
1/27

Nhân Huỳnh, Hoang Nguyen, Thai Duong

Dissecting LockBit v3 ransomware
blog.calif.io/p/dissecting-lockbit-v3-ransomware

Share this post

Dissecting LockBit v3 ransomware

blog.calif.io

Introduction

In our last article, we recommended analyzing ransomware binaries as part of an effective
ransomware response strategy:

“Analyzing binaries is hard. Analyzing obfuscated ransomware is even harder.

[...] However, it is worth investing in analyzing and understanding ransomware. Crypto
breaking bugs may be rare, but they are not impossible to find. In addition, ransomware
authors may not fully understand how to use crypto correctly. The only way to determine
if it is possible to recover the data, if any, is the long and detailed ransomware analysis
by an expert team.

[...] In addition, a successful analysis can help reassure you that there are no potential
bugs in the encryption and decryption process. It also helps the technical team
understand and potentially improve the recovery process. This is an investment that
should be considered early on in an incident.”

In this article, we show some examples of crucial intelligence you can gain from a meticulous
and accurate ransomware analysis. The target of this analysis is a variant of the
LockBit v3 ransomware that we encountered in a recent engagement. This variant is also
known as LockBit Black due to some code similarity with the BlackMatter family. These
samples are built from the leaked LockBit v3 builder available on GitHub.

Calif discovered two issues in this version of the ransomware:

a crypto bug that may allow for the decryption of a portion of the data without the private
key, i.e., without paying the ransom.

a design flaw that may cause data corruption and permanent data loss.

https://blog.calif.io/p/dissecting-lockbit-v3-ransomware
https://blog.calif.io/p/ransomware-response-strategy
https://github.com/petikvx/LockBit-Black-Builder/
https://www.google.com/url?q=https://github.com/petikvx/LockBit-Black-Builder/&sa=D&source=editors&ust=1714637272629606&usg=AOvVaw2sFrehVMRgSNzGAXGz6Xaa

2/27

We decided to publish this analysis for the following reasons:

The crypto bug is already known to the malware author. We have observed newer
variants where we can no longer take advantage of this bug.

We want to share our analysis and research to help other affected organizations prepare
and respond to the same ransomware family, especially regarding the data corruption
flaw.

The LockBit v3 family contains interesting anti-analysis techniques and clever use of
standard cryptographic algorithms that are not well documented. These technical details
would be valuable for malware researchers and threat hunters.

We also publish an open-source decryptor for this variant. You can download the tool from
GitHub.

Calif would like to extend a special thank you to Chuong Dong – a malware expert who has
previous experience with this ransomware family. During the initial analysis, we requested
Chuong’s assistance to swiftly comprehend the file encryption scheme. His help proved highly
valuable as we managed to quickly reimplement the decryptor.

Note that the screenshots and code snippets within this article assume that the encryptor is
loaded at address 0xFA0000 instead of the default ImageBase of 0x400000. The decryptor is
loaded at the ImageBase of 0x400000. In addition, the ransomware has many anti-debugging
and obfuscation mechanisms. To bypass these protections and reproduce this analysis,
please refer to Appendix A: Reverse engineering detail.

Table of contents

Introduction

Encryption and decryption logic

Encrypted file structure

Footer structure

Modified Salsa20

RSA with no padding

File encryption

File decryption

Flaws

https://github.com/califio/lockbit-v3-linux-decryptor
https://chuongdong.com/
https://blog.calif.io/i/144230301/appendix-a-reverse-engineering-detail
https://blog.calif.io/i/144230301/introduction
https://blog.calif.io/i/144230301/encryption-and-decryption-logic
https://blog.calif.io/i/144230301/encrypted-file-structure
https://blog.calif.io/i/144230301/footer-structure
https://blog.calif.io/i/144230301/modified-salsa
https://blog.calif.io/i/144230301/rsa-with-no-padding
https://blog.calif.io/i/144230301/file-encryption
https://blog.calif.io/i/144230301/file-decryption
https://blog.calif.io/i/144230301/flaws

3/27

Keystream reuse vulnerability

Data corruption

Conclusion

Appendix A: Reverse engineering detail

Appendix B: Open-source decryption tool

Appendix C: Binary Information and Indicators of Compromise (IOCs)

Appendix D: IDC script to rename functions

Appendix E: Chunk counts and skip bytes

Encryption and decryption logic

The sample encrypts files using a combination of symmetric and asymmetric cryptography, as
follows:

Generate a 64-byte random key for each targeted file. We will refer to it as the
file_encryption_key. We identify the encryption algorithm as a variant of Salsa20.
Normally, Salsa20 uses a 32-byte key, but this variant uses 64-byte. Please refer to the
Modified Salsa20section for more details. Unless specified otherwise, all references to
Salsa20 in this document refer to this modified version.

Generate another 64-byte random Salsa20 key to encrypt the file_encryption_key. We
will refer to this second key as the key_encryption_key. As an optimization to reduce
the number of slow RSA encryption operations, the sample reuses this key for 1,000
files before generating a new one. This key reuse leads to a vulnerability described in
the Keystream reuse vulnerability section.

Encrypt the key_encryption_keys using RSA with no padding, using a 1024-bit public
key embedded within. We describe this algorithm in the RSA with no
padding section. Note that since 2015 NIST has recommended against using 1024-bit
RSA keys.

Encrypted file structure

The sample processes targeted files the same way during encryption and decryption. It
divides each file into chunks of 0x20000 bytes. The sample does not pad the file if the file size
or the size of the last chunk is less than 0x20000 bytes.

https://blog.calif.io/i/144230301/keystream-reuse-vulnerability
https://blog.calif.io/i/144230301/data-corruption
https://blog.calif.io/i/144230301/conclusion
https://blog.calif.io/i/144230301/appendix-a-reverse-engineering-detail
https://blog.calif.io/i/144230301/appendix-b-open-source-decryption-tool
https://blog.calif.io/i/144230301/appendix-c-binary-information-and-indicators-of-compromise-iocs
https://blog.calif.io/i/144230301/appendix-d-idc-script-to-rename-functions
https://blog.calif.io/i/144230301/appendix-e-chunk-counts-and-skip-bytes
https://cr.yp.to/salsa20.html
https://blog.calif.io/i/144230301/modified-salsa
https://blog.calif.io/i/144230301/key-stream-reuse-vulnerability
https://blog.calif.io/i/144230301/rsa-with-no-padding
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf

4/27

Consecutive chunks form a group. There are three group types: before, skip, and after
group. There is exactly one “before group” at the beginning of the file. The skip group and the
after group follow the before group and repeat alternatively throughout the rest of the file.

The sample encrypts chunks of the before group and after groups using Salsa20. It leaves
chunks in the skip group unencrypted. It determines the number of chunks in each group
based on the file size. Please refer to Appendix E for more details.

An encrypted file ends with a footer containing information about the file such as the file’s
original name, number of chunks in each group, etc, including the file_encryption_key to
decrypt the file data. The sample encrypts this footer, and appends it to the file after the
encryption finishes. For a detailed description of the footer structure, refer to the next section.

The overall structure of an encrypted file can be visualized as follows:

Footer structure

We reconstruct the overall structure of the footerin the C snippet below:

https://blog.calif.io/i/144230301/appendix-e-chunk-counts-and-skip-bytes
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fa766c818-c8ec-4321-9ba3-745555f795b4_761x61.png

5/27

struct file_encryption_info

{

 char filename[file_encryption_info.filename_size]; // apLib compressed

 uint16_t filename_size;

 LARGE_INTEGER skipped_bytes;

 int before_chunk_count;

 int after_chunk_count;

 uint8_t file_encryption_key[0x40];

};

struct key_encryption_info

{

 uint16_t file_encryption_info_length; // necessary because filename is dynamically
sized

 int checksum;

 union

{
 struct

 {

 uint8_t key_encryption_key[0x40];

 uint8_t checksum[0x40];

 } decrypted;

 uint8_t encrypted_key_encryption_key[0x80]; // RSA encrypted

} key_blob;

};

struct footer

{

 struct file_encryption_info file_encryption_info; // Salsa20 encrypted

 struct key_encryption_info key_encryption_info;

};

The file_encryption_info contains a randomly generated key to decrypt the file content. The
file_encryption_info is encrypted using Salsa20. The key to decrypt the file_encryption_info is
stored in the encrypted_key_encryption_key field of the key_encryption_info structure. This
field, in turn, is encrypted using the RSA public key embedded in the ransomware.

The decryptor contains an embedded private key, and works as follows:

1. Read the key_encryption_info structure at offset 0x86 bytes from the end of the file.

2. Hash the encrypted_key_encryption_key field and verify it against the checksum field as
seen here.

3. Decrypt the encrypted_key_encryption_key using the embedded private RSA key then
validate the key_encryption_key with the decrypted.checksum field.

4. Calculate the start of the file_encryption_info structure using the
file_encryption_info_length field.

https://gist.github.com/Demonslay335/aa435774bbb93b505a243b388b7278fa

6/27

5. Use the key_encryption_key to decrypt the file_encryption_info structure using the
modified Salsa20 algorithm. This structure contains the Salsa20 file_encryption_key that
can be used to decrypt the chunks in the before group and after group.

Modified Salsa20

The sample encrypts the file_encryption_infostructure and the chunks using Salsa20 at
address 0x00FA20AC.

Salsa20 has a 64-byte state that is used to generate a key stream to encrypt the plaintext one
64-byte block at a time. In the vanilla Salsa20 standard, the initial 64-byte state consists of a
32-byte key, an 8-byte block counter, an 8-byte nonce, and a 16-byte constant that spell
“expand 32-byte k” in ASCII.

However, in this variant, the entire initial state is filled with random values. The
aforementioned file_encryption_key and key_encryption_key are the initial states of the file
encryption and key encryption processes respectively.

This finding shows that LockBit v3 is indeed a successor of BlackMatter, which in turn came
from the Darkside ransomware family. Chuong’s analysis of Darkside shows that it also fills
the Salsa20’s initial state, which Chuong called the matrix, with random values.

RSA with no padding

This sample encrypts key_encryption_info.key_encryption_key and
key_encryption_info.checksum, using a custom implementation of the RSA algorithm at
address 0x00FA17B4.

Recall that an RSA public key consists of two components:

The modulus N.

The public exponent e.

To encrypt a message m using RSA with no padding, you compute m^e (mod N). This
encryption mode, which is known as textbook RSA, has many potential footguns. For
example, it’s possible to recover small messages. Therefore, m is usually padded with PKCS
v1.5 or OAEP padding schemes.

However, the sample uses no padding. We can’t find any obvious issues, because the sample
only encrypts messages that have the same size as the modulus. In particular, it uses a 1024-
bit key to encrypt key_encryption_info.key_encryption_key and
key_encryption_info.checksum, which in total are also 1024 bits long.

https://chuongdong.com/reverse%20engineering/2021/05/06/DarksideRansomware/
https://cloud.google.com/blog/topics/threat-intelligence/cryptography-blackmatter-ransomware
https://datatracker.ietf.org/doc/html/rfc8017#section-7.2
https://datatracker.ietf.org/doc/html/rfc8017#section-7.1

7/27

File encryption

Before encrypting any files, the sample parses its embedded configuration at address
 0x00FC600C. This data are encrypted by the function at 0x00FA6F48 and contain information
such as configuration flags, file hashes to avoid, ransom note, and the RSA public key used to
encrypt the randomly generated key_encryption_info.key_encryption_key.

After decrypting its configurations, the sample parses its command line arguments and
enumerates target paths to encrypt files. The sample operates slightly differently depending on
the command line argument. However, the file encryption logic is similar across different
execution flows. The sample creates one thread for traversing and queueing files to be
encrypted and multiple threads to actually encrypt the files. The threads communicate
asynchronously with each other using an IO completion port.

At a high-level, the encryption threads work as follows:

The file traversal and queueing logic starts at 0x00FAF308.

It drops a ransom note in the current directory.

For each file in the current target directory, it verifies the filename against the lists of
hashes to avoid. If the current filename doesn’t belong to any of the lists, it renames the
current file and adds a unique extension. In our variant, the extension is .IzYqBW5pa.

It increases various counters, including a counter for the number of files using the
current key_encryption_key. This key is randomly generated and reused once every
1,000 files. Once this counter reaches 1,000, the sample resets it back to 0 and
generates a new key_encryption_key. This design introduces a bug that allows for the
decryption without paying the ransom. This bug is described in detail in the Key stream
reuse vulnerability section.

It fills out and sets up the key_encryption_info structure for the current file. The logic to
set the before_chunk_count, skipped_bytes, and after_chunk_count is at address
0x00FAE8AC. These values are determined based on the current file size. Refer to
Appendix E for the exact values of each field based on the current file size.

The file encryption thread logic starts at address 0x00FADE78. This function simply
determines if it needs to encrypt the current chunk depending on the
file_encryption_info structure. It uses a randomly generated key stored at
file_encryption_info.file_encryption_key to encrypt each chunk using Salsa20. Finally,
when the entire file is processed, it writes the footer structure to the end of the file.

File decryption

https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://blog.calif.io/i/144230301/appendix-e-chunk-counts-and-skip-bytes

8/27

The decryptor binary LB3Decryptor.exe is not obfuscated and can be quickly analyzed
statically.

Similar to the encryptor, the decryptor parses its command line arguments and enumerates
paths to decrypt files. The sample also creates multiple threads for decrypting and one for
traversing and queueing files. These threads communicate asynchronously with each other
using an IO completion port.

At a high-level, the decryption threads work as follows:

The file traversal and queueing logic starts at 0x00403CEC. For each file, it decrypts the
key_encryption_info (see Footer structure) at address 0x00403960. Then, it obtains
the file_encryption_key and the chunk counts before queueing the file.

The file decryption thread logic starts at 0x004030DC. It decrypts the chunks selected by
the grouping algorithm using the file_encryption_key. Finally, when the entire file is
processed, it removes the encrypted footer structure at the end of the file.

Flaws

Keystream reuse vulnerability

This version of the LockBit v3 ransomware has a keystream reuse vulnerability.

Instead of directly encrypting the file_encryption_info structure with RSA, the sample aims to
reduce the number of slow RSA operations by adding another layer of Salsa20 encryption.
This is where it makes a mistake that may allow the recovery of a portion of the data.

The sample generates a random Salsa20 key_encryption_key to encrypt the
file_encryption_info structure once every 1,000 files as seen below:

https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fbe8a1cec-11dd-4650-bcf7-625e481fc2a1_1191x457.png

9/27

Therefore, the Salsa20 algorithm would generate the same key stream for 1,000 files from the
same key. Within these 1,000 files, if there is a file with a sufficiently long compressed
filename, we can recover enough of the keystream to decrypt the file_encryption_info
structure of other files with a much shorter compressed filename. This file_encryption_info
structure contains the file_encryption_key to decrypt the file content. In other words, if we
happen to have a file with a sufficiently long compressed filename, chances are we can
recover the content of other files with shorter compressed filenames without the private key
from the threat actor, i.e., without paying the ransom.

For example, we created two short text files for our test case:

a.txt, whose compressed filename is: 61 e0 2e e0 74 e0 78 db 09 02 00 00

aABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnopqrstuvwxyz{}~123456789.txt,
whose compressed filename is shown below:

 The content of the encrypted file with the longer file name is shown here:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F460a7ce8-42f1-40be-be48-16b6005bb2a3_1224x396.png

10/27

Because we know the current filename, we can compute the plaintext compressed filename.
XOR-ing the encrypted compressed filename with the plaintext compressed filename gives us
the following keystream:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F2dd6cfe7-d1fc-4746-825b-3dd454547f7b_1011x1287.png

11/27

The content of the encrypted a.txt is shown below with similar color-coded fields:

XOR-ing the entire file_encryption_info block, starting at offset 0x0e to offset 0x6c with the
keystream above would give us the following bytes:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F0131b85b-4e59-4603-affa-1f60d73351e2_1416x430.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F89d73d83-3840-4db4-866f-9a57a4f19943_1598x838.png

12/27

The recovered file_encryption_info fields are:

Compressed filename: 61 e0 2e e0 74 e0 78 db 09 02 00 00 (compressed a.txt)

filename_size: 0c 00 (0x0c)

skipped_bytes: 00 00 52 00 00 00 00 00 (0x520000 in little-endian)

before_chunk_count: 03 00 00 00 (0x03 in little-endian)

after_chunk_count: 03 00 00 00 (0x03 in little-endian)

file_encryption_key:

The recovered file_encryption_info structure allows us to decrypt the entire file following the
decryption scheme described above.

Data corruption

This version of the LockBit v3 ransomware has a design flaw that can cause permanent data
loss. LockBit v3 has a mutex checking mechanism to ensure only one instance of itself is
running on the infected system:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F30009c49-abb8-4ce0-84c5-2da5abecfda8_1597x840.png
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F2fb582f6-7d03-4dbb-9bdc-43456da8afa3_1418x198.png

13/27

However, this feature can be configured at build time and is disabled in our sample. The flag
at byte_FC5129 is part of the sample’s encrypted settings configured by the TA and set by the
builder. When this feature is disabled, multiple instances of the ransomware can run on the
infected system at one time.

The sample needs to process each file with exclusive access to the encryption logic. To do
that, it attempts to terminate other processes that prevent exclusive access to the file. The
sample uses the restart manager family of APIs (RmStartSession(), RmRegisterResource(),
RmGetList()) to get a list of processes with open handles to the file being encrypted. It then
terminates all of those processes.

This design can cause permanent data corruption because of the following reasons:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F8c083ec8-151a-4c14-af7f-46c51ffdab48_994x703.png
https://learn.microsoft.com/en-us/windows/win32/rstmgr/about-restart-manager
https://learn.microsoft.com/en-us/windows/win32/api/restartmanager/nf-restartmanager-rmstartsession
https://learn.microsoft.com/en-us/windows/win32/api/restartmanager/nf-restartmanager-rmregisterresources
https://learn.microsoft.com/en-us/windows/win32/api/restartmanager/nf-restartmanager-rmgetlist

14/27

With multiple instances of the same ransomware running on the same system, one
instance can attempt to terminate the other instance that is encrypting the same file. In
this case, the randomly generated file_encryption_key from the 1st instance can not be
recovered. The file is permanently corrupted. We can detect the corruption by observing
files with multiple extra extensions, signaling that the files were encrypted multiple times.
Each instance of the ransomware can have multiple encryption threads running parallel,
each of which encrypts one file at a time. Since the number of concurrent threads is
quite low, the number of files being affected in this case can potentially be low.

The sample may attempt to terminate another process that is currently writing and
modifying the current file. This may cause data corruption depending on how the
affected process is designed. We can not easily detect this case. However, the number
of files being affected can be very high depending on the services running on the
infected system and their utilization. Calif has observed files that are properly decrypted
but are corrupted and not recognized by their associated applications.

Conclusion

Analyzing the ransomware could provide critical intelligence when evaluating response
strategies to ransomware attacks. In this case, Calif observed flaws in the ransomware design
that allowed affected organizations to reconsider the true value of the ransom demand. We
hope our analysis helps demystify the inner workings of one ransomware variant. We also
hope to encourage more sharing of technical analysis, curated intelligence, and valuable
lessons across organizations. Security demands collaboration as no organizations operate in
a vacuum. The more secure our peers, the safer we are against cyber criminals.

Appendix A: Reverse engineering detail

Anti-debugging

Typically, malware does not want to be analyzed. With a debugger, we can easily control the
malware’s execution, dump data, or force the malware to execute a specific code path.
Therefore, malware usually contains multiple anti-debugging checks. We found multiple said
checks in this sample.

The first check occurs at 0x00FA63C5 (offset 0x57C5 into the file) as seen below:

15/27

After manually resolving some Windows Application Programming Interfaces (APIs), the
sample calls the RtlCreateHeap() function to create a new heap. The result is a HANDLE to a
window HEAP structure provided by the operating system for the current process. This HEAP
structure is undocumented by Microsoft. To better understand this structure, refer to other
online resources regarding the Windows HEAP. Significant to anti-debugging mechanisms, the
HEAP structure contains two flags: Flag and ForceFlag. These values change depending on
whether the current process is running under a debugger.

In the screenshot above, the sample checks the Flag field, which is at offset 0x40 byte into the
undocumented HEAP structure. The value of this Flag field is 0x40041062 as shown in the
screenshot below:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5d32f725-a9a1-49ae-8fa4-314f64b7e48f_681x537.png
https://learn.microsoft.com/en-us/windows/win32/sysinfo/handles-and-objects
https://systemroot.gitee.io/pages/apiexplorer/d5/d5/struct__HEAP.html
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F800efd09-7975-4a6f-9561-9b4676ae2666_1014x206.png

16/27

The sample gets the most significant 4 bits of the flag by rotating the Flag field 28 (0x1c) bits
to the right, and tests the result against 0x04. This effectively tests the most significant byte of
the Flag field against 0x40000000 (HEAP_VALIDATE_PARAMETER_ENABLED) which is set
if the current process is running under a debugger.

If the sample detects a debugger, it modifies the HANDLE to the current process’s heap using
the rol operation. This causes the process to crash if it ever tries to allocate any memory using
the modified heap HANDLE in the future.

A similar check of the heap’s ForceFlag field is shown below:

17/27

In the screenshot above, the sample finds the heap using the current process’s Process
Environment Block (PEB). Then, it tests the ForceFlag field, which is at offset 0x44, against
0x40000000 to detect a debugger.

These checks are scattered around the sample’s logic near any heap operation. The easiest
way to bypass these anti-debugging checks is to modify the process heap structures directly
and reset both the Flag and ForceFlag fields’ most significant byte to 0x00.

This sample also contains the following additional anti-debugging features:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fa183b87c-d074-4150-bd86-d2ba09b4d1ef_776x824.png
https://en.wikipedia.org/wiki/Process_Environment_Block
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Process_Environment_Block&sa=D&source=editors&ust=1714637272671921&usg=AOvVaw3EXBRanYp9-IShSdhBONx1
https://www.google.com/url?q=https://en.wikipedia.org/wiki/Process_Environment_Block&sa=D&source=editors&ust=1714637272672119&usg=AOvVaw3ZDOyDYQ_KwnUcbGgOyqcy

18/27

Checking beyond the bound of the allocated heap memory against magic constants like
0xABABABAB. These magic constants come from a Windows feature that adds
additional guardrails to heap memory to quickly detect memory corruption bugs. This
feature is only enabled if the current process is running under a debugger. This check
can also be bypassed by modifying the Flagand ForceFlagfields of the heap.

Calling NtProtectVirtualMemory() and RtlEncryptMemory() to encrypt the
DbgUiRemoteBreakin() function. This causes the current process to crash if there is any
attempt to attach a debugger afterwards. This does not have any effect if we start
executing the sample using the debugger.

Calling NtSetInformationThread() with ThreadHideFromDebugger (0x11) for the current
thread. This call only happens a few times at the beginning of the execution flow. A quick
way to bypass this is patching the function to simply return NT_SUCCESS (0x00).

Obfuscation

Manual API resolution

To avoid leaking capabilities and being tracked using the import hash, this sample manually
resolves Windows APIs using the PEB.

The PEB contains all the properties of its associated process, including a list of loaded DLLs.
The sample can walk this list of DLLs and their export tables to manually find addresses of the
necessary Windows APIs. To further avoid leaking strings, the sample manually resolves
Windows APIs using a hashing algorithm shown below:

https://cloud.google.com/blog/topics/threat-intelligence/tracking-malware-import-hashing/
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data
https://learn.microsoft.com/en-us/windows/win32/debug/pe-format#export-directory-table
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F22a1416b-059f-4e62-bd74-fd6a20c03c51_859x378.png

19/27

The sample applies the hashing algorithm above on the DLLs and their export names to find a
match instead of comparing strings normally. However, in addition to the “Addition-Rotate
Right 13” operation, the sample also XORs the result with the 0x10035FFF constant. This
results in a set of API hashes that are different from other malware families using a similar
technique.

Trampoline code

The sample doesn’t use the resolved APIs directly. Instead, for each API, it allocates a small
memory chunk and builds a small piece of trampoline code which calculates and jumps to the
target API.

For example, instead of executing a standard indirect call to NtOpenProcess() as an import,
the sample calls to a pointer at address 0x00fc5474, which points to a function at address
0x00330bc8 on the heap. This function is shown below:

After the rol operation, eax becomes 0x7743FC50, which is the address of
ntdll!NtOpenProcess(). This makes static analysis significantly more tedious. We would have a
hard time tracking all the calls to the trampoline code.

Because we can bypass the anti-debugging checks, we can use a debugger to help us
automate the renaming of the trampoline calls. The logic to resolve APIs and setup the
trampoline code is at 0x00FA5dA0. Using the IDA Free debugger, we can set a breakpoint at
0x00FA5DDB, which is the instruction right after the call to manually resolve Windows APIs.
Then, we can edit the breakpoint to execute the following one-liner:

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fc43258a4-32b2-4f03-9a9f-40fcff8a1655_548x266.png

20/27

fprintf(fopen("out.txt", "a+"),

 "%s\n",

 sprintf("%a -- %s",

 GetRegValue("edi"),

 get_name(GetRegValue("eax"))

)

)

This small snippet tells the IDA Free debugger to log the following items to the file “out.txt” in
the current working directory:

The current value of the edi register. This is the address of the trampoline code. In our
example, this would be 0x00FA5dA0.

The name of the value in the eax register. The eax register holds the address of the
resolved API. In our example, eax would be 0x7743FC50. Within the current process
context, this is the address of ntdll!NtOpenProcess().

Once the breakpoint is ready, we can let the sample execute through all the API resolution
logic. At the end, we should see the out.txt file that looks similar to this:

After the sample finishes resolving all the APIs, we can dump the current process including all
of its allocated memory for further analysis. Then, we can write a small IDA script to parse
out.txt and rename all the trampoline calls to the appropriate APIs. This will help speed up our

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F3a7222bc-59c3-490d-9709-554ac78b2389_649x432.png

21/27

static analysis significantly. An example of such a script is available in Appendix D.

Appendix B: Open-source decryption tool

The leaked LockBit v3 builder generated the encryptor and decryptor for Windows. Although
the decryptor can run on Linux using Wine, Calif decided to re-implement the decryption logic
in C for the following reasons:

We want to run the decryptor natively on VMWARE ESXi.

We want to confirm our understanding of the encryption scheme.

We want to avoid executing the malware author’s decryptor which may contain other
data corruption bugs.

Other affected organizations may also find our decryptor useful.

This section describes how we build a decryption tool for Linux. The tool is open-source and
can be downloaded from GitHub.

Extracting the decryption function

Calif identified the two crypto functions to be Salsa20 (0x00FA20AC) and RSA with no
padding (0x00FA17B4). Initially, instead of fully reverse-engineering these functions, we take
the code directly from the binary and run it as shellcode inside a C wrapper. Calif’s decisions
were based on the following reasons:

It would take us too long to fully analyze and confirm the algorithms.

The sample uses a custom implementation of the two algorithms. Therefore, re-
implementation or using a standard library may introduce discrepancies and bugs.

We extract the following items directly from the ransomware into shellcode that we can call
using our wrapper:

The Salsa20 encryption function and related functions

The Raw RSA function and related functions

The checksum calculation algorithm

The APLib compression function and related functions

When preparing these functions, we also fix any absolute address references so we can call
them correctly in our wrapper without causing a crash.

https://blog.calif.io/i/144230301/appendix-d-idc-script-to-rename-functions
https://www.winehq.org/
https://github.com/califio/lockbit-v3-linux-decryptor

22/27

Implementation

The sample is compiled for a 32-bit Windows environment. To get the shellcode to run
correctly, we also need to compile our code for this environment. By default, GCC would
default to the cdecl calling convention, but Windows uses stdcall. We fix that by adding the
attribute (__attribute__((stdcall)).

The data section of an executable is marked as non-executable, therefore we can not execute
the shellcode directly from there. Instead, we allocate new memory pages with executable
permission and copy the shellcode over.

Appendix C: Binary Information and Indicators of Compromise (IOCs)

The following IOCs come from our specific build of this variant of LockBit v3. Here are the
components that may be different across different builds:

The unique ID for this build: IzYqBW5pa.

File hashes other than the hash of the icon and desktop background.

Binary information

Filename: LB3.exe

File type: Windows Portable Executable (PE) x86

File size: 156,160

SHA256 hash:
f34dd8449b9b03fedde335f8be51bdc7f96cda29a2dde176c3db667ba0713c6f

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fbf85ae93-02ec-4471-9afb-2613e48478bc_1258x232.png
https://en.wikipedia.org/wiki/NX_bit
https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2Fe9adba6e-28fc-4077-94dd-4fe3f9453d1a_788x95.png

23/27

Filename: LB3Decryptor.exe

File type: Windows Portable Executable (PE) x86

File size: 33,280

SHA256 hash:
8f0a2d5b47441fbcf1882aa41cae22fd0db057ccc38abad87ccc28813df3a83c

Indicators of Compromise

Host-based indicators (HBIs)

Volatile:

When configured, the sample creates the following mutex:
Global\a91a66d6abc26041b701bf8da3de4d0f where
a91a66d6abc26041b701bf8da3de4d0f is calculated from the embedded RSA
private key

Files

Filename: C:\ProgramData\IzYqBW5pa.ico where IzYqBW5pa is the unique ID for
this specific variant.

File type: ICO

File size: 15,086

SHA256 hash:
95e059ef72686460884b9aea5c292c22917f75d56fe737d43be440f82034f438

Filename: C:\ProgramData\IzYqBW5pa.bmp.

File type: BMP

File size: 86,708

SHA256 hash:
ef66e202c7a1f2a9bc27ae2f5abe3fd6e9e6f1bdd9d178ab510d1c02a1db9e4f

24/27

Filename: IzYqBW5pa.README.txt.

File type: TXT

File size: 6,197

SHA256 hash:
af23f7d2cf9a263802a25246e2d45eaf4a4f8370e1b6115e79b9e1e13bf20bfe

Registry:

Path: HKEY_CLASSES_ROOT\.IzYqBW5pa\DefaultIcon

Value: C:\ProgramData\IzYqBW5pa.ico

Network-based indicators (NBIs):

When configured, the sample communicates with the configured C2 server using HTTP
Protocol POST method. This specific variant is not configured with a C2 server.

When communicating with the C2 server, the sample uses the following User-Agent
string: Chrome/91.0.4472.77.

Communication with the C2 server is encrypted using the AES algorithm. This specific
variant is not configured to communicate with the C2 server. Therefore, it also does not
contain the AES key.

Appendix D: IDC script to rename functions

25/27

#include <idc.idc>

static process(line) {

 // example line: .data:00FC5410 -- ntdll_RtlCreateHeap

 auto idx = strstr(line, " -- ");

 // saddr: .data:00FC5410

 auto saddr = substr(line, 0, idx);

 // name: ntdll_RtlCreateHeap

 auto name = substr(line, idx + 1, -1);

 // old saddr: .data:00FC5410

 // new saddr: 00FC5410 as a string

 // addr : 0x00FC5410

 auto _idx = strstr(saddr, ":");

 saddr = substr(saddr, _idx + 1, -1);

 auto addr = xtol(saddr);

 // old name: ntdll_RtlCreateHeap

 // new name: RtlCreateHeap

 idx = strstr(name, "");

 name = substr(name, _idx + 1, -1);

 auto len = strlen(name);

 // NULL terminate the last byte

 name[len-1] = '\0';

 Message("Addr: 0x%x, name: %s\n", addr, name);

 set_name(addr, name, SN_NOCHECK|SN_FORCE);

}

static load_file() {

 auto fd = fopen("out.txt", "r");

 auto line = readstr(fd);

 while (value_is_string(line)) {

 process(line);

 line = readstr(fd);

 }

 fclose(fd);

 return 0;

}

static main() {

 load_file();

}

Appendix E: Chunk counts and skip bytes

26/27

Grouping algorithm

Each chunk of the file belongs to one of the three groups (before group, skip group, after
group). But for the sake of simplicity, let’s only consider the state of each chunk: encrypted
(before group or after group), or unencrypted (skip group).

To determine if a chunk needs encrypting or decrypting, we can use the following algorithm:

chunk_state = ''

first 'before_chunk_count' chunks belong to before group and are encrypted

crypt_chunk_count = before_chunk_count

skip_chunk_count = (skipped_bytes / 0x20000) -1

skip_count = skip_chunk_count

for chunk in chunks:

if (crypt_chunk_count):

	 chunk_state = "en(de)crypt"

	 crypt_chunk_count = crypt_chunk_count - 1

else:

	 chunk_state = "skip" # belongs to a skip group

	 skip_count = skip_count - 1

	 if (skip_count == 0):

	 	 crypt_chunk_count = after_chunk_count

The decrypted file_encryption_info contains the value for before_chunk_count,
after_chunk_count and skipped_bytes. To see how and where they are generated, refer to the
File encryption section. The sample determines the chunk count based on the file size as
described in the following table:

27/27

Comments

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5396ea83-e65d-431a-8bb1-7f5898598b6d_1268x866.png

