
1/17

May 6, 2024

Agent Tesla Malware Analysis
cyber-forensics.blog/2024/05/06/formbook-analysis/

Hi, welcome to my first public analysis for malware. I spent most of the weekend analyzing
the Agent Tesla malware. From reading other malware analysis of Agent Tesla it seems that
it’s been in the wild for a little over 5 years and is mainly spread through phishing campaigns.
It is also a well known commercial malware that is being sold as a service. My analysis is
broken into 2 parts, static and dynamic analysis. If you find any errors or just want to get into
contact, my email is in the about section any recommendations or suggestions are always
welcome! Anyways without further ado, here is the analysis.

Download:
https://bazaar.abuse.ch/download/7ef5e8ef52c30fec9a47bad942c0a757eb47fd67a46fcef29a
78e4892a0a0e94/

Static analysis:

Hashes:

Starting off, best thing to look at is the PE file information, using “Detect It Easy” and “Exeinfo
PE” I was able to gain a good understanding of what exactly was contained within the
executable.

https://cyber-forensics.blog/2024/05/06/formbook-analysis/
https://bazaar.abuse.ch/download/7ef5e8ef52c30fec9a47bad942c0a757eb47fd67a46fcef29a78e4892a0a0e94/


2/17

We can see that this file is obviously embedded with a Autoit3 file, now I am not to familiar
with writing Autoit code but from what I understand it is a BASIC-like scripting language or
automating windows tasks. To ensure that Exeinfo is giving the correct information I also ran
it through DIE(Detect It Easy).

With another confirmation that it contains a Autoit script along with using the C++ compiler
and Microsoft linker, we can assume that this executable is a loader of some sorts that
prepares memory and loads the Autoit script into memory in order to be executed. We also



3/17

gain some value information such as the compiler time stamp, though this cannot be
completely trusted we can assume that it was compiled recently. Also please ignore the
“Luna Stealer” file name, it was a previous analysis and my file organization is terrible.

Time Date Stamp: 2024-05-02

After looking at the entropy of the file we can also see that mostly the .rsrc and .reloc of the
PE sections are mainly packed, going off this and previous malware analysis we can assume
that the Autoit script is contained within the .rsrc section and .reloc section of the PE file.

Using more one tool to get a better high level view of the PE file, I decided to throw it into PE
Studio to gain a better understanding of if my assumptions were correct.



4/17

As you can see so far everything seems to be correct, the Autoit file is embedded within the
resources section of the executable.

Running a quick VirusTotal scan also shows that it has been detected by 28/71 anti-viruses.



5/17



6/17

Next step was to look at the functions imported within the executable(loader), luckily since
the file wasn’t completely packed I didn’t need to spend much time trying to unpack and
deobfuscate it.

Some interesting function imports include: registry manipulation, access token
manipulation(presumably for privilege escalation), process creation/discovery and
manipulation, API execution, file and directory manipulation, anti debugger functions. Here is
a list of some of them that seem to be important to the executable:

DeleteFileW,x,0x000CA0BE,0x000CA0BE,214 (0x00D6),file,T1485 | Data
Destruction,implicit,-,KERNEL32.dll
InitializeSecurityDescriptor,-,0x000CB344,0x000CB344,375 (0x0177),security,T1134 |
Access Token Manipulation,implicit,-,ADVAPI32.dll
InitializeAcl,-,0x000CB364,0x000CB364,374 (0x0176),security,T1134 | Access Token
Manipulation,implicit,-,ADVAPI32.dll
AdjustTokenPrivileges,x,0x000CB374,0x000CB374,31 (0x001F),security,T1134 |
Access Token Manipulation,implicit,-,ADVAPI32.dll
OpenThreadToken,x,0x000CB38C,0x000CB38C,508 (0x01FC),security,T1134 | Access
Token Manipulation,implicit,-,ADVAPI32.dll
RegSetValueExW,x,0x000CB52A,0x000CB52A,638 (0x027E),registry,T1112 | Modify
Registry,implicit,-,ADVAPI32.dll
RegCreateKeyExW,x,0x000CB518,0x000CB518,569 (0x0239),registry,T1112 | Modify
Registry,implicit,-,ADVAPI32.dll
CreateProcessW,x,0x000CA5A4,0x000CA5A4,168 (0x00A8),execution,T1106 |
Execution through API,implicit,-,KERNEL32.dll
ShellExecuteW,x,0x000CB58C,0x000CB58C,290 (0x0122),execution,T1106 |
Execution through API,implicit,-,SHELL32.dll
LoadLibraryW,-,0x000CA1CE,0x000CA1CE,831 (0x033F),dynamic-library,T1106 |
Execution through API,implicit,-,KERNEL32.dll
MoveFileW,x,0x000CA0EA,0x000CA0EA,867 (0x0363),file,T1105 | Remote File
Copy,implicit,-,KERNEL32.dll
GetSystemDirectoryW,-,0x000CA51A,0x000CA51A,624
(0x0270),reconnaissance,T1083 | File and Directory Discovery,implicit,-,KERNEL32.dll
GetWindowsDirectoryW,-,0x000CA55E,0x000CA55E,687
(0x02AF),reconnaissance,T1083 | File and Directory Discovery,implicit,-,KERNEL32.dll
FindFirstFileW,x,0x000CA078,0x000CA078,313 (0x0139),file,T1083 | File and
Directory Discovery,implicit,-,KERNEL32.dll



7/17

IsDebuggerPresent,-,0x000C9D4E,0x000C9D4E,768 (0x0300),reconnaissance,T1082
| System Information Discovery,implicit,-,KERNEL32.dll
VirtualAllocEx,x,0x000C9F66,0x000C9F66,1258 (0x04EA),memory,T1055 | Process
Injection,implicit,-,KERNEL32.dll
WriteProcessMemory,x,0x000C9F78,0x000C9F78,1326 (0x052E),memory,T1055 |
Process Injection,implicit,-,KERNEL32.dll
ReadProcessMemory,x,0x000C9F8E,0x000C9F8E,963 (0x03C3),memory,T1055 |
Process Injection,implicit,-,KERNEL32.dll
VirtualFree,-,0x000CA2A6,0x000CA2A6,1260 (0x04EC),memory,T1055 | Process
Injection,implicit,-,KERNEL32.dll
VirtualAlloc,x,0x000CA5DA,0x000CA5DA,1257 (0x04E9),memory,T1055 | Process
Injection,implicit,-,KERNEL32.dll
OpenProcess,x,0x000C9F58,0x000C9F58,896 (0x0380),execution,T1055 | Process
Injection,implicit,-,KERNEL32.dll

We can see that this is definitely some form of loader just basing it off the functions, we can
also assume that this program prepare the embedded file for execution and does some form
of process hollowing and injection before it executes. Given this, the executable we might be
looking for will probably not contain the same name as the executable.

Here is a list of the DLL’s the executable has statically linked, we can see that it uses
WSOCK32 and WININET for some form of communication. As well as containing
KERNAL32 and USER32 for process and file manipulation, along with using AVDVAPI32 for
presumably some form of privilege escalation.



8/17

My next steps were to try to extract the Autoit script, now I’ve used tools such as Exe2Aut
before but sadly that came up with: “Either it’s not an Autoit-Executable or it’s protected”.
Luckily instead of having to attempt to dig through memory for the Autoit script I came across
a great tool called “Autoit-Extractor”, I am in no way vouching for this tool as being safe so
definitely make sure you run it within a contained environment. Anyways here the link and a
picture of what it came up with:

Link: https://github.com/digitalsleuth/autoit-extractor

The Autoit script was highly obfuscated and I was waaay to lazy to go through it and attempt
piece together its complete functionality, instead I opted to just run the executable and see
what it mainly does.

After using Ghidra to do some more advanced static analysis we can see that our
presumptions about this loader is definitely correct as it includes functions to prepare the
Autoit script and interact with it.

https://github.com/digitalsleuth/autoit-extractor


9/17

There also was privilege escalation contained within the binary, as you can see below. The
function first checks to see if it has administrator rights, if not it’ll proceed to attempt to
escalate its privileges by creating a suspended process hallowing it out and then writing it’s
malicious code to that suspended state.

 Privilege Check:

Process Creation:

Process Injection:



10/17

And finally the execution:

Here is a breakdown of the main function within the malicious executable. We can clearly
see that it checks for debuggers and privileges, along with preparing the Autoit script and
injecting into a process in order to run the malicious code.



11/17



12/17

Now, since I am quite lazy and I find dynamic analysis to be a lot easier and more honestly
more fun I decided to skip straight to the dynamic analysis portion instead of attempting to
completely statically analyze the executable.



13/17

Dynamic analysis:

On first glace after running the executable I noticed within ProcessHacker it creates a
process called “RegSvcs.exe” and injects its malicious code into there then terminates the
parent process. The loader mainly seems to be checking for system information in order for
the malicious code to work. It does things like check the internet settings using registry keys,
queries system information and passes this to the real malicious process known as
“RegSvcs.exe”. Agent Tesla seems to attempt to hide itself as a .NET Services installation
tool called “Regsvcs.exe” I am assuming it does this in order to attempt to bypass detection
and blend in with the other processes. Since it is an installation tool I am assuming that it
does this in order to better query file information and make changes to the system without
detection. Using Procmon we can analyze how both the executables function within runtime.

After the Agent Tesla executable does it thing collecting system information it is then
terminated and spawns the Regsvcs process in order to actually perform the malicious code.

Regsvcs does thing such as attempting to disable Windows Defender by messing with the
MpOAV.dll commonly used by that application.

It also sets registry information for RASAPI32, I am assuming this is some sort of backdoor
to the system as this is commonly used with remote connections to the system. Along with
changing values for Winsock registry and using the winhttp.dll file we can definitely assume
that this executable attempt to put a backdoor within the system. We can also notice that it
looks for many VNC clients I am assuming this is either to steal network information of other
computer within the infected network or it attempts to use these program in order to gain
remote access.



14/17

Some other notable things to come out of procmon were the malicious executable use of
cryptography features within the sytstem. It uses things such as bcrypt.dll in hash passwords
within the file or prevent traffic analysis. along with querying for a bunch of the systems
passwords. It checks browsers passwords, such as firefox, google chrome, edge, brave and
etc and creates user data for them. It also checks for Microsoft credentials, Office, Outlook,
FTP, and VNC profiles, and of course Discord.

Going based off this information so far, I can tell that Agent Tesla seems to be more of
information stealer.

I also used Regshot in order to gain a better understanding of what registry keys it
manipulated. We can see that the program modifies and deletes a ton of registry keys and
adds 27 of its own.



15/17

Using Regshot it deletes tons of driver configuration keys, most of them being within this
category:

HKLM\DRIVERS\DriverDatabase\DeviceIds\
HKLM\DRIVERS\DriverDatabase\DeviceIds\
HKLM\DRIVERS\DriverDatabase\DriverPackages\
HKLM\DRIVERS\DriverDatabase\DriverFiles\
HKLM\DRIVERS\DriverDatabase\DriverInfFiles\

 Configurations\BthMini.NT\Services\BTHPORT\Parameters\
HKLM\DRIVERS\DriverDatabase\DriverPackages\

It also adds 27 of it’s own keys most likely related to remote connection, persistence, and
some wireshark keys, which I am not to sure about that I am assuming this is why I received
nothing in wireshark when I was trying to analyze it. Here are some of the most notable
ones:

HKLM\SOFTWARE\WOW6432Node\Microsoft\Tracing\RegSvcs_RASAPI32
HKLM\SOFTWARE\WOW6432Node\Microsoft\Tracing\RegSvcs_RASMANC
Creates these keys for remote acces
HKU\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Explorer\BitBucket
HKU\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Explorer\BitBucket\Volume
HKU\.DEFAULT\Software\Microsoft\Windows\CurrentVersion\Explorer\BitBucket\Volume\
Seems to manipulate the Recycling bin?
HKU\S-1-5-21-769274696-41944572-4139179709-1001\SOFTWARE\Wireshark
HKU\S-1-5-21-769274696-41944572-4139179709-
1001\SOFTWARE\Wireshark\WinSparkle Settings
Seems to mess with the wireshark settings

The last and final step was to search through the running proccesses strings. This was
mostly filled with computer system and file system information that it gathered but 3 lines
stood out more than anything.

0x32a2b9c (46): mail.myhydropowered.com

0x32a2bd8 (52): asksiri@myhydropowered.com

0x32a2c48 (60): superreport@myhydropowered.com

Now I could’ve gone further and attempted to reverse the running process but I am lazy it’s
the weekend and I am tired haha. So with that being that this is all an assumption but I am
assuming it attempts to steal computer system and file information and then use SMTP or
POP3 as it did contain those strings as well in order to send the passwords to the bad actors.
After a quick google search of the website we can see that the domain is still up and running,
it contains a virtualmin login screen which is primarily used for web hosting or in this case

mailto:asksiri@myhydropowered.com
mailto:superreport@myhydropowered.com


16/17

email accounts. I am assuming that after Agent Tesla executes it attempts to send the stolen
information to these emails. Running a urlscan on this website provides a nice screen shot of
the infultrators domain. We can see that this domain is hosted in the US, and the bad actors
use this website in some way with the Agent Tesla malware.

After running another urlscan on the login page we are redirected to a Webmin login portal. I
am quite familiar with Webmin as I have used it many times in the past. I am assuming that
their using this to host the emails that they send their stolen information to. We can see that
this website was only created only a few months ago and based off the compiler time stamp
we can tell that this virus is quite new to the ecosystem.



17/17

I went ahead and sent the domain registar an email of the suspected abuse so hopefully they
are able to deal with it and take down the website, now I know this won’t completely stop
them but atleast if my assumptions are correct this will annoy them a little and that makes me
a little bit happier knowning I hopefully ruined their day a little haha.

Anyways thank you to anyone who took the time to read this, if you have any questions or
suggestions or spot any errors please let me know by sending me an email(which is located
within the About section of the website). I am always looking for suggestions, corrections,
and to learn so I am open to hearing any of your ideas. Also please know that I tried to use
the words “assumption and assuming” as much as possble as that is all this is. Especially
within the world of reverse engeering and malware analysis I can never be 100% certain.
Hopefully some of my assumptions are correct, anyways thanks for reading.


