
1/7

June 5, 2024

Finding Malware: Detecting SOGU with Google Securi...
googlecloudcommunity.com/gc/Community-Blog/Finding-Malware-Detecting-SOGU-with-Google-Security-

Operations/ba-p/758777

Welcome to the Finding Malware Series

Introducing "Finding Malware," a new blog series from Managed Defense to empower the
Google Security Operations community to detect emerging and persistent malware threats.
Our first post dives deep into the SOGU malware family and the detection opportunities
available within Google SecOps. Happy hunting!

About SOGU

Also known as: PlugX, Korplug

SOGU is a backdoor that supports commands to exfiltrate files, keylogging, remote
command shell, upload/download files, and is able to extend its functionality with additional
plugins. The backdoor has existed since at least 2008, and is still under continuous
development that new variants are constantly being discovered.

SOGU is primarily associated with Advanced Persistent Threat (APT) groups, such as
TEMP.Hex, and often used for cyber-espionage.

Attack Lifecycle

Figure 1: SOGU Attack Lifecycle

https://www.googlecloudcommunity.com/gc/Community-Blog/Finding-Malware-Detecting-SOGU-with-Google-Security-Operations/ba-p/758777

2/7

Initial Compromise

SOGU spreads through several methods: infected USB flash drives, targeted phishing
emails containing malicious attachments or links, or compromised software downloads.

Establish Foothold

The infection consists of three core files: a legitimate executable, a malicious DLL loader,
and an encrypted SOGU payload.

Figure 2: SOGU components

Upon execution, the legitimate executable loads a malicious DLL via search-order-hijacking.
This loader decrypts a shellcode (often disguised as a .dat file), loads it into memory, and
executes it. The shellcode is tracked as SOGU.

The executable and .dat files can be renamed to any filename, but the DLL filename is
usually fixed and resembles a filename of a legitimate DLL, which the executable expects to
load.

Internal Reconnaissance and Data Staging

In some variations of the SOGU malware, a dropped batch file performs host
reconnaissance commands. The output of these commands is then saved to a file, often
named "c3lzLmluZm8". This filename, when decoded from Base64, reveals the file's true
name: "sys.info".

tasklist /v
arp -a
netstat -ano
ipconfig /all
systeminfo

After host reconnaissance, the malware searches the host for specific file types, including
common office documents (e.g., .doc, .docx, .ppt, .pptx, .xls, .xlsx) and PDFs. Upon finding a
match, the malware encrypts a copy of the file using the RC4 algorithm. The original
filename is then encoded into Base64, and the encrypted file is moved to a designated
directory.

3/7

C:\Users\<user>\AppData\Roaming\Intel\<SOGU unique ID>\<filename in Base64>
<drive>:\RECYCLER.BIN\<SOGU unique ID>\<filename in Base64>

The SOGU unique ID, which also functions as a staging directory, is typically a 16-character
identifier consisting of numbers and uppercase letters.

Move Laterally

SOGU has spreading capabilities, it identifies removable drives on an infected host, and
propagates to those drives.

The malware creates the following at the root of the drive:

A new hidden folder with a single space (e.g., <drive>:\ \)
A new hidden folder called "RECYCLER.BIN" or “RECYCLERS.BIN"
A Windows shortcut cut file named after the drive (e.g., "My USB Key.lnk")

Maintain Persistence

SOGU malware was observed utilizing scheduled tasks or registry run keys to maintain
persistence on infected systems.

It creates a copy of itself masquerading as a legitimate program and sets the directory's
attribute to hidden. It then copies its main components into this directory, with the following
commonly used file paths:

C:\ProgramData\<folder name>
C:\Users\Public\<folder name>
%APPDATA%\<folder name>

Mission Complete

At the last stage of the attack lifecycle, the malware will exfiltrate any data that has been
staged. It is observed using various communication channels to connect with its command-
and-control (C2) server. This communication can occur over HTTP, HTTPS, a custom binary
protocol using TCP or UDP, or ICMP.

Upon establishing a connection with the C2 server, SOGU enables an attacker to remotely
control the infected system. The range of capabilities at the attacker's disposal includes: file
transfer, file execution, remote desktop, screenshot capture, reverse shell, and keylogging.

Detection Through Google Security Operations

4/7

Enterprise and Enterprise Plus customers will benefit from these detections being applied
automatically through curated detections. Standard customers can create single or multi-
event rules to detect the malware.

This rule detects the execution of SOGU malware within a known directory.

rule sogu_recycler_bin
{
 meta:
 author = "Mandiant"
 description = "This rule matches the process launch event for a binary from
the directory RECYCLER.BIN or RECYCLERS.BIN with numerical arguments."
 mitre_attack_tactic = "User Execution"
 mitre_attack_technique = "User Execution: Malicious File"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1204/002/"
 mitre_attack_version = "v14.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 $e.metadata.event_type = "PROCESS_LAUNCH" and

 (
 re.regex($e.target.process.command_line, `(RECYCLER|RECYCLERS)\.BIN[a-zA-
Z0-9\\]{0,30}\.exe [0-9]{3} [0-9]{2}`) nocase or
 re.regex($e.principal.process.command_line, `(RECYCLER|RECYCLERS)\.BIN[a-
zA-Z0-9\\]{0,30}\.exe [0-9]{3} [0-9]{2}`) nocase
)

 condition:
 $e
}

This rule identifies the preparation of the host information for exfiltration by the SOGU
malware.

https://cloud.google.com/chronicle/docs/detection/curated-detections
https://cloud.google.com/chronicle/docs/detection/yara-l-2-0-overview

5/7

rule sogu_sys_info
{
 meta:
 author = "Mandiant"
 description = "This rule matches on a file event for a file with a name
c3lzLmluZm8 that base64-decodes to SYS.INFO. This has been observed in SOGU
compromises, where the file has been observed to contain host-based reconnaissance
data staged for exfiltration."
 mitre_attack_tactic = "Collection"
 mitre_attack_technique = "Data Staged: Local Data Staging"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1074/001/"
 mitre_attack_version = "v14.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 (
 $e.metadata.event_type = "FILE_CREATION" or
 $e.metadata.event_type = "FILE_MODIFICATION"
) and
 (
 re.regex($e.target.file.names, `c3lzLmluZm8`) nocase or
 re.regex($e.target.file.full_path, `c3lzLmluZm8`) nocase
)

 condition:
 $e
 }

This rule identifies the preparation of the stolen data for exfiltration by the SOGU
malware.

6/7

rule sogu_data_staging
{
 meta:
 author = "Mandiant"
 description = "This rule matches on directory and filename patterns observed
in data staging for exfiltration, as part of a SOGU compromise. The data staging
directory is typically 16 characters composed of numbers and capital letters, while
the filenames are base64-encoded legitimate filenames from the affected system."
 mitre_attack_tactic = "Collection"
 mitre_attack_technique = "Data Staged: Local Data Staging"
 mitre_attack_url = "https://attack.mitre.org/techniques/T1074/001/"
 mitre_attack_version = "v14.1"
 severity = "High"
 priority = "High"
 platform = "Windows"
 type = "hunt"

 events:
 (
 $e.metadata.event_type = "FILE_CREATION" or
 $e.metadata.event_type = "FILE_MODIFICATION"
) and
 (
 $e.target.file.size > 0 and
 re.regex($e.target.file.full_path, `.`) nocase and
 re.regex($e.target.file.full_path, `\\[A-Z0-9]{16}\\[a-zA-Z0-9]{5,}=
{1,3}$`)
)

 condition:
 $e
}

Beyond the Blog: Empower Your SecOps with Gemini

In the ever-changing threat landscape, the ability to respond quickly is key to an effective
SecOps. This blog provides insights on the SOGU malware, but it's important to remember
that malware is constantly evolving and finding new ways to bypass defenses.

Gemini in Google Security Operations can accelerate our responses by empowering teams
to quickly develop new detection rules to counter emerging attack techniques. This helps
defenses to be always ready to stop attacks and promptly resolve incidents.

Here's a quick demonstration of how you can easily create a YARA-L rule to detect potential
malware compromise using Gemini within Google Security Operations. It took just a few
seconds to generate this rule, and now we simply need to review it for accuracy and
effectiveness!

7/7

rule
process_launch_with_command_line_containing_recycler_bin_or_recyclers_bin_and_exe_wit
h_numerical_argument {
 meta:
 author = "Google SecOps Gemini"
 description = "Process launch with command line containing RECYCLER.BIN or
RECYCLERS.BIN and .exe with numerical argument"
 severity = "LOW"
 events:
 $e.metadata.event_type = "PROCESS_LAUNCH"
 re.regex($e.target.process.command_line, `RECYCLER\.BIN|RECYCLERS\.BIN`) nocase
 re.regex($e.target.process.command_line, `\.exe\s+\d+`) nocase
 outcome:
 $process_name = $e.target.process.file.full_path
 $command_line = $e.target.process.command_line
 $user = $e.principal.user.userid
 condition:
 $e
}

The rule created by Gemini.

More information, please check out the documentation on Gemini in Google SecOps!

https://cloud.google.com/chronicle/docs/secops/gemini-chronicle#generate-rule

