
1/16

Pouring Acid Rain
trellix.com/blogs/research/pouring-acid-rain/

ARIA Resort & Casino | Las Vegas 

September 27-29, 2022

Register Now Learn More

Blogs
The latest cybersecurity trends, best practices, security vulnerabilities, and more

By Max Kersten · April 30, 2024

In two recent major geopolitical conflicts, in Ukraine and in Israel, wipers - malware used to
destroy access to files and commonly used to halt telecom operations - were used to
destroy digital infrastructure. Their ongoing shows that wipers have their place in a nation’s
cyber arsenal, are here to stay and not a one-off tactic. Reports on the latest wipers have
been making the rounds from SentinelOne regarding AcidRain and AcidPour, as well as
Ruben Santamarta’s confirmation of the impact of AcidRain on Viasat KA-SAT devices.

While AcidRain predates AcidPour by more than two years, the two wipers look alike in
more than just their behavior. This blog will provide background information on wipers in
general, explain the inner workings of both Acid wipers, compare the capabilities of both
wipers, and discuss potential attribution

Background information

The date on which the AcidRain attack occurred coincides with the start of kinetic activities
in the Russo-Ukrainian conflict, where wipers were likely used to gain a battlefield
advantage by disrupting satellite communications, bricking the aforementioned Viasat KA-

https://www.trellix.com/blogs/research/pouring-acid-rain/
https://trellix.g2planet.com/xpand_live_2022/register
https://www.trellix.com/about/events/2022/trellix-xpand-live-2022/
https://www.trellix.com/blogs/contributors/max-kersten/
https://www.sentinelone.com/labs/acidrain-a-modem-wiper-rains-down-on-europe/
https://www.sentinelone.com/labs/acidpour-new-embedded-wiper-variant-of-acidrain-appears-in-ukraine/
https://www.reversemode.com/p/about-me.html
https://www.trellix.com/blogs/research/war-weapons-and-wipers/


2/16

SAT modems. These satellite-based modems allow one to move around while maintaining
an internet connection, regardless of the presence (and/or condition) of cell phone towers.

The trend of using wipers within international conflicts is not new, with ample examples
going back years. In 2017, we saw both WannaCry and NotPetya, wipers disguised as
ransomware with no intention to be used as such, target Ukraine. Going back to 2012, the
Shamoon wiper wreaked havoc on Saudi Arabia’s Aramco.

Notable for all three wipers is the ability to spread, where the malware infected other
systems in the network. WannaCry and NotPetya used the EternalBlue exploit, which
originated from the Vault7 leak, allowing them to spread like wildfire on networks with
unpatched machines. Shamoon copied itself to other machines and shares where possible,
confining the spreading within the targeted network, rather than impacting companies on a
global scale.

Looking back at more recent history, wiper usage has increased, especially when linked to
activism and armed conflicts. In early 2022, there was an uptick of wipers used on targets
within Ukraine. As noted in our Wipermania blog from November 2022, the WhisperGate
and Hermetic wipers focused on that area as well, albeit prior to AcidRain. Post AcidRain,
there were numerous wipers that followed: IsaacWiper, CaddyWiper I, DoubleZero,
Industroyer2, Shred wipers,CaddyWiper II, RansomBoggs, SwiftSlicer, CaddyWiper III,
ZeroWipe, and BidSwipe.

These wipers, written in a multitude of programming languages with different styles and
targets, indicate the loss of data and loss of system uptime is a target during conflicts, even
if that were to mean covert access would be burned by destroying the targeted systems.

Even more recently, wipers have been used several times in Israel, since the 7th of October
2023, which marked the start of Israel’s military extensive response to Hamas. In late
October 2023, Security Joes and ESET discovered two versions of the BiBi wiper (the
name is a reference to Israel’s prime minister Benjamin Netanyahu), after which the
MultiLayer, PartialWasher, and BFG Agonizer wipers were discovered by Palo Alto
Networks’ Unit42, also targeting Israel. In February 2024, Intezer’s Nicole Fishbein
discoveredthe SameCoin wiper, about which HarfangLab published an extensive analysis.

Note that the lack of wiper malware which aims to target devices within Gaza is likely due to
prioritization. Once a conflict becomes fully kinetic, defending IT infrastructure against
wipers becomes of secondary importance. From the other perspective, destroying cell
towers and similar infrastructure causes downtime in communication on the battlefield
without the need for malware. Alternatively, disconnecting an area from the internet and/or
electricity results in the same, albeit in a reversible manner.

AcidRain

https://www.trellix.com/blogs/research/wipermania-an-all-you-can-wipe-buffet/
https://www.trellix.com/blogs/research/return-of-pseudo-ransomware/
https://www.trellix.com/blogs/research/digging-into-hermeticwiper/
https://www.welivesecurity.com/2022/03/01/isaacwiper-hermeticwizard-wiper-worm-targeting-ukraine/
https://blog.morphisec.com/caddywiper-analysis-new-malware-attacking-ukraine
https://cert.gov.ua/article/38088
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://cert.gov.ua/article/39518
https://www.welivesecurity.com/2022/04/12/industroyer2-industroyer-reloaded/
https://www.welivesecurity.com/2022/11/28/ransomboggs-new-ransomware-ukraine/
https://twitter.com/ESETresearch/status/1618960022150729728
https://cert.gov.ua/article/3718487
https://cert.gov.ua/article/3718487
https://cert.gov.ua/article/3718487
https://www.securityjoes.com/post/bibi-linux-a-new-wiper-dropped-by-pro-hamas-hacktivist-group
https://twitter.com/ESETresearch/status/1719437301900595444
https://github.com/knight0x07/BiBi-Windows-Wiper-Analysis
https://unit42.paloaltonetworks.com/agonizing-serpens-targets-israeli-tech-higher-ed-sectors/
https://twitter.com/NicoleFishi19/status/1756936882095534532
https://harfanglab.io/en/insidethelab/samecoin-malware-hamas/
https://www.wired.com/story/gaza-internet-blackout-israel/
https://www.reuters.com/world/middle-east/blackout-disconnects-bombarded-gazans-world-each-other-2023-10-28/


3/16

AcidRain

MD-5 ecbe1b1e30a1f4bffaf1d374014c877f

SHA-1 86906b140b019fdedaaba73948d0c8f96a6b1b42

SHA-256 9b4dfaca873961174ba935fddaf696145afe7bbf5734509f95feb54f3584fd9a

Detection
names

Trojan.GenericKD.48777542

AcidRain was first submitted to VirusTotal on the 15th of March 2022, after which numerous
AV, EDR, and XDR suites detected it, including Trellix’ products.

To avoid repeating existing research, a high level overview of the AcidRain follows, along
with some interesting decompiled code excerpts to illustrate the most important points.
Below, the wiper’s flowchart is given, highlighting the taken steps.

Figure 1 - AcidRain’s flowchart


While some of the steps require no further explanation, such as the print statement at the
beginning, it is clear that the wiping process within the wiper requires more details. The
check to see if the process is running with root privilege, along with the subsequent call to
wipe non-system directories, is shown below.

Figure 2 - The user ID check in AcidRain


The “getuid” (short for “get user ID”) call returns the real user ID of the calling process,
which is the wiper. If this is not equal to 0, which is generally the root user’s ID, it calls the
wipe function.

https://www.virustotal.com/gui/file/9b4dfaca873961174ba935fddaf696145afe7bbf5734509f95feb54f3584fd9a/details
https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-1.jpg
https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-2.jpg


4/16

Directly after that, the execution continues by calling several functions in a row, each of
which has different targets to wipe. If the current user is the root user, the non-system
directories (and files therein) are then deleted. This is the same function as the one
mentioned above, indicating that the deletion of these directories is certain, but the moment
depends on the user which executes the binary.

Figure 3 - The wipe-related functions in AcidRain


The affected directories are listed in the table below, along with a brief description of the
directory’s purpose.

Directory Purpose

/dev/sd Contains the Small Computer System Interface (SCSI) disks in
the order as they are discovered by the operating system

/dev/mtdblocks,
/dev/mtd, and 


/dev/block/mtdblocks

Memory Technology Device (MTD) allows the operating system to
deal with flash memory

/dev/mmcblk and
/dev/block/mmcblk

The eMMC flash storage block devices available on the device

/dev/loop Loop devices are used to mount regular files as block devices,
which can then be accessed normally

Once the wiping is complete, the device is rebooted.

AcidPour

AcidPour

MD-5 1bde1e4ecc8a85cffef1cd4e5379aa44

SHA-1 b5de486086eb2579097c141199d13b0838e7b631

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-3.jpg


5/16

SHA-256 6a8824048417abe156a16455b8e29170f8347312894fde2aabe644c4995d7728

Detection
names

Trojan.Linux.GenericKD.24993

AcidPour was first submitted to VirusTotal on the 16th of March 2024, after which numerous
AV, EDR, and XDR suites detected it, including Trellix’ products. Much like AcidRain’s
section, this section will provide a high level overview of the AcidPour wiper, along with
some examples and interesting tidbits. The flowchart below showcases the wiper’s
execution flow.

Figure 4 - The AcidPour flowchart


One of the new capabilities is the wiper’s ability to overwrite itself. Usually, self deletion of
malware is done to avoid the sample being found during the incident response and
subsequently being analyzed. On Linux based systems, files which are in-use can be
overwritten, contrary to Windows. In the image below, the link to “/proc/self/exe” is read,
which links to the binary of the current executable.

https://www.virustotal.com/gui/file/6a8824048417abe156a16455b8e29170f8347312894fde2aabe644c4995d7728/details
https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-4.jpg


6/16

Figure 5 - Getting the path to the wiper executable


It then obtains a file descriptor to said binary, as can be seen on line 40 in the image below.
It then creates a buffer, where each entry into the array is an increment of the previous
value, with 1023 being the highest value. This buffer is then iteratively written over the
original binary.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-5.jpg


7/16

Figure 6 - Overwriting the binary with an ascending buffer


The second addition to the wiper is the delay prior to the start of the wiping. The duration, in
seconds, of this delay can be specified via the first command-line interface argument. If no
such argument is provided, a delay of 613 seconds is applied. The image below shows the
relevant decompiled code from the wiper.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-6.jpg


8/16

Figure 7 - The sleep-logic prior to wiping


The third addition is the recursive wiping of “/boot”. The decompiled code at line 24 in the
image below contains the call to read the given directory’s content. Lines 52 and 55 contain
checks with regards to the specific path. If it is a regular file (“DT_REG”) or a symbolic link
(“DT_LNK”), the file is wiped. If it is a directory (“DT_DIR”), the recursive wipe function is
called with the newly discovered directory as its argument, thus traversing all directories
within each directory, starting at the provided directory. At last, the directory is removed
once it is empty. Lastly, the unlink function is called to remove the specific file. Note that
“buffer” is a copy of the provided input path, which is copied prior to the code shown in the
figure.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-7.jpg


9/16

Figure 8 - The recursive wipe function


Much like AcidRain, AcidPour wipes devices. Aside from the affected directories mentioned
at AcidRain, two more directories, explained below, have been added.

Directory Purpose

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-8.jpg


10/16

/dev/ubi Unsorted block images (UBI), used in flash file systems

/dev/dm- Logical Volume device mapper (DM), tied to a logical volume

The device is rebooted once the wiping activity completes.

Code comparison

When overlapping the flowcharts of AcidRain and AcidPour, as can be seen in the image
below, a striking resemblance in the heuristics of both wipers can be observed. Heuristic
similarity does not necessarily result in re-use and/or overlap of code, and even if that were
to be the case, the overlap could come from benign libraries.

Figure 9 - The overlap between the two wipers in a flow chart

Library code

The two wipers both use code which exists in uClibc. The uClibc-ng (next generation)
library is built on uClibc, and thus overlaps. The goal here is not to dive into the difference
between these two libraries, but rather that the Acid-wipers used either of these libraries,
which explains some of the used code constructs, such as the forking, creation of a new
session, and the redirection of the program’s standard in- and outputs. These are all part of
the library’s code within the daemon function. The image below shows the uClibc source
code, and the decompiled code from the AcidRain and AcidWiper respectively in a side-by-
side comparison. Note that due to compiler optimization, the daemon function’s content is
inlined within the caller, which is the main function within each Acid-wiper.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-9.jpg
https://uclibc.org/
https://uclibc-ng.org/
https://git.uclibc.org/uClibc/tree/libc/unistd/daemon.c#n104


11/16

Figure 10 - Code overlap with uClibc and the Acid wipers


Another example is the sleep function, called in AcidPour’s main function, which uses select
to monitor non-existing (NULL) file descriptors, and thus wait for a given period of time.
Other researchers have noted that this technique is uncommon. And while it is indeed
uncommon, the uClibc library uses this exact code on non-BSD, non-POXIS98, and non-
realtime builds. The image below shows the uClibc sleep function’s source code and
relevant decompiled AcidPour code respectively.

Note that the microseconds (“tv_usec”) field is not used in the decompiled code, and the
value passed to the function is in seconds, rather than microseconds. This could be done
with the help of constant folding and propagation, a compiler optimisation technique where
the actual value of variables is precalculated, leaving the compiler to only output the
optimized code. As such, the program’s execution is not slowed down by redundant
calculations without impacting the code’s behavior.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-10.jpg
https://man7.org/linux/man-pages/man2/select.2.html
https://twitter.com/harfanglab/status/1772226731220332640
https://git.uclibc.org/uClibc/tree/libc/unistd/usleep.c#n24
https://en.wikipedia.org/wiki/Constant_folding


12/16

Figure 11 - The uClibc usleep function from its source code, and the sleep function within
AcidPour


Aside from the source code overlap, several FunctionID libraries from Mich on GitHub
match with functions within the Acid-wipers, as can be seen in the strncpy excerpt below.
The GitHub page shows the inclusion of uClibc binaries for a variety of architectures.

Figure 12 - FunctionID matches for uClibc code in AcidRain (left) and AcidPour (right)



Wiper related code overlap

Recognizing the library code makes the analysis easier, and provides a link between two
files, but said link is not conclusive. The overlap in heuristics, when removing the uClibc
aspects, is best shown in a flowchart, as can be seen below.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-11.jpg
https://twitter.com/0x6d696368
https://github.com/threatrack/ghidra-fidb-repo
https://github.com/kraj/uClibc/blob/ca1c74d67dd115d059a875150e10b8560a9c35a8/libc/string/generic/strncpy.c#L21
https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-12.jpg


13/16

Figure 13 - Overlap between the Acid wipers, taking library code into account


The first aspect which is characterizing the Acid-wipers, is the data that is used to overwrite
files with. The AcidRain wiper uses a buffer with descending values, whereas AcidPour
uses ascending values. The buffer size in both wipers is 256 kilobytes (0x40000 bytes), the
initialization for both can be seen below. Note that the self overwrite function in AcidPour
also uses an ascending buffer, as described before.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-13.jpg


14/16

Figure 14 - Similarities in the creation of the buffer used to wipe files with in AcidRain (left)
and AcidPour (right)


The main functions of both wipers also look similar, but due to their brevity and rather
simple nature, it is difficult to draw meaningful conclusions from them. A section of the code
in both functions is related to the inlining of uClibc’s daemon function. Other than that, the
printing of a message, the call to several functions to wipe directories, and the call to reboot
the device, can easily be recreated without source code access, especially when using the
same library code.

However, the wiping methods which are called, do share sufficient logic to state that the
author of AcidPour either had access to AcidRain’s source code, or that the author simply
recreated AcidRain’s logic. The input/output control (IOCTL) wiping method (which
SentinelOne noted overlapped with the third stage ‘dstr’ wiper, part of the VPNFilter
malware family) employs a similar wiping method but does differ when looked at in more
detail. Note that VPNFilter’s ‘dstr’ also uses uClibc.

https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-14.jpg
https://git.uclibc.org/uClibc/tree/libc/unistd/daemon.c#n104
https://en.wikipedia.org/wiki/Ioctl
https://www.sentinelone.com/labs/acidrain-a-modem-wiper-rains-down-on-europe/


15/16

The OpenWRT project, a Linux operating system for embedded devices, contains code to
erase Memory Technology Devices (MTDs), using mtd_info_user and erase_info_user
structures. The specific wipe functions within AcidRain, AcidPour, and VPNFilter’s ‘dstr’ all
use these structures in a similar manner, as can be seen in the respective side-by-side
comparison in the image below.

Figure 15 - The IOCTL wipe functions in (from left to right) AcidRain, AcidPour, and
VPNFilter


The used IOCTL calls return these structures in the output argument, meaning that the
usage of these structures does not necessarily indicate code overlap with one another, nor
with the OpenWRT codebase.

The two Acid wipers have an identical way of wiping code, using the same logic and loops
internally. As such, it is likely that the Acid wipers are based on the same codebase, or
made by someone with the intention to copy AcidRain when writing AcidPour. The
VPNFilter stage uses different logic, indicating that the used source code is likely different,
or an older version, compared to AcidRain.

The other wiper related functions show similar overlap, but not all of them are as
‘picturesque’ as the example taken, making their explanation a tedious process. The above
serves as an illustration of reused code within the Acid wipers.

Conclusion

There is no conclusive evidence to state that the Acid wipers are based on the same source
code, but given the same dependencies, as well as the similar looking code, we state with
medium confidence that AcidPour uses AcidRain’s source code as a basis. The
modifications allow the wiper to be used in a more versatile manner, as the possible number
of systems that it could affect greatly increased.

https://openwrt.org/
https://github.com/mirror/dd-wrt/blob/master/src/router/rc/mtd.c#L159
https://sites.uclouvain.be/SystInfo/usr/include/mtd/mtd-abi.h.html
https://sites.uclouvain.be/SystInfo/usr/include/mtd/mtd-abi.h.html
https://www.trellix.com/en-us/img/newsroom/stories/pouring-acid-rain-15.jpg


16/16

While the Acid-wipers have been targeting Ukrainian-based entities, we do not attribute it to
a specific group. Based on the targeted geographic area, and the critical sectors of publicly
reported victims, we attribute these attacks to a pro-Russian actor.

Code overlap comparisons rarely lead to definitive conclusions, given that it is possible to
recreate malware based on reversing efforts. The fact that one would have to put in a lot of
effort to do so, does not make it impossible, merely unlikely. The (alleged) likeliness can be
utilized by an attacker, be it to shroud themselves in smoke and mirrors and throw
researchers off their course, or to ensure analysts jump to premature conclusions.

This document and the information contained herein describes computer security research
for educational purposes only and the convenience of Trellix customers.

Get the latest

We’re no strangers to cybersecurity. But we are a new company.

Stay up to date as we evolve.

Please enter a valid email address.

Zero spam. Unsubscribe at any time.


