
1/19

VenzoV

Latrodectus "Littlehw".md
github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Latrodectus "Littlehw".md

437 lines (328 loc) · 17.9 KB

Sample Information

Latrodectus caught my eye in the past week or so.
I checked for some fresh samples on MalwareBazaar and Unpac.me
and found this one.
Also, once I started analyzing a realized that Proofpoint had already published a technical analysis
and noticed my sample was pretty similar, at least the overall structure functionalty and some IOCs.

Still, I wanted to do my own analysis leveraging BinaryNinja API and also trying out some emulation with Dumpulator to
extract the strings.

Unpacked Sample Hash:
d1e2e287c96c290e161c553d99a115e7d72f83f23c850621169a27cca936f51b

CRC32 Hashed API resolving

Windows API are stored as CRC32 hashes inside the sample. The malware will build some tables with the decoded
values.

It will load the DLL components like kernel32.dll and ntdll.dll from the PEB (PEB walking).

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Latrodectus%20%22Littlehw%22.md
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/APIhashes.PNG

2/19

Once the base address for a DLL is found, it will then loop through the functions to calculate the CRC32 hashes and
compare them to the hardcoded values in the code.

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_GetKernel32Base.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_PEBWalk.PNG

3/19

For the other DLLs such as user32.dll the process is a bit different.
The malware will call GetSystemDirectoryW to get
the path to system32. Next it loops and calculates the CRC32 hashes of all the *.dll files found.
It compares them with
the hardcoded values and loads the DLLs.

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_GetApiAddr.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_System32Dlls.PNG

4/19

Now that all the base address of supporting DLLs are stored, the resolving function can loop through each and do the
same as before.

Following the code block responsible for the API resolving functions:

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_LoadDLL_FromSystem32.PNG

5/19

String Encryption

For this sample I did not bother to reverse the logic of the encryption nor build a python script to replicate the
funcitonality.

At a first glance it performs a bunch of mathematical and logical operations to some data and drops the output.

The function takes two parameters:

Address to data
Outputbuffer

With this in mind it was sort of easy to perform some emulation.

For this we need a list of addresses from the .data section which have the encrypted values and the location from where
the function is called each time.

I used jupyter notebook for this which I will add the the repo.
You can also view the notebook here:

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_APIresolving.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/StringDecryptionExplanation.PNG

6/19

https://nbviewer.org/github/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Jupyternotes/Latrdectus_Decr
yptStrings.ipynb

With the following BinaryNinja API we can get the two lists we need:

This will decrypt all the strings, and also I ran the a different print statement to generate the API to place comments.
So
with a simple copy & paste into the console I place comments of all the decrypted strings at the appropriate place.

This essentially takes care of all the string decryption.

Decrypted Strings:

addresses = []

locations = []

for ref in current_function.caller_sites:

addresses.append(ref.hlil.params[0])

locations.append(ref.address)

The we can run the following:

addr=0x7ffc685bae78

addresses = [...]

locations = [...]

i = 0

for entry in addresses:

 buffers = dp.allocate(1000)

 dp.call(addr, [entry ,buffers])

 decrypted_strings = dp.read(buffers, 1000)

 print("bv.set_comment_at(",hex(locations[i]),",\"",decrypted_strings.decode('utf-
8').replace('\"','').replace('\\','\\\\'),"\")")

 i += 1

print("bv.set_comment_at(",hex(locations[i]),",\"",decrypted_strings.decode('utf-
8').replace('\"','').replace('\\','\\\\'),"\")")

https://nbviewer.org/github/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Jupyternotes/Latrdectus_DecryptStrings.ipynb

7/19

Location: 0x7ffc685bf7e8 String:{

Location: 0x7ffc685bf7f0 String:"pid":

Location: 0x7ffc685bf800 String:"%d",

Location: 0x7ffc685bf810 String:"proc":

Location: 0x7ffc685bf820 String:"%s",

Location: 0x7ffc685bf830 String:"subproc": [

Location: 0x7ffc685bf848 String:]

Location: 0x7ffc685bf850 String:}

Location: 0x7ffc685bf8e0 String:&desklinks=[

Location: 0x7ffc685bf8f8 String:*.*

Location: 0x7ffc685bf908 String:"%s"

Location: 0x7ffc685bf918 String:]

Location: 0x7ffc685bf858 String:&proclist=[

Location: 0x7ffc685bf870 String:{

Location: 0x7ffc685bf878 String:"pid":

Location: 0x7ffc685bf888 String:"%d",

Location: 0x7ffc685bf898 String:"proc":

Location: 0x7ffc685bf8a8 String:"%s",

Location: 0x7ffc685bf8b8 String:"subproc": [

Location: 0x7ffc685bf8d0 String:]

Location: 0x7ffc685bf8d8 String:}

Location: 0x7ffc685bf000 String:/c ipconfig /all

Location: 0x7ffc685bf028 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf068 String:/c systeminfo

Location: 0x7ffc685bf090 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf0d0 String:/c nltest /domain_trusts

Location: 0x7ffc685bf108 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf180 String:/c nltest /domain_trusts /all_trusts

Location: 0x7ffc685bf1d0 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf148 String:/c net view /all /domain

Location: 0x7ffc685bf210 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf250 String:/c net view /all

Location: 0x7ffc685bf278 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf2d0 String:/c net group "Domain Admins" /domain

Location: 0x7ffc685bf320 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf360 String:/Node:localhost /Namespace:\\root\SecurityCenter2 Path AntiVirusProduct Get *
/Format:List

Location: 0x7ffc685bf420 String:C:\Windows\System32\wbem\wmic.exe

Location: 0x7ffc685bf470 String:/c net config workstation

Location: 0x7ffc685bf4b0 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf4f0 String:/c wmic.exe /node:localhost /namespace:\\root\SecurityCenter2 path
AntiVirusProduct Get DisplayName | findstr /V /B /C:displayName || echo No Antivirus installed

Location: 0x7ffc685bf640 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf680 String:/c whoami /groups

Location: 0x7ffc685bf6b0 String:C:\Windows\System32\cmd.exe

Location: 0x7ffc685bf2b8 String:&ipconfig=

Location: 0x7ffc685bf6f0 String:&systeminfo=

Location: 0x7ffc685bf708 String:&domain_trusts=

Location: 0x7ffc685bf720 String:&domain_trusts_all=

Location: 0x7ffc685bf740 String:&net_view_all_domain=

Location: 0x7ffc685bf760 String:&net_view_all=

Location: 0x7ffc685bf778 String:&net_group=

Location: 0x7ffc685bf790 String:&wmic=

Location: 0x7ffc685bf7a0 String:&net_config_ws=

Location: 0x7ffc685bf7b8 String:&net_wmic_av=

Location: 0x7ffc685bf7d0 String:&whoami_group=

Location: 0x7ffc685bf940 String:Custom_update

Location: 0x7ffc685bf920 String:Update_%x

Location: 0x7ffc685bf968 String:.dll

Location: 0x7ffc685bf978 String:.exe

Location: 0x7ffc685bf988 String:Updater

Location: 0x7ffc685bf9a0 String:"%s"

Location: 0x7ffc685bf9b0 String:

Location: 0x7ffc685bf9b8 String:rundll32.exe

Location: 0x7ffc685bf9d8 String:"%s", %s %s

Location: 0x7ffc685bfa00 String:runnung

Location: 0x7ffc685bfa18 String::wtfbbq

8/19

BOT ID

Location: 0x7ffc685bfaf0 String:front

Location: 0x7ffc685bfb00 String:/files/

Location: 0x7ffc685bfa38 String:%d

Location: 0x7ffc685bfa48 String:%s%s

Location: 0x7ffc685bfa58 String:files/bp.dat

Location: 0x7ffc685bfa70 String:%s\%d.dll

Location: 0x7ffc685bfa90 String:%d.dat

Location: 0x7ffc685bfaa8 String:%s\%s

Location: 0x7ffc685bfac0 String:init -zzzz="%s\%s"

Location: 0x7ffc685bfb10 String:Littlehw

Location: 0x7ffc685bfb38 String:.exe

Location: 0x7ffc685bfbe0 String:Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)

Location: 0x7ffc685bfc60 String:Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)

Location: 0x7ffc685bfb68 String:Content-Type: application/x-www-form-urlencoded

Location: 0x7ffc685bfba0 String:POST

Location: 0x7ffc685bfbb0 String:GET

Location: 0x7ffc685bfcf0 String:CLEARURL

Location: 0x7ffc685bfd00 String:URLS

Location: 0x7ffc685bfd10 String:COMMAND

Location: 0x7ffc685bfd20 String:ERROR

Location: 0x7ffc685bfd30 String:12345

Location: 0x7ffc685bfd40
String:counter=%d&type=%d&guid=%s&os=%d&arch=%d&username=%s&group=%lu&ver=%d.%d&up=%d&direction=%s

Location: 0x7ffc685bfdb0
String:counter=%d&type=%d&guid=%s&os=%d&arch=%d&username=%s&group=%lu&ver=%d.%d&up=%d&direction=%s

Location: 0x7ffc685bfe20
String:counter=%d&type=%d&guid=%s&os=%d&arch=%d&username=%s&group=%lu&ver=%d.%d&up=%d&direction=%s

Location: 0x7ffc685c0160 String:ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

Location: 0x7ffc685c0250 String:https://titnovacrion.top/live/

Location: 0x7ffc685c0278 String:https://skinnyjeanso.com/live/

Location: 0x7ffc685bffe0 String:%s%d.dll

Location: 0x7ffc685c0018 String:%s%d.exe

Location: 0x7ffc685bff40 String:Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Tob 1.1)

Location: 0x7ffc685bffc0 String:<html>

Location: 0x7ffc685bffd0 String:<!DOCTYPE

Location: 0x7ffc685c02a0 String:AppData

Location: 0x7ffc685c02b8 String:Desktop

Location: 0x7ffc685c02d0 String:Startup

Location: 0x7ffc685c02e8 String:Personal

Location: 0x7ffc685c0300 String:Local AppData

Location: 0x7ffc685c0330 String:Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

Location: 0x7ffc685c00e8 String:&mac=

Location: 0x7ffc685c00f8 String:%02x

Location: 0x7ffc685c0108 String::%02x

Location: 0x7ffc685c0128 String:;

Location: 0x7ffc685c0130 String:&computername=%s

Location: 0x7ffc685c0148 String:&domain=%s

Location: 0x7ffc685c0220 String:\Registry\Machine\

Location: 0x7ffc685c01e0 String:%04X%04X%04X%04X%08X%04X

Location: 0x7ffc685c01a8 String:*.dll

Location: 0x7ffc685bfe90 String:C:\WINDOWS\SYSTEM32\rundll32.exe %s,%s

Location: 0x7ffc685bfef0 String:C:\WINDOWS\SYSTEM32\rundll32.exe %s

Location: 0x7ffc685bfff8 String:12345

Location: 0x7ffc685c0008 String:&stiller=

Location: 0x7ffc685c0030 String:LogonTrigger

Location: 0x7ffc685c0118 String:PT0S

Location: 0x7ffc685c03b8 String:\update_data.dat

Location: 0x7ffc685c03f0 String:URLS

Location: 0x7ffc685c0400 String:URLS|%d|%s

9/19

Malware gets the volume serial number of the host with GetVolumeInformationW.
Serial number goes through a function
that will perform an arbitrary multiplication with a hard-coded value 0x19660d (this value seems consistent and used in
other campaigns also).

Returned result is then used as a part of the DLL filename appended after “Update_” as 8 hexadecimal characters.
It
goes through other functions that perform some rotations and bitwise operations.

It decrypts the campaign ID and calculates the FNV hash of the string "Littlehw".

The final part of the this big function block will essentially do two things:

Extract the arguements from the command-line of the process of the malware

Check the file extension.

It will achieve this through a series of calls to NtQueryInformationProcess & ReadProcessMemory.

With NtQueryInformationProcess it will fetch the bytes ahead of the PROCESS_BASIC_INFORMATION to have access
to a pointer to the PEB.

With a series of offsets to RSP the malware accesses the pointer and reads into a new memory buffer the contents of
the pointer PPEB PebBaseAddress.

typedef struct _PROCESS_BASIC_INFORMATION {

 NTSTATUS ExitStatus;

 PPEB PebBaseAddress;

 ULONG_PTR AffinityMask;

 KPRIORITY BasePriority;

 ULONG_PTR UniqueProcessId;

 ULONG_PTR InheritedFromUniqueProcessId;

} PROCESS_BASIC_INFORMATION;

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/ptr_ProcessInformation.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/ptr_PEB.PNG

10/19

Now it has the PEB information loaded in memory, and again with appropriate offsets it will access
_RTL_USER_PROCESS_PARAMETERS (0x20)

From this struct it will get the string stored in the member Command-line of _RTL_USER_PROCESS_PARAMETERS
(0x70).
Note the location of the actual string from the struct will be at 0x78.

Now it

has the command-line run, and using a custom function and hard-coded tokens to seek such as "commas or spaces" it
will parse the information it needs including the file name.
The values are stored in some memory registers that will be
later checked as "flags" in the C2 communication functions such as if the extension is exe or dll.

_UNICODE_STRING CommandLine;

//0x10 bytes (sizeof)

struct _UNICODE_STRING

{

 USHORT Length; //0x0

 USHORT MaximumLength; //0x2

 WCHAR* Buffer; //0x8

};

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/ptr_RTL.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/commandlineprocess.png

11/19

C2 Table

The first URLs are decrypted using the method mentioned and are set in a global C2 table.
This table stores and pointer
to memory address of decrypted C2.

Reading update_data.dat

The malware relies on this support file to extract other URLs.
The file is rc4 encyrpted.
The file read is located in the
"%appdata%\Custom_update" path.
This string is built by getting the value of APPDATA entry in the SHELL FOLDERS
registry.

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/is_exe.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/globalc2.PNG

12/19

It gets the user SID with RtlFormatCurrentUserKeyPath.
It will use the API NtOpenKey & NtQueryValueKey to get the value of the shell folders reg key of Appdata:

REGISTRY\USER\SID\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\EXPLORER\SHELL
FOLDERS\APPDATA

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/getsid.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/getappdata.PNG

13/19

Once it has the file path it will read the data and call a RC4 decryption routine.
It will now parse each new line and look
for the string "URLS" and "|".
Based on the proofpoint research we can see this is to fetch further URLs and saves them
in the global list of C2.

Using a custom struct the code can be cleaned:

CreateExecutable payload

The next function creates the following file:

AppData\Roaming\Custom_update\Update_33b0dade.dll\exe

The extension is based on the previous checks mentioned and the number is randomly generated again using the serial
volume name.
If file is already present or unable to create then a flag is set to 1,
otherwise to 2.
This flag is used later in
the newly created thread and differentiates which the URL to where the victim data is sent.
More on this later.

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/supportdatadef.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/supportdatastruct.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/createupdate_.PNG

14/19

COM persistence

The malware will now register a COM object. It will build the string:

rundll32.exe [PARAMS]

Where PARAMS depends on if the file was identified as .exe or .dll previously.
For example if it is .dll it will build:

rundll32.exe [PATHDLL] , [EXPORT]

These values are then passed to the COM registration function.
The API used are:

CoInitializeEx()
CoCreateInstance()

Following the hardcoded values passed to CoCreateInstance():

Using the last part of the CLSID we can find evidence that it is using the Task Scheduler class.
We can also track the
interface ID requested by the riid values.

itaskservice

riid:

c7a4ab2fa94d1340969720cc3fd40f85 -> interface ITaskService : IDispatch

e04757b4a7eb76429f2985c5bb300006 -> interface ITimeTrigger : ITrigger

clsid = {9F6870F-E5A4-4CFC-BD3E-73E6154562DD}

CLSCTX_INPROC_SERVER = 1

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/buildfilepath.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/taskschedulerclass.png
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/images/ildispatch.png

15/19

The malware will then reference the VTtable associated with the COM interface to set the LogonTrigger via Scheduled
task named "Updater".

PT0S value is also given which will enable the task to run indefinitely. When this parameter is set to Nothing, the
execution time limit is infinite.
Seemingly to run the built string at logon, thus creating persistence.

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/iltrigger.png
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mw_w_RegisterCOM.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/cocreatecom.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/logontrigger.PNG

16/19

New Thread

At one point the malware will create a new thread with hardcoded start location.
The code passed as argument will
contain all the main functionality of the malware including C2 comms.
There is a longish sleep before as soon as
entering the new thread:

Malware will sleep for 30 minutes.
1000000 -> 1 second * 18000 (loop)

This section will decrypt the RC4 key: "12345"
Information collected is sent to C2 servers by encrypting and encoding
with b64 same occurs with receiving data from the C2.

The info sent out initially looks something like this:

"counter=%d&type=%d&guid=%s&os=%d&arch=%d&username=%s&group=%lu&ver=%d.%d&up=%d&direction=%s"

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/pt0s.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/NewThread.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/sleep.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/outinfo.PNG

17/19

Data received from the C2 will have string format like so:

CLEARURL
URLS
COMMAND
ERROR

Proofpoint research has this with more details see references below.
But essentially the malware will parse out new C2
information commands and update C2 list.

C2 commands

The Proofpoint research has already outlined the codes and functionality so I will not go over it again as it is the same.
There is 1 more function that is not covered as far as I have seen. The function is called with command ID 21.

This function seems to download a payload from the C2, it parses the HTML page likely to look for specific data.
Once
the data is found it will copy the buffer location and create a new thread passing the response data as a
parameter.

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/victimdatastring.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/responseinfo.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/ID21.PNG

18/19

Interesting enough the malware will call on CreateFileMappingA MapViewOfFile.This can be used to execute a file
without using
the Windows loader.
It then seems to update data pointer of the parameters passed to the thread to point
to:

"&stiller=pointer to start of mapped view"

https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/ID21_func.PNG
https://github.com/VenzoV/MalwareAnalysisReports/blob/main/Latrodectus/Images/mapping.PNG

19/19

Refrences:

