
1/10

Dissecting REMCOS RAT: An in- depth analysis of a
widespread 2024 malware, Part Four

elastic.co/security-labs/dissecting-remcos-rat-part-four

Subscribe Start Free Trial Contact Sales

https://www.elastic.co/security-labs/dissecting-remcos-rat-part-four
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact

2/10

Detections, hunts using ES|QL, and conclusion

In previous articles in this multipart series [1] [2] [3], malware researchers on the Elastic
Security Labs team decomposed the REMCOS configuration structure and gave details
about its C2 commands. In this final part, you’ll learn more about detecting and hunting
REMCOS using Elastic technologies.

Detection and Hunt

The following Elastic Defend detections trigger on those techniques:

Persistence (Run key)

Startup Persistence by a Low Reputation Process

Process Injection

Privilege Escalation (UAC Bypass)

UAC Bypass via ICMLuaUtil Elevated COM Interface

Evasion (Disable UAC)

Disabling User Account Control via Registry Modification (REMCOS spawns cmd.exe
that uses reg.exe to disable UAC via registry modification)

Command and Control

https://www.elastic.co/security-labs/dissecting-remcos-rat-part-one
https://www.elastic.co/security-labs/dissecting-remcos-rat-part-two
https://www.elastic.co/security-labs/dissecting-remcos-rat-part-three
https://docs.elastic.co/en/integrations/endpoint
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/persistence_startup_persistence_by_a_low_reputation_process.toml
https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/privilege_escalation_uac_bypass_via_icmluautil_elevated_com_interface.toml
https://github.com/elastic/detection-rules/blob/main/rules/windows/privilege_escalation_disable_uac_registry.toml

3/10

Connection to Dynamic DNS Provider by an Unsigned Binary (although it’s not a
requirement but most of the observed samples use dynamic DNS)

File Deletion

Remcos RAT INETCookies File Deletion

Modify Registry

Remcos RAT ExePath Registry Modification

The ExePath registry value used by the REMCOS watchdog process can be used as an
indicator of compromise. Below is a KQL query example :

event.category:"registry" and event.action:"modification" and

registry.value:"EXEpath" and not process.code_signature.trusted:true

REMCOS includes three options for clearing browser data, possibly in an attempt to force
victim users to re-enter their web credentials for keylogging:

enable_browser_cleaning_on_startup_flag

enable_browser_cleaning_only_for_the_first_run_flag

browser_cleaning_sleep_time_in_minutes

This results in the deletion of browser cookies and history-related files. The following KQL
query can be used to hunt for such behavior by an unsigned process:

event.category:file and event.action:deletion and file.name:container.dat and

file.path:*INetCookies* and not process.code_signature.trusted:true

https://github.com/elastic/protections-artifacts/blob/main/behavior/rules/command_and_control_connection_to_dynamic_dns_provider_by_an_unsigned_binary.toml
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/command_and_control_remcos_rat_inetcookies_file_deletion.toml
https://github.com/elastic/protections-artifacts/blob/72bede645f2fbb34cf3882fa2758c896a0073c6b/behavior/rules/command_and_control_remcos_rat_exepath_registry_modification.toml

4/10

REMCOS also employs three main information collection methods. The first one is
keylogging via SetWindowsHookEx API. The following ES|QL can be used to hunt for rare or
unusual processes performing this behavior:

from logs-endpoint.events.api*

/* keylogging can be done by calling SetwindowsHook to hook keyboard events */

| where event.category == "api" and process.Ext.api.name == "SetWindowsHookEx" and
process.Ext.api.parameters.hook_type like "WH_KEYBOARD*"

/* normalize process paths to ease aggregation by process path */

| eval process_path = replace(process.executable, """([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-
[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}|ns[a-z][A-Z0-9]{3,4}\.tmp|DX[A-Z0-9]
{3,4}\.tmp|7z[A-Z0-9]{3,5}\.tmp|[0-9\.\-_]{3,})""", "")

| eval process_path = replace(process_path, """[cC]:\\[uU][sS][eE][rR][sS]\\[a-zA-Z0-
9\.\-_\$~]+\\""", "C:\\\\users\\\\user\\\\")

/* limit results to those that are unique to a host across the agents fleet */

| stats occurrences = count(*), agents = count_distinct(host.id) by process_path
| where occurrences == 1 and agents == 1

Below is an example of matches on iexplore.exe (injected by REMCOS):

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexa
https://www.elastic.co/guide/en/elasticsearch/reference/current/esql-language.html

5/10

ES|QL hunt for rare processes calling SetWindowsHoook to hook keyboard events

The second method takes multiple screenshots and saves them as jpg files with a specific
naming pattern starting with time_year-month-day_hour-min-sec.jpb (e.g.
time_20240308_171037.jpg). The following ES|QL hunt can be used to identify suspicious
processes with similar behavior :

from logs-endpoint.events.file*

/* remcos screenshots naming pattern */

| where event.category == "file" and host.os.family == "windows" and event.action ==
"creation" and file.extension == "jpg" and file.name rlike
"""time_202\d{5}_\d{6}.jpg"""

| stats occurrences = count(*), agents = count_distinct(host.id) by process.name,
process.entity_id

/* number of screenshots i more than 5 by same process.pid and this behavior is
limited to a unique host/process */

| where occurrences >= 5 and agents == 1

The following image shows both REMCOS and the injected iexplore.exe instance (further
investigation can be done by pivoting by the process.entity_id):

https://www.elastic.co/guide/en/elasticsearch/reference/current/esql-language.html
https://www.elastic.co/guide/en/ecs/current/ecs-process.html#field-process-entity-id

6/10

ES|QL hunt for rare processes creating JPG files similar to REMCOS behavior

The third collection method is an audio recording saved as WAV files. The following ES|QL
hunt can be used to find rare processes dropping WAV files:

from logs-endpoint.events.file*

| where event.category == "file" and host.os.family == "windows" and event.action ==
"creation" and file.extension == "wav"

/* normalize process paths to ease aggregation by process path */

| eval process_path = replace(process.executable, """([0-9a-fA-F]{8}-[0-9a-fA-F]{4}-
[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}|ns[a-z][A-Z0-9]{3,4}\.tmp|DX[A-Z0-9]
{3,4}\.tmp|7z[A-Z0-9]{3,5}\.tmp|[0-9\.\-_]{3,})""", "")

| eval process_path = replace(process_path, """[cC]:\\[uU][sS][eE][rR][sS]\\[a-zA-Z0-
9\.\-_\$~]+\\""", "C:\\\\users\\\\user\\\\")

| stats wav_files_count = count(*), agents = count_distinct(host.id) by process_path

/* limit results to unique process observed in 1 agent and number of dropped wav
files is less than 20 */

| where agents == 1 and wav_files_count <= 10

https://www.elastic.co/guide/en/elasticsearch/reference/current/esql-language.html

7/10

ES|QL hunt for rare processes creating WAV files

The following ES|QL hunt can also look for processes that drop both JPG and WAV files
using the same process.pid :

from logs-endpoint.events.file*

| where event.category == "file" and host.os.family == "windows" and event.action ==
"creation" and file.extension in ("wav", "jpg") and

/* excluding privileged processes and limiting the hunt to unsigned

process or signed by untrusted certificate or signed by Microsoft */

not user.id in ("S-1-5-18", "S-1-5-19", "S-1-5-20") and
(process.code_signature.trusted == false or process.code_signature.exists == false or
starts_with(process.code_signature.subject_name, "Microsoft"))

| eval wav_pids = case(file.extension == "wav", process.entity_id, null), jpg_pids =
case(file.extension == "jpg", process.entity_id, null), others = case(file.extension
!= "wav" and file.extension != "jpg", process.entity_id, null)

/* number of jpg and wav files created by unique process identifier */

| stats count_wav_files = count(wav_pids), count_jpg_files = count(jpg_pids),
other_files = count(others) by process.entity_id, process.name

/* limit results to same process dropping both file extensions */

| where count_jpg_files >= 1 and count_wav_files >= 1

Examples of matches on both REMCOS and the injected iexplore.exe process:

https://www.elastic.co/guide/en/elasticsearch/reference/current/esql-language.html

8/10

ES|QL hunts for unique processes dropping image and audio files

Pivoting by process.entity_id to further investigate suspicious processes, installers,
browsers, and decompression utilities are often the most observed false positives.

YARA rule

The REMCOS version 4.9.3 is detected statically using the following YARA rule produced by
Elastic Security Labs

Malware and MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and
procedures that advanced persistent threats use against enterprise networks.

Tactics

Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal:
the reason for performing an action.

Execution
Persistence
Privilege Escalation
Defense Evasion
Credential Access
Discovery
Command and Control

Techniques

https://www.elastic.co/guide/en/ecs/current/ecs-process.html#field-process-entity-id
https://github.com/elastic/protections-artifacts/blob/main/yara/rules/Windows_Trojan_Remcos.yar
https://attack.mitre.org/
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/tactics/TA0003
https://attack.mitre.org/tactics/TA0004
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/tactics/TA0006
https://attack.mitre.org/tactics/TA0007
https://attack.mitre.org/tactics/TA0011

9/10

Techniques represent how an adversary achieves a tactical goal by performing an action.

Windows Command Shell
Visual Basic
Registry Run Keys / Startup Folder
Process Injection
Credentials from Web Browsers
Encrypted Channel
System Binary Proxy Execution: CMSTP
Bypass User Account Control

Conclusion

As the REMCOS continues to rapidly evolve, our in-depth analysis of version 4.9.3 offers
critical insights that can significantly aid the malware research community in comprehending
and combatting this pervasive threat.

By uncovering its features and capabilities in this series, we provide essential information
that enhances understanding and strengthens defenses against this malicious software.

We've also shown that our Elastic Defend product can detect and stop the REMCOS threat.
As this article demonstrates, our new query language, ES|QL, makes hunting for threats
simple and effective.

Elastic Security Labs remains committed to this endeavor as part of our open-source
philosophy, which is dedicated to sharing knowledge and collaborating with the broader
cybersecurity community. Moving forward, we will persist in analyzing similar malware
families, contributing valuable insights to bolster collective defense against emerging cyber
threats.

Sample hashes and C2s

(Analysis reference)
0af76f2897158bf752b5ee258053215a6de198e8910458c02282c2d4d284add5

remchukwugixiemu4.duckdns[.]org:57844

remchukwugixiemu4.duckdns[.]org:57846

remchukwugix231fgh.duckdns[.]org:57844

remchukwugix231fgh.duckdns[.]org:57846

3e32447ea3b5f07c7f6a180269f5443378acb32c5d0e0bf01a5e39264f691587

https://attack.mitre.org/techniques/T1059/003
https://attack.mitre.org/techniques/T1059/005
https://attack.mitre.org/techniques/T1547/001
https://attack.mitre.org/techniques/T1055
https://attack.mitre.org/techniques/T1555/003
https://attack.mitre.org/techniques/T1573
https://attack.mitre.org/techniques/T1218/003/
https://attack.mitre.org/techniques/T1548/002/

10/10

122.176.133[.]66:2404

122.176.133[.]66:2667

8c9202885700b55d73f2a76fbf96c1b8590d28b061efbadf9826cdd0e51b9f26

43.230.202[.]33:7056

95dfdb588c7018babd55642c48f6bed1c281cecccbd522dd40b8bea663686f30

107.175.229[.]139:8087

517f65402d3cf185037b858a5cfe274ca30090550caa39e7a3b75be24e18e179

money001.duckdns[.]org:9596

b1a149e11e9c85dd70056d62b98b369f0776e11b1983aed28c78c7d5189cfdbf

104.250.180[.]178:7902

ba6ee802d60277f655b3c8d0215a2abd73d901a34e3c97741bc377199e3a8670

185.70.104[.]90:2404

185.70.104[.]90:8080

185.70.104[.]90:465

185.70.104[.]90:80

77.105.132[.]70:80

77.105.132[.]70:8080

77.105.132[.]70:2404

77.105.132[.]70:465

Research references

