicious file path, modified UPX, and multi-country uploads
caught our attention. After analysis, we confirmed that this is a botnet implemented in
Golang. Given that its C2 used the string "ootheca," reminiscent of the swarming Zerg in
StarCraft, we named it Zergeca.

Functionally, Zergeca is not just a typical DDoS botnet; besides supporting six different
attack methods, it also has capabilities for proxying, scanning, self-upgrading, persistence,
file transfer, reverse shell, and collecting sensitive device information. From a network
communication perspective, Zergeca also has the following unique features:

Supports multiple DNS resolution methods, prioritizing DOH for C2 resolution.
Uses the uncommon Smux library for C2 communication protocol, encrypted via XOR.

During the investigation of Zergeca's infrastructure, we found that its C2 IP address,
84.54.51.82, has been serving at least two Mirai botnets since September 2023. We
speculate that the author behind Zergeca accumulated experience operating the Mirai
botnets before creating Zergeca.

On June 10, XLab command tracking system captured a vector 7 DDoS command that the
current samples did not support, indicating that Zergeca's author is actively developing and
updating, with new samples yet to be discovered. Our persistence paid off when we captured
a new sample on the 19th that supports the vector 7. Currently, the detection rates for
Zergeca samples and C2 are very low. Considering Zergeca's potential threat in DDoS
attacks, we have decided to release this article to share our findings with the community.

Sample & C2 Detection

https://blog.xlab.qianxin.com/a-deep-dive-into-the-zergeca-botnet

2/20

From the sample perspective, we captured a total of 5 Zergeca samples. While their
functions are nearly identical, there is a significant discrepancy in their detection rates. How
can this anomaly be explained? Most antivirus vendors have categorized the sample
23ca4ab1518ff76f5037ea12f367a469 as Generic Malware. We speculate that the detection
of Zergeca by antivirus software is based on file hash. Therefore, as long as the hash
changes, the detection effectiveness diminishes.

MD5 Detection First Seen Telemetry

23ca4ab1518ff76f5037ea12f367a469 28/64 2024.05.20 Russian

9d96646d4fa35b6f7c19a3b5d3846777 0/67 2024.05.20 Germany

d78d1c57fb6e818eb1b52417e262ce59 1/67 2024.05.22 China

604397198f291fa5eb2c363f7c93c9bf 1/66 2024.06.11 France

60f23acebf0ddb51a3176d0750055cf8 0/67 2024.06.18 France

To verify our hypothesis, we appended the 4-byte string "Xlab" to the end of the file
23ca4ab1518ff76f5037ea12f367a469 and re-uploaded it to VirusTotal. The detection rate
changed to 9/67, partially confirming our speculation.

Additionally, the current detection is based on the packed samples, after unpacking, the
detection rate drops to 0.

3/20

From the Domain Perspective, the four samples share two C2 domains that were created
on the same day. The samples prioritize using DOH (DNS over HTTPS) for C2 resolution,
which obscures the relationship between the samples and the C2 domains to some extent.
Because of this, VirusTotal couldn't even associate the C2 domains with the
samples, resulting in a naturally low detection rate.

Domain Detection Create date

ootheca.pw 1/93 2024.04.28

ootheca.top 1/93 2024.04.28

Profile of 84.54.51.82

The two C2 servers of Zergeca point to the same IP address, 84.54.51.82. According to our
data, this IP has been in use since September 2023, serving a variety of roles. During this
period, it has acted as a Scanner, Downloader, Mirai botnet C2, and Zergeca botnet C2.

Scanner

Starting from September 18, 2023, scanning activities commenced, primarily targeting
protocols such as Telnet, HTTP, and socks4. The main ports scanned include23, 8080,
3128, 80, and 8888.

Mirai Downloader&C2

From September and October 2023 to April 2024, 84.54.51.82 was primarily used as the
Loader IP and Downloader IP for the Mirai botnet.

4/20

2023.09 - 2023.10, it was used as the Loader and Downloader IP to implant the
following related samples.

#Downloader

http://84.54[.51.82/jaws

http://84.54[.51.82/bin

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.x86

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.spc

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.sh4

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.ppc

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.mpsl

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.mips

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.m68k

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.i686

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.arm7

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.arm6

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.arm5

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.arm

http://84.54[.51.82/596a96cc7bf9108cd896f33c44aedc8a/db0fa4b8db0333367e9bda3ab68
b8042.arc

#CC

mirai://bot.hamsterrace.space:59666

2024.04, it was used as the Loader IP to implant the following related samples.

#Downloader

http://145.239[.108.150/Fantazy.sh

http://145.239[.108.150/Fantazy/Fantazy.arm5

http://145.239[.108.150/Fantazy/Fantazy.arm6

http://145.239[.108.150/Fantazy/Fantazy.mpsl

http://145.239[.108.150/Fantazy/Fantazy.sh4

http://145.239[.108.150/Please-Subscribe-To-My-YT-Channel-VegaSec/1isequal9.x86

http://145.239[.108.150/cache

CC

mirai://145.239.108.150:63645

5/20

Zergeca C2

Starting from April 29, 2024, 84.54.51.82 began being used as the C2 server for Zergeca.
The relevant C2 domains and their resolution records are as follows:

Exploits

In our observation, the primary methods used by 84.54.51.82 to propagate samples are
Telnet weak passwords and certain known vulnerabilities. The relevant vulnerability
identifiers are as follows:

Telnet Weak Password

CVE-2022-35733

CVE-2018-10562

CVE-2018-10561

CVE-2017-17215

CVE-2016-20016

DDoS Statistics

From early to mid-June 2024, the Zergeca botnet primarily targeted regions such as
Canada, the United States, and Germany. The main type of attack was ackFlood (atk_4),
with victims distributed across multiple countries and different ASNs.

6/20

Reverse Analysis

The four Zergeca samples in our observation are all designed for the x86-64 CPU
architecture and target the Linux platform. The presence of strings like "android," "darwin,"
and "windows" in the samples, along with Golang's inherent cross-platform capabilities,
suggests that the author may eventually aim for full platform support.

This article focuses on the earliest captured sample for detailed analysis. The sample is
packed with UPX and has a magic number of 0x30219101. For this type of modified UPX
packer, simply changing the magic back to the standard "UPX!" allows for unpacking with the
command upx -d.

MD5:23ca4ab1518ff76f5037ea12f367a469

Mgaic:ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked,
corrupted section header size

Packer: UPX

Version:0.0.01c

After unpacking, it becomes evident that Zergeca is a botnet implemented in Go language.
The symbols are not obfuscated, making reverse analysis relatively straightforward.

7/20

The figure above shows a code snippet of the main_main function. Functionally, it can be
broken down into four distinct modules. The persistence and proxy modules are self-
explanatory, with the former ensuring persistence and the latter handling proxying. The
silivaccine module is used to remove competing malware, ensuring exclusive control over
the device. The most crucial module is zombie, which implements the full botnet functionality.
It reports sensitive information from the compromised device to the C2 and awaits
commands from the C2, supporting six types of DDoS attacks, scanning, reverse shell, and
other functions.

0x00: String Decryption

Zergeca uses XOR encryption for many sensitive strings. Using IDA, we found that the XOR
key is referenced 240 times across various functions. Each decryption involves two uses of
the XOR key: one for initialization and one for decryption. So there are 120
decryption operations needed.

The XOR key is initially set to EC 22 2B A9 F3 DD DF 1C CD 46 AC 1E, but only the first six
bytes (EC 22 2B A9 F3 DD) are used.

8/20

Manually decrypting 120 times is impractical. Although the decryption process isn't confined
to a single function, CFG analysis revealed a specific pattern in most decryption-related code
blocks:

1. The XOR block has one predecessor and one successor.
2. The predecessor block's first instruction is mov, with the first operand being an address

pointing to the original length of the XOR key.
3. The successor block's first instruction is cmp, with the first operand being a number

indicating the ciphertext's length.
4. The predecessor block's predecessor's first instruction is lea, with the first operand

being an address pointing to the ciphertext's starting address.

9/20

By identifying these patterns, we can automate the decryption process and restore all
encrypted strings efficiently.We implemented IdaPython decryption script in the Appendix
with the following results: 111 successful decryptions and 9 mismatches.

The 9 mismatched codes are distributed across six functions. Among them, the
packets__Cursor Read/WriteString functions handle network packet encryption/decryption
and can be ignored.

10/20

gomi_bot_zombie__Zombie_Connect

geomi_common_utils_init_0_func1,

geomi_bot_discovery_Run,

geomi_common_packets__Cursor_WriteString,

geomi_common_packets__Cursor_ReadString,

geomi_common_utils_RandomUserAgent

For the remaining four functions, the issue was that the ciphertexts were arrays rather than
single entries, causing the pattern match to fail. For example, in the RandomUserAgent
function, the user_agent_list contains 1000 encrypted user agents.

For such cases, we can use the manual_decode function, where the first parameter is the
starting address of the ciphertext array and the second parameter is the number of array
elements.

ey=b"\xEC\x22\x2B\xA9\xF3\xDD"

def manual_decode(base,cnt):

 for i in range(cnt):

 start=idc.get_qword(base)

 addr=idc.get_qword(start+i*16)

 size=idc.get_qword(start+8+i*16)

 buff=idc.get_bytes(addr,size)

 out=bytearray()

 for k,v in enumerate(buff):

 out.append(v ^ key[k%6])

 print(out.decode())

manual_decode(0x000000000C56FA0,1000) #user agent

manual_decode(0x0000000000C56F80,0xc) #opennic dns

manual_decode(0x000000000C56C40,2) # c2

Decrypted examples include various user agents, OpenNIC DNS server, and C2s.

11/20

With all strings successfully decrypted, we can now begin reverse-engineering Zergeca's
various functionalities.

0x01: Persistence Module

Zergeca achieves persistence on compromised devices by adding a system service
geomi.service. This service ensures that the Zergeca sample automatically generates a
new geomi process if the device restarts or the process is terminated.

[Unit]

Description=

Requires=network.target

After=network.target

[Service]

PIDFile=/run/geomi.pid

ExecStartPre=/bin/rm -f /run/geomi.pid

ExecStart=/usr/bin/geomi

Restart=always

[Install]

WantedBy=multi-user.target

Experiment A

When running the Zergeca sample on a virtual machine and restarting the device,
geomi.service automatically launches the Zergeca sample. The resulting process named
geomi had a PID of 897. Terminating this process with kill -9 897 immediately spawned a
new geomi process with PID 8460.

12/20

When network administrators discover a geomi process and suspicious traffic on a device,
they can attempt the following cleanup steps:

1. Delete /etc/systemd/system/geomi.service
2. Delete the sample file referenced by the ExecStart parameter
3. Terminate the geomi process

0x2: Silivaccine Module

To monopolize the device, Zergeca includes a list of competitor threats, covering miners,
backdoor trojans, botnets, and more. Some familiar names on the list include mozi, kinsing,
and various mining pools. Zergeca continuously monitors the system and terminates any
process whose name or runtime parameters match those on the list, deleting the
corresponding binary files.

Mozi.a com.ufo.miner kinsing kthreaddi

kaiten srv00 meminitsrv .javae

solr.sh monerohash minexmr c3pool

crypto-pool.fr f2pool.com xmrpool.eu

Experiment B

We renamed the system program /bin/sleep to Mozi.a and ran it. The Mozi.a process was
killed, and the corresponding binary file was deleted.

13/20

0x3: Zombie Module

Zergeca resolves the C2 IP address using the geomi_common_utils_Resolve function, which
supports four resolvers: Public DNS, Local DNS, DoH (DNS over HTTPS), and OpenNIC.

Zergeca prioritizes two DoH resolvers, masking C2 domain resolution in DNS traffic.

https://cloudflare-dns.com/dns-query

https://dns.google/resolve

After obtaining the C2 IP, the bot reports device sensitive information encapsulated in a
DeviceInfo structure, including details like "country, public IP, OS, user groups, runtime
directory, and reachability".

14/20

struct DeviceInfo

{

Country string

PlucAddress byte[]

MAC string

OS string

ARCH string

Name string

MachineId string

Numcpu uint32

CPUMODEL string

username string

uid string

gid string

Users []string

Uptime time.Duration

PID	 uitn32

Path string

checksum []uint8

version string

Reachable bool

}

The bot then awaits commands from the C2, processing them with different handlers.

The supported functions are as follows:

ID Task

0x01 Proxy

0x02 Reverse Shell

0x03 FileTransfer

0x05 Self-update

0xa0 DDoS

0xb0 Stop Discovery

0xb1 Start Discovery

The DDoS functionality supports the following seven attack vectors:

15/20

Sub-ID Attack Vector

1 minecraft

2 httpPPS

3 synFlood

4 ackFlood

5 pushFlood

6 rstFlood

7 pushOVHFlood

Communication Protocol

Zergeca uses smux for Bot-C2 communication. Smux(Simple MUltipleXing) is a Golang
multiplexing library that relies on underlying connections like TCP or KCP for reliability and
ordering, providing stream-oriented multiplexing. Smux packets feature an 8-byte header:
VERSION(1B) | CMD(1B) | LENGTH(2B) | STREAMID(4B) | DATA(LENGTH).

From an analysis perspective, only the LENGTH and DATA fields are of primary concern. The
captured traffic includes various messages such as online status, device information
reporting, command 0xb0, and heartbeat messages.

https://github.com/xtaci/smux?ref=blog.xlab.qianxin.com

16/20

Online Message:

Length: 0x04 bytes
Content: Hardcoded 13 3a 12 79

Device Info Report:

Length: 0xd5 bytes (varies by device)
Content (excluding IP): XOR encrypted with key EC 22 2B A9 F3 DD
Decrypted DeviceInfo as follows

pos: 0x4 len: 0x2 <----> b'JP'

pos 0x7 len: 4 <----> 45.14.XX.XX

pos: 0xc len: 0x11 <----> b'72:ba:29:e9:b8:08'

pos: 0x1f len: 0x5 <----> b'linux'

pos: 0x26 len: 0x5 <----> b'amd64'

pos: 0x2d len: 0x6 <----> b's22262'

pos: 0x35 len: 0x20 <----> b'b19642a3c672d4f20cbdb5b1569bf98f'

pos: 0x5b len: 0x29 <----> b'Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz'

pos: 0x86 len: 0x4 <----> b'root'

pos: 0x86 len: 0x4 <----> b'root'

pos: 0xa2 len: 0x2 <----> b'\x92\xf1'

pos: 0xa6 len: 0xe <----> b'/usr/bin/geomi'

pos: 0xb6 len: 0x14 <---->
b'r\xbd>\xcfY\x15[\xd9]\xa4\xe7m\x86\x9f\xbf\x895\xaa\x19\xe8'

pos: 0xcc len: 0x7 <----> b'0.0.01c'

Command 0xb0 Message:

Length: 0x08 bytes
Function: Stop scanning

Heartbeat Message:

Length: 0x03 bytes
Content: ff 00 00

Let's take a look at the DDoS-related packets. The format is cmd (1 byte) + length (2
bytes) + sub_cmd (1 byte) + target_info (length-1), where cmd is 0xa0, indicating a
DDoS command, and sub_cmd is 0x4, indicating an ACK flood attack. The target_info field
focuses on the first 4 bytes, which represent the target IP. For example, 1f 06 10 21
corresponds to the IP address 31.6.16.33.

17/20

When the Bot receives the aforementioned command, the resulting attack traffic aligns
perfectly with our analysis.

Experiment C

Based on our network protocol analysis, we implemented a fake C2 to control the Bot and
observe its behavior upon receiving different commands. In this experiment, we sent the Bot
a 0xb1 command, which is to "start scanning."

Upon receiving this command, the Bot immediately began scanning 16 ports on randomly
generated IP addresses.

Summary

Through reverse analysis, we gained initial insights into Zergeca's author. The built-in
competitor list shows familiarity with common Linux threats. Techniques like modified UPX
packing, XOR encryption for sensitive strings, and using DoH to hide C2 resolution

18/20

demonstrate a strong understanding of evasion tactics. Implementing the network protocol
with Smux showcases their development skills. Given this combination of operational
knowledge, evasion tactics, and development expertise, encountering more of their work in
the future would not be surprising.

This is our basic intelligence of Zergeca. We welcome unique insights from other companies,
such as Init Access. And readers can contact us on Twitter for more details.

IOC

Sample

23ca4ab1518ff76f5037ea12f367a469

9d96646d4fa35b6f7c19a3b5d3846777

d78d1c57fb6e818eb1b52417e262ce59

604397198f291fa5eb2c363f7c93c9bf

f68139904e127b95249ffd40dfeedd21

d7b5d45628aa22726fd09d452a9e5717

6ac8958d3f542274596bd5206ae8fa96

pathced with "xlab" at the end of file

980cad4be8bf20fea5c34c5195013200

sample captured on 2024.06.19, support ddos vector 7

60f23acebf0ddb51a3176d0750055cf8

Domain

ootheca.pw

ootheca.top

bot.hamsterrace.space

IP

84.54.51.82	 The Netherlands|None|None	 AS202685|Aggros Operations Ltd.

Appendix

IdaPython Script

https://twitter.com/Xlab_qax?ref=blog.xlab.qianxin.com

19/20

Test script, only for 23ca4ab1518ff76f5037ea12f367a469

Modidy keyaddr,sizeaddr in your case

def decode(buf):

 key=b"\xEC\x22\x2B\xA9\xF3\xDD"

 out=bytearray()

 for i in range(len(buf)):

 out.append(buf[i]^key[i%6])

 return out

count=0

notcount=0

failedfunc=[]

successedfunc=[]

keyaddr=0x0000000000C56FC0

sizeaddr=0x0000000000C56FC8

refs=XrefsTo(keyaddr, flags=0)

for ref in refs:

 f_blocks = idaapi.FlowChart(idaapi.get_func(ref.frm), flags=idaapi.FC_PREDS)
 for blk in f_blocks:

 if blk.start_ea!=ref.frm:

 continue

 if len(list(blk.preds()))!=1 and len(list(blk.succs()))!=1:

 continue

 predblk=list(blk.preds())[0]

 succsblk=list(blk.succs())[0]

 if idc.get_operand_value(predblk.start_ea,1)!=sizeaddr:

 continue

 if idc.get_operand_type(succsblk.start_ea,1)!=0x5:

 print(idc.get_func_name(ref.frm),hex(ref.frm),"not matched")

 notcount+=1

 failedfunc.append(idc.get_func_name(ref.frm))

 continue

 ppredblk=list(predblk.preds())

 if len(ppredblk)!=1:

 continue

 addr=idc.get_operand_value(ppredblk[0].start_ea,1)

 size=idc.get_operand_value(succsblk.start_ea,1)

 buf=idc.get_bytes(addr,size)

 out=decode(buf)

 count+=1

 print(idc.get_func_name(ref.frm),hex(ppredblk[0].start_ea),"matched,
ciphertext at", hex(addr), "<---->",bytes(out))

 successedfunc.append(idc.get_func_name(ref.frm))

print("\n--------------------Statistic--------------------")

print(f'Success:{count},Failed:{notcount}\n')

print("---------Success Function---------")

20/20

print(set(successedfunc),'\n')

print("---------Failed Function---------")

print(set(failedfunc),'\n')

