
1/20

May 1, 2024

“Dirty stream” attack: Discovering and mitigating a
common vulnerability pattern in Android apps

microsoft.com/en-us/security/blog/2024/05/01/dirty-stream-attack-discovering-and-mitigating-a-common-vulnerability-
pattern-in-android-apps/

Skip to main content

By	Microsoft Threat Intelligence

Microsoft discovered a path traversal-affiliated vulnerability pattern in multiple popular
Android applications that could enable a malicious application to overwrite files in the
vulnerable application’s home directory. The implications of this vulnerability pattern include
arbitrary code execution and token theft, depending on an application’s implementation.
Arbitrary code execution can provide a threat actor with full control over an application’s
behavior. Meanwhile, token theft can provide a threat actor with access to the user’s
accounts and sensitive data.

https://www.microsoft.com/en-us/security/blog/2024/05/01/dirty-stream-attack-discovering-and-mitigating-a-common-vulnerability-pattern-in-android-apps/
javascript:void(0)
https://www.microsoft.com/en-us/security/blog/author/microsoft-security-threat-intelligence/


2/20

We identified several vulnerable applications in the Google Play Store that represented over
four billion installations. We anticipate that the vulnerability pattern could be found in other
applications. We’re sharing this research so developers and publishers can check their apps
for similar issues, fix as appropriate, and prevent introducing such vulnerabilities into new
apps or releases.  As threats across all platforms continue to evolve, industry collaboration
among security researchers, security vendors, and the broader security community is
essential in improving security for all. Microsoft remains committed to working with the
security community to share vulnerability discoveries and threat intelligence to protect users
across platforms.

After discovering this issue, we identified several vulnerable applications. As part of our
responsible disclosure policy, we notified application developers through Coordinated
Vulnerability Disclosure (CVD) via Microsoft Security Vulnerability Research (MSVR) and
worked with them to address the issue. We would like to thank the Xiaomi, Inc. and WPS
Office security teams for investigating and fixing the issue. As of February 2024, fixes have
been deployed for the aforementioned apps, and users are advised to keep their device and
installed applications up to date.

Recognizing that more applications could be affected, we acted to increase developer
awareness of the issue by collaborating with Google to publish an article on the Android
Developers website, providing guidance in a high-visibility location to help developers avoid
introducing this vulnerability pattern into their applications. We also wish to thank Google’s
Android Application Security Research team for their partnership in resolving this issue.

In this blog post, we continue to raise developer and user awareness by giving a general
overview of the vulnerability pattern, and then focusing on Android share targets, as they are
the most prone to these types of attacks. We go through an actual code execution case
study where we demonstrate impact that extends beyond the mobile device’s scope and
could even affect a local network. Finally, we provide guidance to users and application
developers and illustrate the importance of collaboration to improve security for all.

Overview: Data and file sharing on Android

The Android operating system enforces isolation by assigning each application its own
dedicated data and memory space. To facilitate data and file sharing, Android provides a
component called a content provider, which acts as an interface for managing and exposing
data to the rest of the installed applications in a secure manner. When used correctly, a
content provider provides a reliable solution. However, improper implementation can
introduce vulnerabilities that could enable bypassing of read/write restrictions within an
application’s home directory.

https://www.microsoft.com/msrc/cvd
https://www.microsoft.com/msrc/msvr
https://developer.android.com/privacy-and-security/risks/untrustworthy-contentprovider-provided-filename
https://developer.android.com/training/sharing/send


3/20

The Android software development kit (SDK) includes the FileProvider class, a subclass of
ContentProvider that enables file sharing between installed applications. An application that
needs to share its files with other applications can declare a FileProvider in its app manifest
and declare the specific paths to share.

Every file provider has a property called authority, which identifies it system-wide, and can be
used by the consumer (the app that wants to access the shared files) as a form of address.
This content-based model bears a strong resemblance to the web model, but instead of the
http scheme, consumers utilize the content scheme along with the authority, followed by a
pseudo-path to the file that they want to access.

For example, assuming that the application com.example.server shares some files under the
file:///data/data/com.example.server/files/images directory that it has previously declared as
shared using the name shared_images, a consumer can use the
content://[authority]/shared_images/[sub-path]/[filename] URI to index these files.

Access is given by the data sharing application most commonly using the
grantUriPermissions attribute of the Android manifest, in combination with special flags that
are used to define a read or write mode of operation. The data sharing application creates
and sends an intent to the consumer that provides temporary fine-grained access to a file.
 Finally, when a provider receives a file access request, it resolves the actual file path that
corresponds to the incoming URI and returns a file descriptor to it.  

Implementation pitfalls

This content provider-based model provides a well-defined file-sharing mechanism, enabling
a serving application to share its files with other applications in a secure manner with fine-
grained control. However, we have frequently encountered cases where the consuming
application doesn’t validate the content of the file that it receives and, most concerning, it
uses the filename provided by the serving application to cache the received file within the
consuming application’s internal data directory. If the serving application implements its own
malicious version of FileProvider, it may be able to cause the consuming application to
overwrite critical files.

Share targets

In simple terms, a share target is an Android app that declares itself to handle data and files
sent by other apps. Common application categories that can be share targets include mail
clients, social networking apps, messaging apps, file editors, browsers, and so on. In a
common scenario, when a user clicks on a file, the Android operating system triggers the
share-sheet dialog asking the user to select the component that the file should be sent to:

https://developer.android.com/reference/androidx/core/content/FileProvider
https://developer.android.com/guide/topics/manifest/provider-element#gprmsn


4/20

Figure 1. The Android share sheet dialog

While this type of guided file-sharing interaction itself may not trigger a successful attack
against a share target, a malicious Android application can create a custom, explicit intent
and send a file directly to a share target with a malicious filename and without the user’s
knowledge or approval. Essentially, the malicious application is substituting its own malicious
FileProvider implementation and provides a filename that is improperly trusted by the
consuming application.

Figure 2. Dirty stream attack

In Figure 2, the malicious app, on the left, creates an explicit intent that targets the file
processing component of the share target, on the right, and attaches a content URI as an
intent’s extra. It then sends this intent to the share target using the startActivity API call.

https://developer.android.com/guide/components/intents-filters#Types


5/20

After this point, most of the share targets that we have reviewed seem to follow a specific
code pattern that includes the following steps:

1. Request the actual filename from the remote file provider
2. Use this filename to initialize a file that is subsequently used to initialize a file output

stream
3. Create an input stream using the incoming content URI
4. Copy the input stream to the output stream

Since the rogue app controls the name as well as the content of the file, by blindly trusting
this input, a share target may overwrite critical files in its private data space, which may lead
to serious consequences.

Impact

We identified this vulnerability pattern in the then-current versions of several Android
applications published on the Google Play Store, including at least four with more than 500
million installations each. In each case, we responsibly disclosed to the vendor. Two example
vulnerable applications that we identified are Xiaomi Inc.’s File Manager (1B+ installs) and
WPS Office (500M+ installs).

In Xiaomi Inc.’s File Manager, we were able to obtain arbitrary code execution in version V1-
210567. After our disclosure, Xiaomi published version V1-210593, and we verified that the
vulnerability has been addressed. In WPS Office, we were able to obtain arbitrary code
execution in version 16.8.1. After our disclosure, WPS published and informed us that the
vulnerability has been addressed as of version 17.0.0.

The potential impact varies depending on implementation specifics. For example, it’s very
common for Android applications to read their server settings from the shared_prefs
directory. In such cases, the malicious app can overwrite these settings, causing the
vulnerable app to communicate with an attacker-controlled server and send the user’s
authentication tokens or other sensitive information.

In a worst-case (and not so uncommon) scenario, the vulnerable application might load
native libraries from its data directory (as opposed to the more secure /data/app-lib directory,
where the libraries are protected from modification). In this case, the malicious application
can overwrite a native library with malicious code that gets executed when the library is
loaded. In the following section, we use Xiaomi Inc.’s File Manager to illustrate this case. We
demonstrated the ability for a malicious application to overwrite the application’s shared
preferences, write a native library to the application’s internal storage, and cause the
application to load the library. These actions provided arbitrary code execution with the file
manager’s user ID and permissions.

https://play.google.com/store/apps/details?id=com.mi.android.globalFileexplorer
https://play.google.com/store/apps/details?id=cn.wps.moffice_eng
https://googlesamples.github.io/android-custom-lint-rules/checks/UnsafeDynamicallyLoadedCode.md.html


6/20

In the following sections, we focus on this case and delve into the technical details of this
vulnerability pattern.

Case study: Xiaomi Inc.’s File Manager

Xiaomi Inc.’s File Manager is the default file manager application for Xiaomi devices and is
published under the package name com.mi.android.globalFileexplorer on the Google Play
Store, where it has been installed over one billion times.

Figure 3. Xiaomi’s File Manager profile according to Android rank (source: File Manager)

Besides having full access to the device’s external storage, the application requests many
permissions, including the ability to install other applications:

https://play.google.com/store/apps/details?id=com.mi.android.globalFileexplorer
https://androidrank.org/application/file_manager/com.mi.android.globalFileexplorer


7/20

Figure 4. A snapshot of the application’s permissions

Further, it offers a junk files cleaner plugin as well as the ability to connect to remote FTP and
SMB shares:



8/20

Figure 5. Connecting to remote shares using the file manager

Vulnerability assessment findings

During our investigation, we identified that the application exports the CopyFileActivity, an
activity alias of the com.android.fileexplorer.activity.FileActivity, which is used to handle copy-
from-to file operations:



9/20

Figure 6. Triggering the copy to CopyFileActivity

Since this activity is exported, it can be triggered by any application installed on the same
device by using an explicit intent of action SEND or SEND_MULTIPLE and attaching a
content URI corresponding to a file stream.

Upon receiving such an intent, the browser performs a validity check, which we found to be
insufficient:



10/20

Figure 7. Validating an incoming copy file request

As depicted above, the initCopyOrMoveIntent method calls the checkValid method passing
as an argument a content URI (steps 1 and 2). However, the checkValid method is designed
to handle a file path, not a content URI. It always returns true for a content URI. Instead, a
safer practice is to parse the string as a URI, including ensuring the scheme is the expected
value (in this case, file, not content).The checkValid method verifies that the copy or move
operation doesn’t affect the private directory of the app, by initializing a file object using the
incoming string as an argument to the File class constructor and comparing its canonical
path with the path that corresponds to the home directory of the application (steps 3 and 4).
Given a content URI as a path, the File constructor normalizes it (following a Unix file system
normalization), thus the getCanonicalPath method returns a string starting with “/content:/“,
which will always pass the validity check. More specifically, the app performs a query to the
remote content provider for the _size, _display_name and _data columns (see line 48
below). Then it uses the values returned by these rows to initialize the fields of an object of
the com.android.fileexplorer.mode.c class:

https://developer.android.com/privacy-and-security/risks/unsafe-uri-loading


11/20

Figure 8. Getting file metadata from the remote content provider

Given the case that the _display_name and _data values, returned from the external file
provider, are relative paths to the destination directory, after exiting from the method above,
these class fields will contain values like the ones depicted below:

Figure 9. The file model initialized after calling the method a

As shown above, the paths (variables d and e) of this file-model point to files within the home
directory of the application, thus the file streams attached to the incoming intent are going to
be written under the specific locations.

Getting code execution

As previously mentioned, the application uses a plugin to clean the device’s junk files:



12/20

Figure 10. The junk files cleaner plugin user interface



13/20

When the application loads this plugin, it makes use of two native libraries: libixiaomifileu.so,
which fetches from the /data/app directory, and libixiaomifileuext.so from the home directory:

Figure 11. Tracing the loaded native libraries using medusa

As apps don’t have write access to the /data/app folder, the libixiaomifileu.so file stored there
cannot be replaced. The easiest way to get code execution is to replace the
libixiaomifileuext.so with a malicious one. However, an attempt to do so would fail since in
this particular case, the vulnerability that we described can only be used to write new
files within the home directory, not overwrite existing files. Our next inquiry was to
determine how the application loads the libixiaomifileu.so.

Our assessment showed that before the application loads this library, it follows the following
steps:

1. Calculate the hash of the file libixiaomifileu.so, located in the /data/app directory

2. Compare this hash with the value assigned to the “libixiaomifileu.so_hm5” string,
fetched from the com.mi.android.globalFileexprorer_preferences.xml file

Figure 12. the com.mi.android.globalFileexprorer_preferences.xml

3. If the values don’t match, search for the libixiaomifileu.so file in the /files/lib path in the
home directory

4. If the file is found there, calculate its hash and compare it again with the value from the
shared_preferences folder

5. If the hashes match, load the file under the /files/lib using the System.load method



14/20

Given this behavior, in order to get code execution with the file manager’s user ID, an
attacker must take the following steps:

1. Use the path traversal vulnerability to save a malicious library as
/files/lib/libixiaomifileu.so (the file does not already exist in that directory, so overwriting
is not an issue)

2. Calculate the hash of this library to replace the value of the libixiaomifileu.so_hm5
string

3. Trigger the junk cleaner plugin with an explicit intent, since the activity that loads the
native libraries is exported

An acute reader might have noticed that the second step requires the attacker to force the
browser to overwrite the com.mi.android.globalFileexprorer_preferences.xml, which, as we
already mentioned, was not possible.

To overcome this restriction, we referred to the actual implementation of the
SharedPreferences class, where we found that when an Android application uses the
getSharedPreferences API method to retrieve an instance of the SharedPreferences class,
giving the name of the shared preferences file as an argument, then the constructor of the
SharedPreferencesImpl class performs the following steps:

1. Create a new file object using the name provided to the getSharedPreferences method,
followed by the .xml extension, followed by the .bak extension

2. Check if this file exists, and in case it does, delete the original xml file and replace it
with the one created in the first step

Through this behavior, we were able to save the
com.mi.android.globalFileexprorer_preferences.xml.bak under the shared preferences folder
(as during the application’s runtime it is unlikely to exist), so when the app tried to verify the
hash, the original xml file was already replaced by our own copy. After this point, by using a
single intent to start the junk cleaner plugin, we were able to trick the application to load the
malicious library instead of the one under the /data/app folder and get code execution with
the browser’s user ID.

Impact

One reason we chose to use this app as a showcase is because the impact extends beyond
the user’s mobile device. The application gives the option to connect to remote file shares
using the FTP and SMB protocols and the user credentials are saved in clear text in the
/data/data/com.mi.android.globalFileexplorer/files/rmt_i.properties file:

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/java/android/app/SharedPreferencesImpl.java;l=150


15/20

Figure 13. SMB/FTP credentials saved in clear text

If a third party app was able to exploit this vulnerability and obtain code execution, an
attacker could retrieve these credentials. The impact would then extend even further, since
by the time that a user requests to open a remote share, the browser creates the directory
/sdcard/Android/data/com.mi.android.globalFileexplorer/files/usbTemp/ where it saves the
files that the user retrieves:

Figure 14. SMB shared files, saved in the external storage

This means that a remote attacker would be able to read or write files to SMB shares of a
local network, assuming that the device was connected to it. The same stands for FTP
shares as they are handled exactly in the same way:

Figure 15. FTP shared files, saved in the external storage

In summary, the exploitation flow is depicted in the figure below:



16/20

Figure 16. Getting remote access to local shares

In step 1, the user opens a malicious app that may pose as a file editor, messaging app, mail
client, or any app in general and request the user to save a file. By the time that the user
attempts to save such a file, no matter what destination path they choose to save it, the
malicious app forces the file browser app to write it under its internal /files/lib folder. Then,
the malicious app can start the junk cleaner using an explicit intent (no user interaction is
required) and this will lead to code execution with the browser’s ID (step 2).

In step 3, the attacker uses the arbitrary code execution capability to retrieve the SMB and
FTP credentials from the rmt_i.properties file. Subsequently, the attacker can now jump to
step 5 and access the shares directly using the stolen credentials. Alternatively, after
retrieving the share credentials, the mobile device can connect to a local network (step 4)
and access an SMB or FTP share, allowing the attacker to access the shared files through
the /sdcard/Android/data/com.mi.android.globalFileexplorer/files/usbTemp/ folder (step 5).

Recommendations

Recognizing that this vulnerability pattern may be widespread, we shared our findings with
Google’s Android Application Security Research team. We collaborated with Google to
author guidance for Android application developers to help them recognize and avoid this
pattern. We recommend developers and security analysts familiarize themselves with the
excellent Android application security guidance provided by Google as well as make use of
the Android Lint tool included with the Android SDK and integrated with Android Studio
(supplemented with Google’s additional security-focused checks) to identify and avoid
potential vulnerabilities. GitHub’s CodeQL also provides capabilities to identify vulnerabilities.

To prevent these issues, when handling file streams sent by other applications, the safest
solution is to completely ignore the name returned by the remote file provider when caching
the received content. Some of the most robust approaches we encountered use randomly
generated names, so even in the case that the content of an incoming stream is malformed,
it won’t tamper with the application.

https://developer.android.com/privacy-and-security/risks/untrustworthy-contentprovider-provided-filename
https://developer.android.com/privacy-and-security/risks
https://developer.android.com/studio/write/lint#gradle
https://github.com/google/android-security-lints/
https://codeql.github.com/codeql-query-help/java/


17/20

In cases where such an approach is not feasible, developers need to take extra steps to
ascertain that the cached file is written to a dedicated directory. As an incoming file stream is
usually identified by a content URI, the first step is to reliably identify and sanitize the
corresponding filename. Besides filtering characters that may lead to a path traversal and
before performing any write operation, developers must verify that the cached file is within
the dedicated directory by performing a call to the File.getCanonicalPath and validating the
prefix of the returned value.

Another area to safeguard is in the way developers try to extract a filename from a content
URI. Developers often use Uri.getLastPathSegment(), which returns the (URL) decoded
value of the last path URI segment. An attacker can craft a URI with URL encoded
characters within this segment, including characters used for path traversal. Using the
returned value to cache a file can again render the application vulnerable to this type of
attack.

For end users, we recommend keeping mobile applications up to date through the Google
Play Store (or other appropriate trusted source) to ensure that updates addressing known
vulnerabilities are installed. Users should only install applications from trusted sources to
avoid potentially malicious applications. We recommend users who accessed SMB or FTP
shares through the Xiaomi app before updates to reset credentials and to investigate for any
anomalous behavior. Microsoft Defender for Endpoint on Android can alert users and
enterprises to malicious applications, and Microsoft Defender Vulnerability Management can
identify installed applications with known vulnerabilities.

Dimitrios Valsamaras

Microsoft Threat Intelligence

References

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out
the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on
LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X
(formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-
evolving threat landscape, listen to the Microsoft Threat Intelligence podcast:
https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

https://learn.microsoft.com/microsoft-365/security/defender-endpoint/microsoft-defender-endpoint-android?view=o365-worldwide
https://www.microsoft.com/security/business/threat-protection/microsoft-defender-vulnerability-management
https://aka.ms/threatintelblog
https://www.linkedin.com/showcase/microsoft-threat-intelligence
https://twitter.com/MsftSecIntel
https://thecyberwire.com/podcasts/microsoft-threat-intelligence


18/20

Related Posts

Research
Threat intelligence
Microsoft Defender
Mobile threats
Nov 20, 20239 min read

Social engineering attacks lure Indian users to install Android
banking trojans 
Microsoft has observed ongoing activity from mobile banking trojan campaigns
targeting users in India with social media messages and malicious applications
designed to impersonate legitimate organizations and steal users’ information for
financial fraud scams.

https://www.microsoft.com/en-us/security/blog/2023/11/20/social-engineering-attacks-lure-indian-users-to-install-android-banking-trojans/
https://www.microsoft.com/en-us/security/blog/content-type/research/
https://www.microsoft.com/en-us/security/blog/topic/threat-intelligence/
https://www.microsoft.com/en-us/security/blog/products/microsoft-defender/
https://www.microsoft.com/en-us/security/blog/threat-intelligence/mobile-threats/
https://www.microsoft.com/en-us/security/blog/2023/11/20/social-engineering-attacks-lure-indian-users-to-install-android-banking-trojans/


19/20

Protecting Android clipboard content from unintended
exposure 
Microsoft discovered that the SHEIN Android application periodically read the
contents of the Android device clipboard and, if a particular pattern was present, sent
the contents of the clipboard to a remote server.

DEV-0196: QuaDream’s “KingsPawn” malware used to target
civil society in Europe, North America, the Middle East, and
Southeast Asia 
Microsoft analyzes a threat group tracked as DEV-0196, the actor’s iOS malware
“KingsPawn”, and their link to an Israel-based private sector offensive actor (PSOA)
known as QuaDream, which reportedly sells a suite of exploits, malware, and
infrastructure called REIGN, that’s designed to exfiltrate data from mobile devices.

https://www.microsoft.com/en-us/security/blog/2023/03/06/protecting-android-clipboard-content-from-unintended-exposure/
https://www.microsoft.com/en-us/security/blog/2023/03/06/protecting-android-clipboard-content-from-unintended-exposure/
https://www.microsoft.com/en-us/security/blog/2023/04/11/dev-0196-quadreams-kingspawn-malware-used-to-target-civil-society-in-europe-north-america-the-middle-east-and-southeast-asia/
https://www.microsoft.com/en-us/security/blog/2023/04/11/dev-0196-quadreams-kingspawn-malware-used-to-target-civil-society-in-europe-north-america-the-middle-east-and-southeast-asia/


20/20

Vulnerability in TikTok Android app could lead to one-click
account hijacking 
Microsoft discovered a high-severity vulnerability in the TikTok Android application,
now identified as CVE-2022-28799 and fixed by TikTok, which could have allowed
attackers to compromise users' accounts with a single click.

https://www.microsoft.com/en-us/security/blog/2022/08/31/vulnerability-in-tiktok-android-app-could-lead-to-one-click-account-hijacking/
https://www.microsoft.com/en-us/security/blog/2022/08/31/vulnerability-in-tiktok-android-app-could-lead-to-one-click-account-hijacking/

