Dissecting REMCOS RAT: An in- depth analysis of a
widespread 2024 malware, Part One

@ elastic.co/security-labs/dissecting-remcos-rat-part-one

>0,
o

Subscribe

1/19

https://www.elastic.co/security-labs/dissecting-remcos-rat-part-one
https://www.elastic.co/security-labs
https://www.elastic.co/security-labs/rss/feed.xml
https://cloud.elastic.co/registration?cta=cloud-registration&tech=trial&plcmt=navigation&pg=security-labs
https://www.elastic.co/contact

In the first article in this multipart series, malware researchers on the Elastic Security Labs
team give a short introduction about the REMCOS threat and dive into the first half of its
execution flow, from loading its configuration to cleaning the infected machine web browsers.

Introduction

Elastic Security Labs continues its examination of high-impact threats, focusing on the
internal complexities of REMCOS version 4.9.3 Pro (November 26, 2023).

Developed by Breaking-Security, REMCOS is a piece of software that began life as a red
teaming tool but has since been adopted by threats of all kinds targeting practically every
sector.

When we performed our analysis in mid-January, it was the most prevalent malware family
reported by ANY.RUN. Furthermore, it remains under active development, as evidenced by
the recent announcement of version 4.9.4's release by the company on March 9, 2024.

All the samples we analyzed were derived from the same REMCOS 4.9.3 Pro x86 build. The
software is coded in C++ with intensive use of the std: :string class for its string and byte-
related operations.

REMCOS is packed with a wide range of functionality, including evasion techniques,
privilege escalation, process injection, recording capabilities, etc.

This article series provides an extensive analysis of the following:

o Execution and capabilities

2/19

https://breakingsecurity.net/
https://any.run/malware-trends/
https://breakingsecurity.net/remcos/changelog/

Detection and hunting strategies using Elastic’s ES|QL queries
Recovery of approximately 80% of its configuration fields
Recovery of about 90% of its C2 commands

Sample virtual addresses under each IDA Pro screenshot

And more!

Contains

Copy fo install folder

DntanH
T Register persistence

Load and decryp.

Regisier persistence

Staris thread Staris thread

Starts thread

Start then watch/restart

Walkch and restart

Injected
Watchog
process

REMCOS execution diagram

-

For any questions or feedback, feel free to reach out to us on social media @elasticseclabs

or in the Elastic Community Slack.

Loading the configuration

The REMCOS configuration is stored in an encrypted blob within a resource named

SETTINGS. This name appears consistent across different versions of REMCOS.

3/19

https://twitter.com/elasticseclabs
https://elasticstack.slack.com/

0af76f2897158bf752b5ee2580532 l

-3 Icons .
|| &5 Repata B & = @« p =
| i) TSETTINGS™ - [lan
| &£ 1con Groups Off=et 01 2 3 4 5 & 7 88 9 & B C D EF hescii

oooooooon | EE BD 27 23 04 84 64 7F 7E 28 BA 59 D1 1B 28 23 ik’ ndi~(evho (#
gooooolo | 4D E9 BY 6C 5% YB 07 82 63 02 22 AS 69 20 64 SE Me- 1Y oie " 4"
goooonZn | 81 0C 66 02 05 C3 22 76 2B 93 E2 B8 42 §F A7 BF I1f 0A"v+14.B 5
goooon3n | CC AR FA A9 34 Aﬁl 81 .7"2 E3 DF BS 84 DE FO g4 E0 I<<u©411 raBJ.lIlZ'éla

Aanaanaan A4 A TR T AN 14 Ar R R LRI]

REMCOS config stored in encrypted SETTINGS resource

The malware begins by loading the encrypted configuration blob from its resource section.

(LPCSTR)RT_RCDATA);

0x41B4A8 REMCOS loads its encrypted configuration from resources

To load the encrypted configuration, we use the following Python script and the Lief module.

import lief

def read_encrypted_configuration(path: pathlib.Path) -> bytes | None:
if not (pe := lief.parse(path)):
return None

for first_level child in pe.resources.childs:
if first_level_child.id != 10:
continue

for second_level_child in first_level _child.childs:
if second_level_child.name == "SETTINGS":
return bytes(second_level_child.childs[0@].content)

We can confirm that version 4.9.3 maintains the same structure and decryption scheme as
previously described by Fortinet researchers:

Every Remcos contains an RC4 encrypted configuration block in its PE resource section, named “SETTINGS" as shown in Figure 8, where the first
byte “B1” is the size of the following RC4 key that is in a red box and the rest data is the encrypted Remcos configuration block.

Fortinet reported structure and decryption scheme

4/19

https://pypi.org/project/lief/
https://www.fortinet.com/blog/threat-research/latest-remcos-rat-phishing

We refer to the “encrypted configuration” as the structure that contains the decryption key
and the encrypted data blob, which appears as follows:

struct ctf::EncryptedConfiguration

{

uint8_t key_size;
uint8_t key[key_size];
uint8_t data

}i

The configuration is still decrypted using the RC4 algorithm, as seen in the following
screenshot.

ncrypted_configuration_or_encrypted_data_si

:String: :FromCst
y_rcd_decryption

configuration_or_en data_size);

0x40F3C3 REMCO dcrypts its configuration using RC4

To decrypt the configuration, we employ the following algorithm.

def decrypt_encrypted_configuration(

encrypted_configuration: bytes,
) -> tuple[bytes, bytes]:

key_size = int.from_bytes(encrypted_configuration[:1], "little")

key = encrypted_configuration[1l : 1 + key_size]

return key, ARC4.ARC4Cipher(key).decrypt(encrypted_configuration[key_size + 1
1)

The configuration is used to initialize a global vector that we call g configuration vector
by splitting it with the string \x7c\x1f\x1le\x1le\x7c as a delimiter.

5/19

td::String::
iguration_w

ctf::Globallnitial ConfigurationVector(p_configuration_wector);
sub_481E8D(&p_th

if (stremp(lpCmdLine, 1)

= ctf::std::vector::String: :Get(&g_configuration_vector, ctf::Configuration::kEnableInstallFlag);

0x0E16 Confgratdnsing is split to initialize g_configuration_vector

We provide a detailed explanation of the configuration later in this series.

UAC Bypass

When the enable uac bypass flag (index 0x2e) is enabled in the configuration, REMCOS
attempts a UAC bypass using a known COM-based technique.

uration: :kEnableUACBypassFlag);

0x40EC4C Calling the UAC Bypass feature when enabled in the configuration
Beforehand, the REMCOS masquerades its process in an effort to avoid detection.

NTSTATUS _ thiscall ctf::UACBypass

ITSTATUS v2; // esi

ctf::MasqueradeProc ;
v2 = ctf::ucmCMLuaUtilshellExecMethod(p_w_executable);
ctf::MasqueradeOrRestoreProcess(1);

0x4076D UAC Bypass is wrapped between process masquerading and un-masquerading

REMCOS modifies the PEB structure of the current process by replacing the image path and

command line with the explorer .exe string while saving the original information in global
variables for later use.

6/19

rer_command_line = g p w_backup_current_process_command_line;

er_path = g_p w_backup current_process_image_path;

_image path
ackup_current_pr _command_line
lorer_path = g_p w plorer_path;

g_Ttp RtlInitUnicode! (& _p | = = |_exp path);
g fp RtlInitUnicodeString(& p pe ine, p ‘ ommand_line);

0x40742E Process PEB image path and command line set to explorer.exe

The well-known technique exploits the coGetobject API to pass the

Elevation:Administrator!new: moniker, along with the cMSTPLUA CLSID and 1cMLuaUtil
IID, to instantiate an elevated COM interface. REMCQOS then uses the shellExec() method
of the interface to launch a new process with administrator privileges, and exit.

7/19

https://attack.mitre.org/techniques/T1218/003/

sp+18h] [ebp-4h] BYREF
4h]

- Lljgl {{int)
interf

» &pp_inter

ace))

:Logld((ll‘lt::l

(int) DWORD *)v7 + 8

0x407607 calling ShellExec from an

elevated COM interface

8/19

0x4074FD instantiating an elevated COM interface

This technique was previously documented in an Elastic Security Labs article from 2023:
Exploring Windows UAC Bypasses: Techniques and Detection Strategies.

Below is a recent screenshot of the detection of this exploit using the Elastic Defend agent.

Severity levels Alerts by name Topal
Levels Count b Rule name Count - host.na
& Critical a6 Malware Detection Alert 43 desktop
—
96
alerts Memary Threat Detection Alert: Windows. Trojan.Remcos 27
Malicious Behavior Detection Alert: Remote Process Injectio... 9
Malicious Behavior Detection Alert: Startup Persistence by a... 9
3 11columns hidden T 1field sorted 3 alerts Ell Fields Updated 20 seconds ago
:\ Actions +- @timestamp ~ Rule “~ progcess.name
B Ve 53-5 oon () Mar 8, 2024 @ 16:50:48.6... Malicious Behavior Detection Alert: UAC Bypass via ICMLuaUtil Elevated COM Interface remcos_all_enabled_watchdog.exe
T e B Mar 8, 2024 @ 15:35:03.8... Malicious Behavior Detection Alert: UAC Bypass via ICMLuaUtil Elevated COM Interface remcos_all_enabled_watchdog.exe
B g ooe &) Mar 8, 2024 @ 15:30:01.2... Malicious Behavior Detection Alert: UAC Bypass via ICMLuaUtil Elevated COM Interface remcos_all_enabled_injection.exe

UAC bypass exploit detection by the Elastic Defend agent disabling UAC

Disabling UAC

9/19

https://www.elastic.co/security-labs/exploring-windows-uac-bypasses-techniques-and-detection-strategies

When the disable uac flag is enabled in the configuration (index 6x27), REMCOS disables
UAC in the registry by setting the
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\SystemEnablelLUA value to
0 using the reg.exe Windows binary."

nfiguration_vector, ct

Install and persistence

When enable_install flag (index 0x3) is activated in the configuration, REMCQOS will
install itself on the host machine.

3 ring::Get(
_configuration_vec

riGet(dg c ctf::Configuration::kInstallParentDir

: :GetBuffe

»:Get(&g configura
ing: :GetBuffer:

configuration_vector, ctf::Con

r t *yv5@8, *(wchar t g , 2R 3

0x40EDS8A Calling install feature when the flag is enabled in configuration
The installation path is constructed using the following configuration values:

e install parent_directory (index 0x9)
e install directory (0x30)
e install filename (0xA)

10/19

https://attack.mitre.org/techniques/T1548/002/

The malware binary is copied to
{install_parent_directory}/{install_directory}/{install_filename}. In this

example, it is ¥Programbata%\Remcos\remcos.exe.

A Malware Detection Alert @

Status

Risk score: 99 Assignees: @

Overview Table
host.name desktop-u3r87k0
agent.status Offline Isolated
user.name Cyril
rule.name Windows. Trojan.Remcos
process.exacutable Ci\ProgramData\Remcos\remcos.exe
file.path CiProgramData\Remcos\remeos.exe

Sample detected in its installation directory

If the enable persistence directory and binary hiding flag (index 0xC) is enabled in
the configuration, the install folder and the malware binary are set to super hidden (even if
the user enables showing hidden files or folders the file is kept hidden by Windows to protect
files with system attributes) and read-only by applying read-only, hidden, and system
attributes to them.

tBufferd(&g_persistence_file fullpath_wstring);

Buffer@(&g persistence path_wstring);

0x40CFC3 REMCOS applies read-only and super hidden attributes to its install folder and files

11/19

ey P e

This PC » Local Disk (C) » ProgramData » Remcos w | Q) = Search Remcos

Mame Date modified Type Size

et

=
? remcos .
= | B ocos Properties Remcos Properties

Dietails Checksums Previous Wersions Customize Checksums
General Compatibility General Sharing Security

ﬁ |remcu::5 Remcos

= =

Type of file: Application {.exe) Type: File folder

Description: remcos Location: C:\ProgramData

| Size: 502 KB (514,048 bytes)
Location: C:%ProgramData‘\Remcos

Size on disk: 504 KB (516,096 bytez)

Size: 502 KB (514,048 bytes)
Contains: 1 Files, 0 Folders

Size on disk: 504 KB (516,096 bytes)

| Created: Friday. March &, 2024, 4:15:05 FM
Created: Friday, March &, 2024, 4:15:05
Modified: Friday, March 8, 2024, 4:11:59 Attributes: [m] Read-only {Only applies to files in folder)
Accessed: Today, March 8. 2024, 2 minut Hidden Advanced...
d 502 KB Attributes: Bead-only Hidden

Install files set as read-only and super hidden

After installation, REMCOS establishes persistence in the registry depending on which of the
following flags are enabled in the configuration:

e enable_hkcu_run_persistence_flag (index 0x4)
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\

e enable_hklm_run_persistence_flag (index 0x5)
HKLM\Software\Microsoft\Windows\CurrentVersion\Run\

e enable_hklm_policies_explorer_run_flag (index 0x8)
HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run\

0x40CDOD REMCOS establishing persistence registry keys

12/19

The malware is then relaunched from the installation folder using shellExecutew, followed
by termination of the initial process.

0x40D04B Relaunch of the REMCOS process after installation

Process injection

When the enable process_injection_flag (index 0xD) is enabled in the configuration,
REMCOS injects itself into either a specified or a Windows process chosen from an
hardcoded list to evade detection.

0x40EEBS3 Calling process injection feature if enabled in the configuration

B conhost.exe (14 0.2 MB UESK IUF-USHKE
v BN cmd.exe 16804 2353 MB DESKTOP-U3RE
[EX conhost.exe 17528 619 MEB DESKTOP-L3RE

Administrator
TLS Off esl.elastic.co

REMCOS running injected into iexplore.exe

The enable process_injection_flag can be either a boolean or the name of a target
process. When set to true (1), the injected process is chosen in a “best effort” manner from
the following options:

13/19

e iexplorer.exe
e ieinstal.exe
e ielowutil.exe

@, (uintd t *)Buffer2);

Note: there is only one injection method available in REMCOS, when we talk about process
injection we are specifically referring to the method outlined here

REMCOS uses a classic zwMapVview0fSection + SetThreadContext + ResumeThread
technique for process injection. This involves copying itself into the injected binary via shared
memory, mapped using ZzwMapViewOfSection and then hijacking its execution flow to the
REMCOS entry point using SetThreadContext and ResumeThread methods.

It starts by creating the target process in suspended mode using the CreateProcessw API
and retrieving its thread context using the GetThreadContext API.

Processhl(@, 8, @, 8, CRE JED, @, © artupInfo, p_remote_p nformation))

0x418217 Creation of taget process suspended mode

Then, it creates a shared memory using the zwCreatesSection APl and maps it into the
target process using the zwMapviewofsection API, along with the handle to the remote
process.

, @, &MaximumSize, PAGE_EXECUTE_READWRITE, SEC_COMM

0x418293 Creating of the shared memory

if !g_fp_E\-.\‘1ap"ufir:\-.{:f‘;'n':cti-:-r1-jHaru:ilr:‘. CurrentPr , @, 8, (PSIZE_T)v35, lu, 8, @x48u))

0x41834C Mapping of the shared memory in the target process

14/19

The binary is next loaded into the remote process by copying its header and sections into
shared memory.

0x41836F Maping the PE in the shared memory using memmove

Relocations are applied if necessary. Then, the PEB ImageBaseAddress is fixed using the
wWriteProcessMemory APL. Subsequently, the thread context is set with a new entry point
pointing to the REMCOS entry point, and process execution resumes.

0x41840B Hijacking process entry point to REMCOS entry point and resuming the process

Below is the detection of this process injection technique by our agent:

(] / & o & Mar 11, 2024 @ 13:32:56.646 Malicious Behavior Detection Alert: Remote Process Injection via Mapping

Process injection alert

TERMINATED PROCESS
dilhost.exe

&,
cq“’ry& TERMINATED PROCESS

remcos_all_e...

I
S,
O%D. ANALYZED EVENT - TERMINATED PROCESS

remcos.exe

73‘?
gy
%@ee% RUNNING PROCESS
3
Process injection process tree

Setting up logging mode

15/19

REMCOS has three logging mode values that can be selected with the 1ogging mode (index

0x28) field of the configuration:

¢ 0: No logging
e 1: Start minimized in tray icon
e 2: Console logging

configuration_vector, ctf::Configuration::k

Setting this field to 2 enables the console, even when process injection is enabled, and
exposes additional information.

= c\program files (x86)\internet exploreriiexplore.exe

dministrator
TLS Off | esl.e
browsers logins and

on Error: No such host is known.

REMCOS console displayed while injected into iexplore.exe

Cleaning browsers

When the enable browser cleaning on_startup_flag (index 6x2B) is enabled, REMCOS
will delete cookies and login information from the installed web browsers on the host.

16/19

: sGetBuffer

kB
rGetBuffer2

i(v1ez
ctf::command: :CleanBrowserCookiesAndLogins(*v18a != @

0x40F1CC Calling browser cleaning feature when enabled in the configuration

According to the official documentation the goal of this capability is to increase the system

security against password theft:

CLEAR COOKIES AND LOGINS

Each time Remcos Agent starts, Clear Logins function will delete all your browsers stored passwords and

logins.

This will increase system and accounts security against password grabbing.
Currently, the supported browsers are Internet Explorer, Firefox, and Chrome.

ctf::CleanExplorerCookies();

vl)
= ctf::CleanFirefoxCookies()

Tl

ctf::CleanChromeCookies();
11;

0x40C00C Supported browsers for cleaning features

The cleaning process involves deleting cookies and login files from browsers' known
directory paths using the FindFirstFileA, FindNextFileA, and DeleteFileA APIs:

FindFileData);

| 0x40BD37 Cleaning Firefox cookies 1/2

17/19

https://breakingsecurity.net/wp-content/uploads/dlm_uploads/2018/07/Remcos_Instructions_Manual_rev22.pdf

fstrcmp{FindFiluData
'strcmp(FindFileData
s i g *)vl12, 8vl6, FindFileData.cFileName);

0x40BD37 Cleaning Firefox cookies 2/2
When the job is completed, REMCOS prints a message to the console.

= c\program files (x36)\internet exploreriiexplore.exe

CooKles.

- MO S5UCH NOST 15 KnNown.
REMCOS prlntlng success message after cleanlng browsers

It's worth mentioning two related fields in the configuration:

e enable_browser_cleaning_only_for_the_first_run_flag (index 6x2C)
e browser_cleaning_sleep_time_in_minutes (index 0x2D)

The browser_cleaning sleep_time_in_minutes configuration value determines how much
time REMCOS will sleep before performing the job.

18/19

DWORD ctf::thread::CleanBrowserCookiesAndLogins ()

I
L

g clean_browser_history lock = 1;

5leep(g_clean_browser_history sleep);

1%
0x40C162 Sleeping before performing browser cleaning job

When enable browser _cleaning only for_the first run_flag is enabled, the cleaning
will occur only at the first run of REMCOS. Afterward, the HKCU/SOFTWARE/ {mutex}/FR
reqgistry value is set.

On subsequent runs, the function directly returns if the value exists and is set in the registry.

registry path_string);
))

registry path string);

That’s the end of the first article. The second part will cover the second half of REMCOS'
execution flow, starting from its watchdog to the first communication with its C2.

19/19

