EMBERSIm: A Large-Scale Databank for Boosting Similarity
Search in Malware Analysis

\ crowdstrike.com/blog/embersim-large-databank-for-similarity-research-in-cybersecurity/

June 6, 2024

June 6, 2024

|Dragos C

orlatescu - Alexandru Dinu - Mihaela Gaman - Paul Sumedrea |Engineering & Tech

= —
= B

» ‘,
¢

1'”"'

2 “-I}Iﬂunn

"
‘ﬂ-l“lllllllmlﬂ'“ﬂj Il“‘

5 -‘“:luumlmuﬂdm {

»

P g
5 l"' "IZ

""lllﬂlll
LTI
Wi
4
i !

i

m‘

L
T

“I!Ililllillllllit
PRrERTT LT
rABRISIIREYg

Illw “pm‘lﬂlllllllllllmlllllm

‘ Ryppaupasser®

Y
iy

I ﬂﬁ:
m:nﬂuuumum

&
i
i’

i

=

llllllﬂﬂﬂlllllﬂlll‘

/f

 Binary code similarity (BCS) is an important part of training machine learning (ML) models to
effectively analyze vast amounts of cybersecurity telemetry. However, BCS has historically
focused on finding similarities among malicious examples rather than benign data, which
limits its effectiveness.

o The CrowdStrike research team has released EMBERSIm, a BCS dataset that builds on the
existing EMBER dataset, with extended data tags and a new leaf similarity co-occurrence
algorithm that accounts for both benign and malicious binaries.

o This innovative approach to qualifying similarity in cybersecurity improves the results of BCS
in ML models, showing EMBERSIim has the potential to improve malware detection and
enable future work in this key research area.

CrowdStrike is constantly researching, working and innovating to stay at the cutting edge of threat
detection and response. Recently, these efforts include EMBERSIm, a large-scale dataset
developed to address limitations in binary code similarity (BCS), improve malware detection and

1/11

https://www.crowdstrike.com/blog/embersim-large-databank-for-similarity-research-in-cybersecurity/
https://www.crowdstrike.com/blog/author/dragos-corlatescu-alexandru-dinu-mihaela-gaman/
https://www.crowdstrike.com/blog/category/engineering-and-technology/

facilitate future work in this area.

In recent years, there has been a shift from heuristics to ML-based malware detection. Replicating
both malicious and benign code is a common practice that usually results in similar examples,
which are analyzed and curated to build new ML-based solutions or improve the performance of
existing ML models. Being able to accurately identify similar examples is important in performing
bulk analysis over the growing amounts of cybersecurity telemetry. BCS involves comparing two
binary files (executables such as the .exe format) for similarities — a technique that is particularly
important in cybersecurity because most malware is hidden within such files, making it more
challenging to detect.

However, the CrowdStrike research team has identified a scarcity of data for similarity research in
malware detection and observed a focus on quantifying similarity only in malicious examples and
not in benign data. Given the vast majority of files processed will be benign, having the ability to
label them as such would boost the ability to confidently perform a similarity search for an example
file — a capability that becomes invaluable in the move toward automated analysis. We propose
to address these limitations in BCS research. We are building our research on the existing
EMBER dataset of Portable Executable (PE) files, which includes features and tags intended for
malware classification.

Our contribution is threefold:

1. We released EMBERSIm, a dataset intended for BCS research that enhances the malware
family (FAM) tags metadata (obtained via AVClass v1) in the original EMBER dataset with
similarity information and malware class (CLASS) and behavior (BEH) tags as well as
additional family (FAM) tags. This extended list of tags is determined via a co-occurrence
algorithm that we have designed as part of our work.

2. Based on the literature to date with applicability in the cybersecurity context, to our
knowledge we are the first to repurpose an XGBoost malware classifier to quantify pairwise
similarity at the leaf level.

3. We are proposing a new extensive evaluation scheme to assess the effectiveness of the
proposed leaf similarity technique — i.e., Top-K Selection and Relevance @ K. Using this
method, we compared ourselves against an established off-the-shelf method for computing
similarity in cybersecurity (i.e., ssdeep) and validated leaf similarity as a better alternative.

We documented this work in a paper that was peer-reviewed, accepted and presented in poster
format at NeurlPS 2023. Through this blog post, we offer an overview of this work and invite
readers to research the subject in more detail using our published paper, code and data as
support.

Data Used for EMBERSim Project

We built our work on EMBER, a malware classification dataset of binary files in PE format. We
used EMBER 2018, feature version 2, which consists of 1M total samples, out of which 800K are
labeled (600K train and 200K test) and an extra 200K are unlabeled. The samples in train and test

2/11

https://github.com/elastic/ember
https://www.researchgate.net/publication/307853267_AVclass_A_Tool_for_Massive_Malware_Labeling
https://neurips.cc/virtual/2023/poster/73677
https://neurips.cc/Conferences/2023
https://openreview.net/forum?id=9U8bqr8epr
https://github.com/CrowdStrike/embersim-databank
https://zenodo.org/records/8014709
https://github.com/elastic/ember

are perfectly split between “benign” and “malicious.” Additionally, the dataset follows a temporal
split, wherein all test samples have a more recent timestamp compared to train samples. The
EMBER dataset contains the SHA256s of the PEs, assigned ground truth and features.

In EMBERSIm, aside from similarity information, we include extended tag information obtained via
a co-occurrence-based tag enrichment procedure. We leverage AVClass v2 and obtain the
following tag types:

FAM (family) — e.g., grayware, backdoor, worm

BEH (behavior) — e.g., XTRAT, zBot, Emotet

CLASS (class) — e.g., infostealer, DDoS, inject

FILE (file properties) — e.g., os:Windows, packed, packed:Themida

For each malicious sample in EMBER, we run AVClass to obtain their associated tags of the types
enumerated above. We augment this initial list of tags using the co-occurrence procedure
described in the upcoming section. A second set of steps is applied with the end goal of obtaining
tag ranking, which we’ll use in the evaluation scheme to assess the performance of the binary
code similarity method proposed. See Figure 1.

Detections from
VirusTotal

Evaluation

original EMBER with Tag-enriched Tao rankin
EMBER dataset AVClass v2 tags dataset 29 9 Results
Evaluation
Tag enrichment

Top-K hits

add other FAM:a Relevance
co-occurring CLASS:b method
tags w.r.t.

the threshold ®
FAM:z
CLASS:y

Figure 1. EMBERSIm research pipeline, including the tag enrichment based on co-occurrence, ranking and
how the tags are leveraged for evaluating the leaf similarity method proposed as part of this work

original tags Leaf
(FAM & CLASS only) extra tags similarity relevance(tags(query), tags(hit))

Tag
co-occurrence
threshold

FAM: X

Metadata Augmentation

Tag Enrichment via Co-Occurrence

For each sample in EMBER, we use its SHA256 to query VirusTotal (VT) and then run AVClass v2
to obtain tags with their corresponding confidence scores across multiple vendors. AVClass
provides co-occurrence statistics for tag pairs (out of which we can build a co-occurrence matrix).
We leverage this information to enrich the set of tags of the malicious samples in EMBER by
adding the co-occurring ones above a frequency threshold. Given that we target similarity
research, the main goal with this enhancement is being able to find samples with shared
characteristics, even when it comes to different families. Algorithm 1 displays the step-by-step tag
enrichment procedure followed.

3/11

https://arxiv.org/pdf/2006.10615.pdf
https://github.com/malicialab/avclass
https://www.crowdstrike.com/wp-content/uploads/2024/06/Figure1-1.png
https://www.virustotal.com/

ek

._
=

11:
12:
13:

14:
15:

16:

Algorithm 1. Tag enrichment procedure based on leveraging the AVClass sourced co-occurrence statistics

I~ e A L B

Input: Sample with tag metadata, tag co-occurrence matrix, co-
occurrence threshold T°

Output: Extra tag info for the sample
prev + previous single tag from AVClass
curr 4 current tag info from AVClass 2
res ¢+ {}
if not prev and not curr then
return {}
else if prev and not curr then
add prev to res with value None
for tag pairs (prev — z) with freq(z | prev) > T do

res[prev,z| « freq(z | prev)

else if not prev and curr then
for tag x € curr of kind € {FAM, CLASS} do
for tag pairs (z — y) with freq(y | z) > T do
res(z,y| + freq(y | z)

else
apply both cases above

return res

for the examples in EMBER

Tag Ranking for Evaluation

Following the procedure described in Algorithm 2, we obtain a tag ranking for each sample in
EMBERSIm. The end goal is to use the tag ranks in performing the Relevance @ K evaluation

(i.e., how relevant to the query samples are the top-K most similar retrieved items?).

4/11

https://www.crowdstrike.com/wp-content/uploads/2024/06/Algorithm1.png

Input: Sample with tag metadata, tag kind K to rank by
Output: Tag ranking for the sample
1: Compute P(z | kind = K) for all tags = € metadata
Initialize RankScore|z] from P(z | kind = K)
for tag pairs (z — y) € metadata do
if kind(x) is FAM and kind(y) is K then
RankScore[y] += P(x | kind = K) - freq(y | x)

Moo W

6: ranking < sort RankScore in descending order and filter to tags

of kind K
7: return ranking

Algorithm 2. Obtaining tag ranking to use in the Relevance @ K evaluation procedure

In Algorithm 2, P represents a normalized measure of confidence (by kind), which is derived from
the AVClass tag scores and defined as below:

score(x)

D score(y)

tag y of kind K

P(z | kind = K) =

Additionally, the freq(x, y) variable used in computing the rank score represents the common co-
occurrence of frequency of tags x and y, from which we can derive a relative occurrence frequency
of tag x given tag y.

freq(z,y)

freq(z | y) = freq(y)

Leaf Prediction Similarity Method

Given a trained tree ensemble with a total of T trees and two samples x1 and x2, we define the
similarity of x1 and x2 as the leaf similarity between them in the context of the aforementioned tree
ensemble.

Although the method can be applied to any type of tree ensemble, in our experiments we opt for
eXtreme Gradient Boosting (XGBoost). Therefore, we train an XGBoost-based malware classifier
over the original features released alongside the EMBER dataset. The XGBoost malware detector
trained has similar capabilities with the LightGBM baseline described in the original EMBER

5/11

https://www.crowdstrike.com/wp-content/uploads/2024/06/Algorithm2.png
https://www.crowdstrike.com/wp-content/uploads/2024/06/Eq1.png
https://www.crowdstrike.com/wp-content/uploads/2024/06/Eq2.png
https://arxiv.org/pdf/1804.04637.pdf

paper. Our model uses the following hyperparameter set: max_depth = 17; n = 0.15; n_estimators
= 2048; colsample_bytree = 1. The performance of the malware classifier itself is subject to
hyperparameter optimization and of lesser importance for our research.

With a competitive XGBoost-based malware detector, we continue by extracting leaf predictions
for the two samples, which are the subject of our similarity assessment. The similarity score
represents the fraction of the trees in which both samples fall into the same leaf node. The
intuition behind this idea is that if two samples consistently end up in the same leaf node across
multiple decision trees, it suggests that they have similar characteristics or share common
patterns in their features.

T . .
LeafSimilarity(x1, x2) = ! : Z]l[irgi) = 3751)]

Example

Figure 2 is an example considering three samples (sample 1, sample 2 and sample 3) and an
ensemble of three trees (Tree #1, Tree #2 and Tree #3), with the respective paths through the
trees highlighted.

Tree #1 Tree #2 Tree #3

sample 1

sample 2

root

oot

sample 3

leaf #1 leaf#2 leaf #3 leaf#4 leaf#1 leaf #2 leaf #3 leaf #4 leaf#1 leaf#2 leaf #3 leaf #4
Figure 2. Example of how leaf predictions are considered in each of the three trees of an ensemble model

for three examples that we need to assess similarity-wise via the leaf similarity technique

From the paths drawn in Figure 2, we can infer that the leaf predictions for these samples are [1,
2,4],[1, 3,4] and [3, 1, 4] for samples 1, 2 and 3, respectively. In this case, the LeafSimilarity
score for sample 1 and sample 2, given the formula above, is 0.66.

Evaluation

We employ two different evaluation scenarios, with the end goal of validating the novel similarity
method based on leaf predictions. As part of the evaluation procedure, we leverage the tag
augmentations and ranking obtained using the algorithms described in the Metadata

6/11

https://arxiv.org/pdf/1804.04637.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/06/Eq3.png
https://www.crowdstrike.com/wp-content/uploads/2024/06/Figure2-1.png

Augmentation section above. Figure 3 displays the two evaluation paths that were considered —
namely, the Top-K selection and Relevance @ K evaluation. In the following subsections, we
describe the two methods in more detail.

for each test
sample x,

O

for K € {1, 10, 50, 100}

(4)

— count the labels malicious

benien that X, and X, share

o |

5

lop-K Selection

B — compute Mean/Std

select Top-K most similar

samples X in the data set

®)

compute EM, loll and NES
metrics based on tag
rankings

I
@ compute

Mean!Std/Percentiles

Relevance (@ K

Figure 3. Evaluation workflow with two different ramifications for the two scenarios considered, namely Top-
K selection and Relevance @ K evaluation

Top-K Selection

We conduct a homogeneity-based comparative evaluation of the leaf similarity method proposed
in our paper and ssdeep, which is well established and extensively used in the cybersecurity
domain. The Top-K selection evaluation is based on counting the (malicious/benign) ground truth
labels that a query and its most similar K (EMBER) samples share. We report the mean and
standard deviation, as shown in Table 1.

Label Homogeneity for ssdeep

Label Homogeneity for Leaf Similarity

K Benign Malicious All Benign Malicious All
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
Dev. Dev. Dev. Dev. Dev. Dev.
1 051 049 080 039 066 047 1 0 1 0 1 0
10 355 434 731 416 543 465 968 113 980 097 974 1.06
50 12.31 19.24 3259 2212 2245 23.07 4710 7.34 4840 6.17 47.75 6.81
100 19.84 34.82 61.00 4522 4042 4531 9280 16.01 96.28 13.22 9453 14.79

7/11

https://www.crowdstrike.com/wp-content/uploads/2024/06/Figure3.png
https://ssdeep-project.github.io/ssdeep/index.html

Table 1. Comparative evaluation of leaf similarity and ssdeep, considering the Top-K selection
scenario, where K is in {1, 10, 50, 100}. We report the mean and standard deviation obtained from
considering the benign, malicious and all tags. Mean values closer to K and Std values closer to 0
indicate better performance.

Our analysis shows a poor overall performance for the (rather restrictive) ssdeep method, with
marginally better scores for the malicious samples than for the clean ones. The results can
indicate an arbitrary level of success in identifying the two. Leaf similarity outperformed ssdeep,
achieving better results for both malicious and benign queries, showcasing its effectiveness in
accurately identifying and distinguishing between the two.

Relevance @ K Evaluation

Aside from the Top-K selection evaluation, we conducted a second type of evaluation that involves
assessing the relevance of the retrieved results in the tags enrichment scenario. To perform the
Relevance @ K Evaluation, we leverage the tag ranking, which serves as a reference for
determining the relevance of the retrieved samples. We then check whether the tag ranking of a
query sample is consistent with the Top-K most similar samples retrieved by our model using
various scoring mechanisms, which we enumerate and briefly describe below:

o EM (Exact Match) — outputs 1 if the inputs are equal. This is the strictest comparison
method, serving as a lower bound for that performance.

 loU (Intersection over Union) or Jaccard index — disregards element ordering and
focuses solely on the presence of the items in the inputs.

* NES (Normalized Edit Similarity) — this function, based on Damerau-Levenshtein distance

(DL)_for strings, allows us to penalize differences in rank.

The use of these mechanisms allowed us to measure the relevance and accuracy of our
approach.

To construct the query and knowledge base subsets, we consider two scenarios: unsupervised
labeling and counterfactual analysis. For the counterfactual analysis, we leverage the train-test
temporal split (i.e., timestamp(test) > timestamp(train)) in EMBER to simulate a real-world
production-like scenario, where we use unseen but labeled data (i.e., the test set) to query the
knowledge base. With the Unsupervised labeling scenario, given the unlabelled EMBER data, we
aim to identify similar samples within the knowledge base, with the purpose of assigning a
provisional label or tag.

In the Unsupervised labeling scenario, we achieved excellent results. Our model demonstrated the
ability to accurately match queries with hits based on their tags, further validating the effectiveness
of our approach. Similarly, In the counterfactual analysis scenario, we observe that leaf similarity
achieves very good results in terms of matching queries and hits according to their tags. This
indicates that our approach can successfully identify and retrieve relevant samples based on the
leaf predictions.

8/11

https://dl.acm.org/doi/10.1145/363958.363994

Evaluation Results for Mean Average Precision

Top K Unsupervised Counterfactual

Benign Malicious Benign Malicious

1 0.986 0.716 0.996 0.960
10 0.985 0.753 0.985 0.895
50 0.973 0.714 0.967 0.812
100 0.966 0.698 0.957 0.783

Table 2. Aggregated results for the Relevance @ K evaluation in both the unsupervised and
counterfactual testing scenarios

One Team, One Fight

CrowdStrike researchers, threat analysts and data scientists work tirelessly to stay ahead of
adversaries. This focus on research, innovation and thought leadership includes numerous
projects — such as EMBERSIim — and extends to industry leadership through involvement in
organizations like the MITRE Engenuity Center for Threat-Informed Defense, where CrowdStrike
is a Research Partner. The results of our research efforts and the information that we share lead
to improving defenses globally against the latest and most sophisticated adversary tactics and
malware. For our customers, these efforts mean that the Al-native CrowdStrike Falcon® platform
always delivers best-in-class cybersecurity protection.

Additional Resources

e Learn more about the Falcon platform by visiting the product webpage.

e Learn more about CrowdStrike endpoint detection and response by visiting the CrowdStrike
Falcon® Insight XDR webpage.

o Test CrowdStrike next-gen antivirus for yourself. Start your free trial of CrowdStrike® Falcon
Prevent™ today.

Related Content

9/11

https://www.crowdstrike.com/blog/crowdstrike-research-participant-in-two-center-for-threat-informed-defense-projects/
https://www.crowdstrike.com/endpoint-security-products/falcon-platform/
https://www.crowdstrike.com/endpoint-security-products/falcon-insight-endpoint-detection-response/
https://go.crowdstrike.com/try-falcon-prevent.html

CrowdStrike Falcon Next-Gen SIEM Unveils Advanced Detection of Ransomware Targeting VMware ESXi

Environments

https://www.crowdstrike.com/blog/esxi-ransomware-detection-falcon-next-gen-siem/
https://www.crowdstrike.com/blog/crowdstrikes-advanced-memory-scanning-stops-threat-actor/

CrowdStrike’s Advanced Memory Scanning_Stops Threat Actor Using BRc4 at Telecommunications Customer

The Windows Restart Manager: How It Works and How It Can Be Hijacked, Part 2

Active Exploitation Observed for Linux Kernel Privilege Escalation Vulnerability (CVE-2024-1086)

11/11

https://www.crowdstrike.com/blog/crowdstrikes-advanced-memory-scanning-stops-threat-actor/
https://www.crowdstrike.com/blog/windows-restart-manager-part-2/
https://www.crowdstrike.com/blog/active-exploitation-linux-kernel-privilege-escalation-vulnerability/

