
1/14

May 20, 2024

Tiny BackDoor Goes Undetected – Suspected Turla leveraging
MSBuild to Evade detection

cyble.com/blog/tiny-backdoor-goes-undetected-suspected-turla-leveraging-msbuild-to-evade-detection/

Key Takeaways

Cyble Research and Intelligence Labs (CRIL) observed an interesting campaign that utilized
malicious LNK files, which could potentially be distributed via spam email.
The Threat Actor (TA) behind this campaign uses human rights seminar invitations and public
advisories as a lure to infect users with a malicious payload.
This campaign highlights the attackers’ sophistication by embedding lure PDFs and MSBuild
project files within the .LNK files for seamless execution.
The TA executes the project files using the Microsoft Build Engine (MSBuild) to deliver a stealthy,
fileless final payload.
The final payload acts as a backdoor, enabling TAs to execute various commands and take
control of the infected system.
Our analysis indicates that the final payload exhibits similarities to the previously identified
TinyTurla backdoor.

Overview

CRIL identified a campaign utilizing malicious .LNK files masquerading as a PDF document. Upon
execution, the .LNK file loads and displays a human rights seminar invitation as a lure document,
suggesting that the threat actor targets individuals with a background or interest in human rights
issues.

https://cyble.com/blog/tiny-backdoor-goes-undetected-suspected-turla-leveraging-msbuild-to-evade-detection/
https://blog.talosintelligence.com/tinyturla-next-generation/
https://www.virustotal.com/gui/file/6829ab9c4c8a9a0212740f46bf93b1cbe5d4256fb4ff66d65a3a6eb6c55758a1/community

2/14

We have also encountered a similar file used in this campaign, showing a public advisory as a lure
document purportedly from the Philippine Statistics Authority. A security researcher made this discovery
and shared it on Twitter.

Figure 1 – Similar file shared in Twitter

When targeted individuals mistakenly believe this to be a legitimate invitation or advisory and open it,
they could inadvertently install a tiny backdoor into their system. This backdoor possesses remote
control functionalities, allowing it to receive commands from a Command and Control (C&C) server and
execute them as directed by the TA.

Infection chain

https://x.com/k3yp0d/status/1788590090324754477

3/14

The attack sequence begins with a malicious .LNK file archived within a ZIP file, potentially distributed
to users via phishing emails. When a user executes the .LNK file, it triggers the execution of a
PowerShell script embedded within it. The PowerShell script is designed to execute a sequence of
operations, including reading the content of the .LNK file and writing it into three distinct files in the
%temp% location. These files include a lure PDF, encrypted data, and a custom MSBuild project.

Additionally, the PowerShell script executes the MSBuild project using “MSBuild.exe” and opens the
lure document. This MSBuild project contains code to decrypt the encrypted data, which is then saved
in a %temp% location with the .log extension. Subsequently, this .log file, also an MSBuild project, is
scheduled to be executed using “MSBuild.exe” through Task Scheduler to carry out backdoor activities.
The figure below shows the infection chain.

Figure 2 – infection chain

Technical Analysis

Upon execution of the disguised “Official_Invitation_Final_202406.lnk” file, a PowerShell command is
triggered. This command extracts embedded data from the LNK file by reading specific hardcoded
offsets and creates three distinct files in the %temp% location using the following names.

Official_Invitation_Final_202406.pdf
PK81yqIm8o
NqPCpRtWzcn

The file named “Official_Invitation_Final_202406.pdf” functions as a lure document, while
“PK81yqIm8o” contains encrypted content. Additionally, “NqPCpRtWzcn” is identified as an MSBuild
project.

The below image shows the embedded PowerShell script present in the malicious .LNK file.

4/14

Figure 3 – Embedded PowerShell script

After dropping these files in %temp% location, The PowerShell script opens the lure document, which is
an invitation letter for a forthcoming seminar titled “Human Rights: A Global Perspective,” organized by
a non-governmental organization (NGO). The image below displays the deceptive PDF file.

Figure 4 – Lure pdf

While opening the lure PDF file, the PowerShell Script silently executes the MSBuild project
“NqPCpRtWzcn” using “MSBuild.exe.” MSBuild is a development tool for building applications,
particularly useful in environments where Visual Studio is not installed. It operates using XML project
files that contain project compilation specifications. Within the configuration file, the “UsingTask”
element defines tasks that MSBuild will compile.

Additionally, MSBuild features an inline task capability, allowing code to be specified and compiled by
MSBuild. This code can then be executed in memory during project builds. This ability to execute code
in memory enables TAs to utilize MSBuild in fileless attacks. The figure below shows the MSBuild

5/14

project file.

Figure 5 – MSBuild Project File – NqPCpRtWzcn

The malicious project file specifies a new class named “ClassExample” as an inline task, which is
programmed to execute automatically when the project is built. The image below shows the content of
the inline task.

Figure 6 – Contents of inline task

The inline task incorporates various functionalities to be executed:

1. It retrieves the encrypted content from the file “PK81yqIm8o” by utilizing the File.ReadAllText()
method.

 2. Using the rijndael algorithm, it decrypts the retrieved encrypted content.

6/14

Figure 7 – Using Rijndael algorithm for Decryption

3. The decrypted content is subsequently written to a new file named “nJUFcFfUF.log“. The image
below displays the decrypted content, which is another MSBuild project file used to execute the final
malicious inline task.

Figure 8 – Decrypted content

4. It creates a scheduled task to execute the newly generated log file using “MSBuild.exe” in the
background every 20 minutes.

Figure 9 – Task Scheduler Entry to Execute log file (final backdoor payload)

7/14

Final Payload – Tiny Backdoor

When the scheduled task is triggered, it executes the decrypted MSBuild project file “nJUFcFfUF.log”
using MSBuild.exe, which subsequently runs the inline task present within the project file directly in
memory when the project is built.

The core functionality of this inline task begins with the “Execute” function. The image below shows the
content of the “Execute” method.

Figure 10 – Code snippet showcasing the ‘Execute’ () functionalities

The Execute() method’s functionality involves creating two threads:

The first thread continuously monitors the running processes in the victim’s machine for any process
main window title contains “MSBuild.exe” and hides if detected. This is an effort by TAs to conceal their
activities from the user. The below image shows the code to hide the MSBuild.exe window from
victims.

Figure 11 – Function to hide MSBuild.exe window

Before creating the second thread, the Execute() function generates a unique identifier (ID) by
combining the domain name, username, and current process ID retrieved from the victim’s machine.
This ID is used to uniquely identify the infected machine to the C&C server for further communications.
The image below shows the code responsible for generating this unique ID.

8/14

Figure 12 – Generating unique ID

After generating the ID, the Execute() function starts the second thread, which is responsible for
fetching and executing commands from the C&C server.

The C&C server “ies[.]inquirer[.]com[.]ph” identified in this campaign is a compromised website
associated with The Philippine Daily newspaper. The image below displays the open directory of this
compromised website serving as a storage space for TAs to store their payloads and other files.

Figure 13 – Open directory found in the compromised website

Using the generated ID, the thread initiates an HTTP request to the aforementioned compromised
website (C&C) by utilizing the hardcoded URL present in the code:

The HTTP request also includes additional data, such as the previously generated unique identifier and
other information. The image below shows this thread forming an HTTP POST request.

Figure 14 – HTTP POST request

Once the HTTP request is formed, the thread sends the request to the C&C server and verifies the
response status code. If the response indicates an unsuccessful attempt, the thread terminates. If the
response code indicates success, the thread reads the content of the response, which is enclosed
within “[{” and “}]” and proceeds to execute the operations assigned by the TAs. The image below
shows the various operations to be executed based on the response received from the C&C server.

9/14

Figure 15 – Commands

The backdoor manages its operations through the utilization of multiple threads, each designed to
execute specific tasks:

shell: This operation enables the backdoor to execute commands on the victim’s machine. It
involves creating a new process to run the specified command within that process. The image
below shows the code for executing the commands.

Figure 16 – Executing shell commands

10/14

sleep: The “sleep” operation allows the TAs to dynamically adjust the sleep interval of the
backdoor. After setting the new sleep time, a confirmation message is sent back to the C&C
server to notify the attackers of the change.
upload: This operation allows the backdoor to download a file from the C&C server and save it
locally on the victim’s machine. The process includes sending an HTTP request to the C&C server
using a filename, checking the response, decompressing and writing the file, and then sending a
confirmation back to the server. The image below shows the code responsible for downloading a
payload into the victim’s machine.

Figure 17 – Downloading other files from C&C

download: This operation enables the backdoor to exfiltrate a file from the victim’s machine to the
C&C server. The process involves reading the file from the local system, encoding it in Base64,
transmitting it to the C&C server, and sending a confirmation back to the server. The image below
shows the code responsible for uploading a file from the victim’s machine.

Figure 18 – Sending data to C&C

cd: The backdoor modifies its current directory to the location specified by the TAs. Subsequently,
it communicates the successful adjustment to the C&C server.
pwd: The backdoor retrieves the current directory of the victim and sends it to the C&C server.
ps: The backdoor runs a PowerShell script asynchronously, captures its output and sends it back
to the C&C server. The image below shows the code for executing the PowerShell script in the
victim’s machine.

11/14

Figure 19 – Executing Powershell script

By coordinating these diverse operations, the backdoor functions as a versatile tool for TAs. It allows
them to carry out subsequent malicious activities while avoiding detection and enhancing their control
over compromised systems.

Threat Actor Attribution to Turla APT Group

The presence of Russian-language comments in the code hints at a possible connection to a
Russian-based threat actor group.
The Turla group’s focus on targeting NGOs, particularly those with connections to supporting
Ukraine, is underscored by the presence of a lure document referencing an NGO for human rights
in this campaign.
The utilization of basic first-stage backdoor functionalities, coupled with the exploitation of
compromised web servers for their command and control (C&C) infrastructure, aligns with the
behavior exhibited by the Turla.
The Turla group is known to deploy PHP-based C&Cs within specific directories of compromised
websites. We also observed similar behavior in our case; the TAs used PHP files from the
compromised website for its &C communication.
Additionally, the Turla backdoor uses a specific identifier, specifically the “id” value, within the
HTTP request parameters when communicating with its C&C server.
The implementation of thread functionality to execute commands received from the C&C mirrors
the tactics described in the Talos blog, indicating a behavioral similarity with the TinyTurla
backdoor.
These elements collectively lead us to attribute this activity to the Turla APT, a cyberespionage
group based in Russia, with a medium level of confidence.

Conclusion

https://blog.talosintelligence.com/tinyturla-next-generation/

12/14

The tactics employed by the TAs in this campaign underscore the evolving landscape of cyber threats
and the limitations of traditional antivirus solutions in combating them. Based on the lure document, it’s
evident that the group has targeted individuals within the Philippines.

By leveraging legitimate applications such as MSBuild and exploiting inherent functionalities within
operating systems, attackers can easily bypass conventional security measures. Through the
deployment of this tiny backdoor on the victim’s system, TAs gain unfettered access to execute
commands and launch subsequent operations seamlessly. Organizations must adopt a holistic security
posture that integrates these various layers to effectively mitigate the risks posed by advanced
adversaries.

Recommendations

We have listed some essential cybersecurity best practices that create the first line of control against
attackers. We recommend that our readers follow the best practices given below:

The initial entry point may originate via spam emails. Therefore, it’s advisable to deploy strong
email filtering systems to identify and prevent the dissemination of harmful attachments.
When handling email attachments or links, particularly those from unknown senders, exercising
caution is crucial. Verify the sender’s identity, particularly if an email seems suspicious.
Limit the use of MSBuild to authorized personnel or specific systems. Restricting access to tools
like MSBuild can reduce the risk of unauthorized usage by threat actors.
Consider disabling or limiting the execution of scripting languages, such as PowerShell, on user
workstations and servers if they are not essential for legitimate purposes.
Set up network-level monitoring to detect unusual activities or data exfiltration by malware. Block
suspicious activities to prevent potential breaches.

MITRE ATT&CK® Techniques

Tactic Technique Procedure

Execution (TA0002) User Execution (T1203) User opens the malicious Shortcut
file

Defense Evasion
(TA0005)

Masquerading (T1036) .LNK file masqueraded as a PDF
document.

Defense Evasion
(TA0005)

Deobfuscate/Decode Files or
Information (T1140)

Deobfuscate/Decode Files or
Information

Defense Evasion
(TA0005)

Trusted Developer Utilities Proxy
Execution (T1127.001)

MSBuild used to execute the
malicious inline task.

Persistence (TA0003) Scheduled Task/Job (T1053.005) Adds task schedular entry for
persistence.

C&C(TA0011) Application Layer Protocol (T1071) Backdoor communications with
C&C server.

Exfiltration (TA0036v) Exfiltration Over C2 Channel (T1646) Sending exfiltrated data over C&C
server

https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1203
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1036/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1127/001/
https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1071/
https://attack.mitre.org/tactics/TA0036/
https://attack.mitre.org/techniques/T1646/

13/14

Indicators of Compromise (IOCs)

Indicators Indicator
Type

Description

b4db8e598741193ea9e04c2111d0c15ba79b2fa098efc3680a63ef457e60dbd9 Sha256 Archive file (
Probably
email
attachment)

6829ab9c4c8a9a0212740f46bf93b1cbe5d4256fb4ff66d65a3a6eb6c55758a1 Sha256 Malicious
.LNK file

8c97df4ca1a5995e22c2c4887bea2945269d6f5f158def98d5ebdd5311bb20c4 Sha256 Malicious
MSBuild
Project File
(final
payload)

76629afb86bd9024c3ea6759eeea197ba6c8c780e0041d1f8182d206cf3bd1b4 Sha256 Decoy PDF

hxxps://ies[.]inquirer[.]com[.]ph Domain C&C

c2618fb013135485f9f9aa27983df3371dfdcb7beecde86d02cee0c258d5ed7f Sha256 Zip file

cac4d4364d20fa343bf681f6544b31995a57d8f69ee606c4675db60be5ae8775 Sha256 .LNK

Yara rule

rule Tiny Backdoor{

meta:

author = "Cyble Research and Intelligence Labs"

description = "Detects Malicious MSBuild Project file used in this campaign"

date = "2024-05-20"

os = "Windows"

strings:

$a1 = "[<shell>]" ascii wide
$a2 = "[<sleep>]" ascii wide
$a3 = "[<upload>]" ascii wide
$a4 = "[<download>]" ascii wide
$a5 = "?m=c&id=" ascii wide fullword

condition:

 all of them

}

14/14

 References

https://blog.talosintelligence.com/tinyturla-next-generation
https://blog.talosintelligence.com/tinyturla

https://blog.talosintelligence.com/tinyturla-next-generation
https://blog.talosintelligence.com/tinyturla

