From BYOVD to a 0-day: Unveiling Advanced Exploits in
Cyber Recruiting Scams

decoded.avast.io/luiginocamastra/from-byovd-to-a-0-day-unveiling-advanced-exploits-in-cyber-recruiting-scams/

April 18, 2024

by Luigino CamastraApril 18, 202424 min read

Key Points

o Avast discovered a new campaign targeting specific individuals through fabricated job
offers.

e Avast uncovered a full attack chain from infection vector to deploying “FudModule
2.0" rootkit with 0-day Admin -> Kernel exploit.

e Avast found a previously undocumented kaolin RAT, where it could aside from
standard RAT functionality, change the last write timestamp of a selected file and load
any received DLL binary from C&C server. We also believe it was loading FudModule
along with a 0-day exploit.

Introduction

In the summer of 2023, Avast identified a campaign targeting specific individuals in the
Asian region through fabricated job offers. The motivation behind the attack remains
uncertain, but judging from the low frequency of attacks, it appears that the attacker had a
special interest in individuals with technical backgrounds. This sophistication is evident from
previous research where the Lazarus group exploited vulnerable drivers and performed
several rootkit techniques to effectively blind security products and achieve better
persistence.

In this instance, Lazarus sought to blind security products by exploiting a vulnerability in the
default Windows driver, appid.sys (CVE-2024-21338). More information about this
vulnerability can be found in a corresponding blog_post.

1/16

https://decoded.avast.io/luiginocamastra/from-byovd-to-a-0-day-unveiling-advanced-exploits-in-cyber-recruiting-scams/
https://decoded.avast.io/luiginocamastra/from-byovd-to-a-0-day-unveiling-advanced-exploits-in-cyber-recruiting-scams/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-21338
https://decoded.avast.io/janvojtesek/lazarus-and-the-fudmodule-rootkit-beyond-byovd-with-an-admin-to-kernel-zero-day/

This indicates that Lazarus likely allocated additional resources to develop such attacks.
Prior to exploitation, Lazarus deployed the toolset meticulously, employing fileless malware
and encrypting the arsenal onto the hard drive, as detailed later in this blog post.

Furthermore, the nature of the attack suggests that the victim was carefully selected and
highly targeted, as there likely needed to be some level of rapport established with the
victim before executing the initial binary. Deploying such a sophisticated toolset alongside
the exploit indicates considerable resourcefulness.

This blog post will present a technical analysis of each module within the entire attack
chain. This analysis aims to establish connections between the toolset arsenal used by the
Lazarus group and previously published research.

Initial access

The attacker initiates the attack by presenting a fabricated job offer to an unsuspecting
individual, utilizing social engineering techniques to establish contact and build rapport.
While the specific communication platform remains unknown, previous research by
Mandiant and ESET suggests potential delivery vectors may include LinkedIn, WhatsApp,
email or other platforms. Subsequently, the attacker attempts to send a malicious ISO file,
disguised as VNC tool, which is a part of the interviewing_process. The choice of an ISO file
is starting to be very attractive for attackers because, from Windows 10, an ISO file could
be automatically mounted just by double clicking and the operating system will make the
ISO content easily accessible. This may also serve as a potential Mark-of-the-Web (MotW)
bypass.

Since the attacker created rapport with the victim, the victim is tricked by the attacker to
mount the ISO file, which contains three files: AmazonVNC.exe, version.dll and aws.cfg.
This leads the victim to execute AmazonVNC. exe.

The AmazonVNC . exe executable only pretends to be the Amazon VNC client, instead, it is a
legitimate Windows application called choice.exe that ordinarily resides in the System32
folder. This executable is used for sideloading, to load the malicious version.d11 through
the legitimate choice.exe application. Sideloading is a popular technique among attackers
for evading detection since the malicious DLL is executed in the context of a legitimate
application.

When AmazonVNC. exe gets executed, it loads version.d11. This malicious DLL is using
native Windows API functions in an attempt to avoid defensive techniques such as user-
mode API hooks. All native API functions are invoked by direct syscalls. The malicious
functionality is implemented in one of the exported functions and not in DLL Main. There is
no code in DLLMain it just returns 1, and in the other exported functions is just Sleep
functionality.

2/16

https://www.mandiant.com/resources/blog/dprk-whatsapp-phishing
https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/
https://securelist.com/apt-trends-report-q3-2023/110752/

After the DLL obtains the correct syscall numbers for the current Windows version, it is
ready to spawn an iexpress.exe process to host a further malicious payload that resides in
the third file, aws. cfg. Injection is performed only if the Kaspersky antivirus is installed on
the victim’s computer, which seems to be done to evade Kaspersky detection. If Kaspersky
is not installed, the malware executes the payload by creating a thread in the current
process, with no injection. The aws . cfg file, which is the next stage payload, is obfuscated
by VMProtect, perhaps in an effort to make reverse engineering more difficult. The payload
is capable of downloading shellcode from a Command and Control (C&C) server, which we
believe is a legitimate hacked website selling marble material for construction. The official
website is https://www[. Jhenraux.com/, and the attacker was able to download shellcode
from https://www[.]henraux.com/sitemaps/about/about.asp

In detailing our findings, we faced challenges extracting a shellcode from the C&C server as
the malicious URL was unresponsive.

By analyzing our telemetry, we uncovered potential threats in one of our clients, indicating a
significant correlation between the loading of shellcode from the C&C server via an I1SO file
and the subsequent appearance of the Ro11F1ing, which is a new undocumented loader
that we discovered and will delve into later in this blog post.

Moreover, the delivery method of the ISO file exhibits tactical similarities to those employed
by the Lazarus group, a fact previously noted by researchers from Mandiant and ESET.

In addition, a Ro11s1ing sample was identified on the victim machines, displaying code
similarities with the Ro11s1ing sample discussed in Microsoft’s research. Notably, the
Rollsling instance discovered in our client’s environment was delivered by the Ro11F1ling
loader, confirming our belief in the connection between the absent shellcode and the initial
loader Ro11F1ing. For visual confirmation, refer to the first screenshot showcasing the SHA
of Ro11s1ling report code from Microsoft, while on the second screenshot is the code
derived from our Ro11S1ling sample.

3/16

https://www.mandiant.com/resources/blog/dprk-whatsapp-phishing
https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/
https://www.microsoft.com/en-us/security/blog/2023/10/18/multiple-north-korean-threat-actors-exploiting-the-teamcity-cve-2023-42793-vulnerability/
https://www.microsoft.com/en-us/security/blog/2023/10/18/multiple-north-korean-threat-actors-exploiting-the-teamcity-cve-2023-42793-vulnerability/

&FindFileData, Find

a.cFileName[1] == && !FindFileData.cFileName

g in another path:
(!load_binary_to_memory_and_execute_StartAction_export_function(®
0;

irstFile != (HANDLE)-1LL)

(FirstFile);
Image illustrates the Ro11S1ing code identified by Microsoft. SHA:

d9add2bfdfebfa235575687de356f0cefb3e4c55964c4ch8bfdcdc58294eeaca.

FirstFile (HANDLE) -1

r_path

_to_memory_and_execute_StartAction_export_function(@
~stFile == (HANDLE)-1LL)

'FindFileData.cFileN

[(Finc
|| load_binary_to

indFileData))

Image showcases the Ro11s1ing code discovered within our targe. SHA:
68ff1087c45a1711¢c3037dad427733¢ccb1211634d070b03cbh3a3c7e836d210f

In the next paragraphs, we are going to explain every component in the execution chain,
starting with the initial Ro11F1ing loader, continuing with the subsequently loaded
Rol1sling loader, and then the final Ro11Mid loader. Finally, we will analyze the Kaolin
RAT, which is ultimately loaded by the chain of these three loaders.

Loaders

RollFling

4/16

The Rol11F1ling loader is a malicious DLL that is established as a service, indicating the
attacker’s initial attempt at achieving persistence by registering as a service. Accompanying
this Ro11F1ling loader are essential files crucial for the consistent execution of the attack
chain. Its primary role is to kickstart the execution chain, where all subsequent stages
operate exclusively in memory. Unfortunately, we were unable to ascertain whether the DLL
file was installed as a service with administrator rights or just with standard user rights.

The loader acquires the System Management BIOS (SMBIOS) table by utilizing the
Windows API function GetSystemFirmwareTable. Beginning with Windows 10, version
1803, any user mode application can access SMBIOS information. SMBIOS serves as the
primary standard for delivering management information through system firmware.

By calling the GetSystemFirmwareTable (see Figure 1.) function, SMBIOSTableData is
retrieved, and that sMBI0OSTableData is used as a key for decrypting the encrypted
Rol1sling loader by using the XOR operation. Without the correct sMBI0STableData, which
is a 32-byte-long key, the Ro11S1ing decryption process would be ineffective so the
execution of the malware would not proceed to the next stage. This suggests a highly
targeted attack aimed at a specific individual.

This suggests that prior to the attacker establishing persistence by registering the
Rol1lFling loader as a service, they had to gather information about the sMB10s table and
transmit it to the C&C server. Subsequently, the C&C server could then reply with another
stage. This additional stage, called Rol1Sling, is stored in the same folder as Rol1Fling
but with the ".n1s" extension.

After successful xor decryption of Ro11S1ing, RollFling is now ready to load decrypted
Rol1sling into memory and continue with the execution of Ro11S1ing.

2ExA(6bu, ServiceMain, &phModule))
eA(phModule, Filename, @x104u))

Filename);

, OPEN_EXISTING,

FileSize.lLowPart, &Numb

ttentoTheBUffer);

EI'H a = FlrmHIHTif];

Flgure 1: Obtaining SMBIOS f|rmware table provider

5/16

RollSling

The Rol1S1ling loader, initiated by Ro11F1ing, is executed in memory. This choice may help
the attacker evade detection by security software. The primary function of Ro11S1ing is to
locate a binary blob situated in the same folder as Ro11S1ing (or in the Package Cache
folder). If the binary blob is not situated in the same folder as the Ro11S1ing, then the
loader will look in the Package Cache folder. This binary blob holds various stages and
configuration data essential for the malicious functionality. This binary blob must have been
uploaded to the victim machine by some previous stage in the infection chain.

The reasoning behind binary blob holding multiple files and configuration values is twofold.
Firstly, it is more efficient to hold all the information in a single file and, secondly, most of the
binary blob can be encrypted, which may add another layer of evasion meaning lowering
the chance of detection.

Rollsling is scanning the current folder, where it is looking for a specific binary blob. To
determine which binary blob in the current folder is the right one, it first reads 4 bytes to
determine the size of the data to read. Once the data is read, the bytes from the binary blob
are reversed and saved in a temporary variable, afterwards, it goes through several
conditions checks like the MZ header check. If the MZ header check is done, subsequently
it looks for the “startAction” export function from the extracted binary. If all conditions are
met, then it will load the next stage Ro11Mid in memory. The attackers in this case didn’t use
any specific file name for a binary blob or any specific extension, to be able to easily find
the binary blob in the folder. Instead, they have determined the right binary blob through
several conditions, that binary blob had to meet. This is also one of the defensive evasion
techniques for attackers to make it harder for defenders to find the binary blob in the
infected machine.

This stage represents the next stage in the execution chain, which is the third loader called
Rol1Mid which is also executed in the computer’s memory.

Before the execution of the Ro11Mid loader, the malware creates two folders, named in the
following way:

* %drivelLetter%:\\ProgramData\\Package Cache\\[0-9A-Z]{8}-DF09-AA86-Y178-[0-9A-
Z){12}\\

» %driveLetter%:\\ProgramData\\Package Cache\\ [0-9A-Z]{8}-09C7-886E-117F-[0-9A-Z]
{12}\

These folders serve as destinations for moving the binary blob, now renamed with a newly
generated name and a ".cab" extension. Ro11S1ing loader will store the binary blob in the
first created folder, and it will store a new temporary file, whose usage will be mentioned
later, in the second created folder.

6/16

The attacker utilizes the "Package Cache" folder, a common repository for software
installation files, to better hide its malicious files in a folder full of legitimate files. In this
approach, the attacker also leverages the ".cab" extension, which is the usual extension
for the files located in the Package cache folder. By employing this method, the attacker is
trying to effectively avoid detection by relocating essential files to a trusted folder.

In the end, the Ro11S1ing loader calls an exported function called "startAction". This
function is called with specific arguments, including information about the actual path of the
Rol1F1ling loader, the path where the binary blob resides, and the path of a temporary file
to be created by the Ro11Mid loader.

~y_and_execute_StartAction_export_function(®
(HANDLE)-1LL)

e(FirstFile);
Figure 2: Looking for a binary blob in the same folder as the Ro11F1ing loader

RollMid

The responsibility of the Ro11Mid loader lies in loading key components of the attack and
configuration data from the binary blob, while also establishing communication with a C&C
server.

The binary blob, containing essential components and configuration data, serves as a
critical element in the proper execution of the attack chain. Unfortunately, our attempts to
obtain this binary blob were unsuccessful, leading to gaps in our full understanding of the
attack. However, we were able to retrieve the Ro11Mid loader and certain binaries stored in
memory.

Within the binary blob, the Ro11Mid loader is a fundamental component located at the
beginning (see Figure 3). The first 4 bytes in the binary blob describe the size of the
Rol1Mid loader. There are two more binaries stored in the binary blob after the Ro11Mid

7/16

loader as well as configuration data, which is located at the very end of the binary blob.
These two other binaries and configuration data are additionally subject to compression and
AES encryption, adding layers of security to the stored information.

As depicted, the first four bytes enclosed in the initial yellow box describe the size of the
RollMid loader. This specific information is also important for parsing, enabling the
transition to the subsequent section within the binary blob.

Located after the Ro11Mid loader, there are two 4-byte values, distinguished by yellow and
green colors. The former corresponds to the size of FIRST _ENCRYPTED_DLL section, while
the latter (green box) signifies the size of SECOND_ENCRYPTED_DLL section. Notably, the
second 4-byte value in the green box serves a dual purpose, not only describing a size but
also at the same time constituting a part of the 16-byte AES key for decrypting the
FIRST_ENCRYPTED DLL section. Thanks to the provided information on the sizes of each
encrypted DLL embedded in the binary blob, we are now equipped to access the
configuration data section placed at the end of the binary blob.

SIZE(4B)

ROLLMID

SIZE(4B) |SIZE/KEY(4B) KEY(12B)
IV (16B)

FIRST_EMCRYPTED_DLL

KEY(16B) 1V(4B)
IV(12B)

SECOND_ENCRYFTED_DLL

KEY(168) IV(4B)
IV(12B)

CONFIGURATION DATA

Figure 3: Structure of the Binary blob

The Rol1Mid loader requires the FIRST_DLL_BINARY for proper communication with the
C&C server. However, before loading FIRST DLL_BINARY, the Rol1Mid loader must first
decrypt the FIRST _ENCRYPTED DLL section.

8/16

The decryption process applies the AES algorithm, beginning with the parsing of the
decryption key alongside an initialization vector to use for AES decryption. Subsequently, a
decompression algorithm is applied to further extract the decrypted content. Following this,
the decrypted FIRST DLL_BINARY is loaded into memory, and the b11Main function is
invoked to initialize the networking library.

Unfortunately, as we were unable to obtain the binary blob, we didn’t get a chance to
reverse engineer the FIRST _DLL_BINARY. This presents a limitation in our understanding, as
the precise implementation details for the imported functions in the Ro11Mid loader remain
unknown. These imported functions include the following:

e SendDataFromUrl

e GetImageFromUrl

e GetHtmlFromUrl

e curl_global_cleanup
e curl_global_init

After reviewing the exported functions by their names, it becomes apparent that these
functions are likely tasked with facilitating communication with the C&C server.
FIRST_DLL_BINARY also exports other functions beyond these five, some of which will be
mentioned later in this blog.

The names of these five imported functions imply that FIRST DLL_BINARY is built upon the

curl library (as can be seen by the names curl global cleanup and curl global init).

In order to establish communication with the C&C servers, the Ro11Mid loader employs the
imported functions, utilizing HTTP requests as its preferred method of communication.

The rationale behind opting for the curl library for sending HTTP requests may stem from
various factors. One notable reason could be the efficiency gained by the attacker, who can
save time and resources by leveraging the HTTP communication protocol. Additionally, the
ease of use and seamless integration of the curl library into the code further support its
selection.

Prior to initiating communication with the C&C server, the malware is required to generate a
dictionary filled with random words, as illustrated in Figure 4 below. Given the extensive
size of the dictionary (which contains approximately hundreds of elements), we have
included only a partial screenshot for reference purposes. The subsequent sections of this
blog will delve into a comprehensive exploration of the role and application of this dictionary
in the overall functionality of malware.

9/16

https://curl.se/libcurl/

v3->dictionaryl->dic|

v3->dictionaryl->dic
v3->dictionaryl->dic

v3->dictionaryl->dic|

v3->dictionaryl->dic
v3->dictionaryl->dic
v3->dictionaryl->dic
v3->dictionaryl->dic

v3->dictionaryl->dic|
v3->dictionaryl->dic[9]
v3->dictionaryl->dic|:

v3->dictionaryl->dic|:
v3->dictionaryl->dic|:
v3->dictionaryl->dic|:
v3->dictionaryl->dic|:
v3->dictionaryl->dic|:
v3->dictionaryl->dic]:
v3->dictionaryl->dic|:
v3->dictionaryl->dic]|:
v3->dictionaryl->dic]|
v3->dictionaryl->dic|
v3->dictionaryl->dic|
v3->dictionaryl->dic|
v3->dictionaryl->dic]|
v3->dictionaryl->dic]|
v3->dictionaryl->dic|
v3->dictionaryl->dic|
v3->dictionaryl->dic|

CO~dNOYUT & WNEO®

v3->dictionaryl->dic[29]

v3->dictionaryl->dic[30]

Figure 4: Filling the main dictionary

To establish communication with the C&C server, as illustrated in Figure 5, the malware
must obtain the initial C&C addresses from the CONFIGURATION DATA section. Upon
decrypting these addresses, the malware initiates communication with the first layer of the
C&C server through the GetHtm1Fromurl function, presumably using an HTTP GET
request. The server responds with an HTML file containing the address of the second C&C
server layer. Subsequently, the malware engages in communication with the second layer,
employing the imported GetImageFromUrl function. The function name implies this performs
a GET request to retrieve an image.

In this scenario, the attackers employ steganography to conceal crucial data for use in the
next execution phase. Regrettably, we were unable to ascertain the nature of the important
data concealed within the image received from the second layer of the C&C server.

Binary blob

Parsing for first C&C
address

S o T S"ﬂda oo | |

" ro '
L _;I?L?fﬁﬁlsr
., bt L

RollMid

Third C&C

Figure 5: Communication with C&C servers

We are aware that the concealed data within the image serves as a parameter for a
function responsible for transmitting data to the third C&C server. Through our analysis, we
have determined that the acquired data from the image corresponds to another address of
the third C&C server. Communication with the third C&C server is initiated with a POST

request.

11/16

Malware authors strategically employ multiple C&C servers as part of their operational
tactics to achieve specific objectives. In this case, the primary goal is to obtain an additional
data blob from the third C&C server, as depicted in Figure 5, specifically in step 7.
Furthermore, the use of different C&C servers and diverse communication pathways adds
an additional layer of complexity for security tools attempting to monitor such activities. This
complexity makes tracking and identifying malicious activities more challenging, as
compared to scenarios where a single C&C server is employed.

The malware then constructs a URL, by creating the query string with GET parameters
(name/value pairs). The parameter name consists of a randomly selected word from the
previously created dictionary and the value is generated as a random string of two
characters. The format is as follows:

"%addressOfThirdC&C%?%RandomWordFromDictonary%=%RandomString%"

The URL generation involves the selection of words from a generated dictionary, as
opposed to entirely random strings. This intended choice aims to enhance the appearance
and legitimacy of the URL. The words, carefully curated from the dictionary, contribute to
the appearance of a clean and organized URL, resembling those commonly associated with
authentic applications. The terms such as "atype", "User",” or "type" are not arbitrary but
rather thoughtfully chosen words from the created dictionary. By utilizing real words, the
intention is to create a semblance of authenticity, making the HTTP posT payload appear
more structured and in line with typical application interactions.

Before dispatching the POST request to the third layer of the C&C server, the request is

113

populated with additional key-value tuples separated by standard delimiters “?” and “=
between the key and value. In this scenario, it includes:

%RandomWordFromDictonary %=%sleep_state_in_minutes%?
%size_of_configuration_data%

The data received from the third C&C server is parsed. The parsed data may contain an
integer, describing sleep interval, or a data blob. This data blob is encoded using the
base64 algorithm. After decoding the data blob, where the first 4 bytes indicate the size of
the first part of the data blob, the remainder represents the second part of the data blob.

The first part of the data blob is appended to the SECOND_ENCRYPTED_DLL as an overlay,
obtained from the binary blob. After successfully decrypting and

decompressing SECOND_ENCRYPTED_DLL, the process involves preparing the
SECOND_ENCRYPTED_DLL, which is a Remote Access Trojan (RAT) component to be loaded
into memory and executed with the specific parameters.

12/16

The underlying motivation behind this maneuver remains shrouded in uncertainty. It
appears that the attacker, by choosing this method, sought to inject a degree of
sophistication or complexity into the process. However, from our perspective, this approach
seems to border on overkill. We believe that a simpler method could have sufficed for
passing the data blob to the Kaolin RAT.

The second part of the data blob, once decrypted and decompressed, is handed over to the
Kaolin RAT component, while the Kaolin RAT is executed in memory. Notably, the
decryption key and initialization vector for decrypting the second part of the data blob reside
within its initial 32 bytes.

Kaolin RAT

A pivotal phase in orchestrating the attack involves the utilization of a Remote Access
Trojan (RAT). As mentioned earlier, this Kaolin RAT is executed in memory and configured
with specific parameters for proper functionality. It stands as a fully equipped tool, including
file compression capabilities.

However, in our investigation, the Kaolin RAT does not mark the conclusion of the attack.
In the previous blog post, we already introduced another significant component — the
FudModule rootkit. Thanks to our robust telemetry, we can confidently assert that this rootkit
was loaded by the aforementioned Kaolin RAT, showcasing its capabilities to seamlessly
integrate and deploy FudModule. This layered progression underscores the complexity and
sophistication of the overall attack strategy.

One of the important steps is establishing secure communication with the RAT’s C&C
server, encrypted using the AES encryption algorithm. Despite the unavailability of the
binary containing the communication functionalities (the RAT also relies on functions
imported from FIRST _DLL_BINARY for networking), our understanding is informed by other
components in the attack chain, allowing us to make certain assumptions about the
communication method.

The Kaolin RAT is loaded with six arguments, among which a key one is the base address
of the network module DLL binary, previously also used in the Ro11Mid loader. Another
argument includes the configuration data from the second part of the received data blob.

For proper execution, the Kaolin RAT needs to parse this configuration data, which
includes parameters such as:

o Duration of the sleep interval.

» A flag indicating whether to collect information about available disk drives.

» A flag indicating whether to retrieve a list of active sessions on the remote desktop.
o Addresses of additional C&C servers.

13/16

https://decoded.avast.io/janvojtesek/lazarus-and-the-fudmodule-rootkit-beyond-byovd-with-an-admin-to-kernel-zero-day/

In addition, the Kaolin RAT must load specific functions from FIRST DLL BINARY, namely:

e SendDataFromURL

e ZipFolder

e UnzipStr

e curl_global_cleanup

e curl_global_init

Although the exact method by which the Kaolin RAT sends gathered information to the
C&C server is not precisely known, the presence of exported functions like

"curl global cleanup" and "curl global init" suggests that the sending process
involves again API calls from the curl library.

For establishing communication, the Kaolin RAT begins by sending a POST request to the
C&C server. In this first POST request, the malware constructs a URL containing the address
of the C&C server. This URL generation algorithm is very similar to the one used in the
Rol1Mid loader. To the C&C address, the Kaolin RAT appends a randomly chosen word
from the previously created dictionary (the same one as in the Ro11Mid loader) along with a
randomly generated string. The format of the URL is as follows:

"%address0fC&Cserver%?%RandomwordFromDictonary%=%RandomString%"

The malware further populates the content of the POST request, utilizing the default
"application/x-www-form-urlencoded" content type. The content of the POST request is
subject to AES encryption and subsequently encoded with base64.

Within the encrypted content, which is appended to the key-value tuples (see the form
below), the following data is included (Encryptedcontent):

« Installation path of the Ro11F1ing loader and path to the binary blob

o Data from the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Windows\lconservice

e Kaolin RAT process ID

e Product name and build number of the operating system.

e Addresses of C&C servers.

o Computer name

e Current directory

In the POST request with the encrypted content, the malware appends information about the
generated key and initialization vector necessary for decrypting data on the backend. This

is achieved by creating key-value tuples, separated by “&” and “=” between the key and
value. In this case, it takes the following form:

14/16

%RandomWordFromDictonary%=%TEMP_DATA%&%RandomWordFromDictonary%=%IV%%KEY%&%Ra
ndomwWordFromDictonary%=%EncryptedContent%&%RandomWordFromDictonary%=%Encrypte
dHostNameAndIPAddr%

Upon successfully establishing communication with the C&C server, the Kaolin RAT
becomes prepared to receive commands. The received data is encrypted with the
aforementioned generated key and initialization vector and requires decryption and parsing
to execute a specific command within the RAT.

When the command is processed the Kaolin RAT relays back the results to the C&C
server, encrypted with the same AES key and IV. This encrypted message may include an
error message, collected information, and the outcome of the executed function.

The Kaolin RAT has the capability to execute a variety of commands, including:

o Updating the duration of the sleep interval.
 Listing files in a folder and gathering information about available disks.
o Updating, modifying, or deleting files.
e Changing a file’s last write timestamp.
« Listing currently active processes and their associated modules.
o Creating or terminating processes.
e Executing commands using the command line.
o Updating or retrieving the internal configuration.
e Uploading a file to the C&C server.
e Connecting to the arbitrary host.
o Compressing files.
o Downloading a DLL file from C&C server and loading it in memory, potentially
executing one of the following exported functions:
o _DoMyFunc
o _DoMyFunc2

[¢]

_DoMyThread (executes a thread)
o _DoMyCommandWork
Setting the current directory.

Conclusion

Our investigation has revealed that the Lazarus group targeted individuals through
fabricated job offers and employed a sophisticated toolset to achieve better persistence
while bypassing security products. Thanks to our robust telemetry, we were able to uncover
almost the entire attack chain, thoroughly analyzing each stage. The Lazarus group’s level
of technical sophistication was surprising and their approach to engaging with victims was
equally troubling. It is evident that they invested significant resources in developing such a
complex attack chain. What is certain is that Lazarus had to innovate continuously and

15/16

allocate enormous resources to research various aspects of Windows mitigations and
security products. Their ability to adapt and evolve poses a significant challenge to
cybersecurity efforts.

Indicators of Compromise (loCs)

ISO
b8a4c1792ce2ec15611932437ad4a1a7e43b7c3783870afebf6eaec043bcfade30

RollFling
a3fe80540363ee2f1216ec3d01209d7c517f6e749004c91901494fHb94852332b

NLS files
01ca7070bbe4bfa6254886f8599d6ce9537bafcbab6663f1f41bfc43f2ee370e
7248d66dea78a73b9b80b528d7e9f53bae7a77bad974ededeeb16¢c33b14b9c56

RollSling
e68ff1087c45a1711c3037dad427733ccb1211634d070b03cb3a3c7e836d210f
f47f78b5eef672e8e1bd0f26fb4aa699dec113d6225e2fcbd57129d6dada7def

RollMid
9a4bc647c09775ed633c134643d18a0be8f37c21afa3c0f8adf41e038695643e

Kaolin RAT
a75399f9492a8d2683d4406fa3e1320e84010b3affdffOb8f2444ac33ce3e690

Tagged asAPT, Lazarus, Recruiting scams
Share:XFacebook

16/16

https://decoded.avast.io/tag/apt/
https://decoded.avast.io/tag/lazarus/
https://decoded.avast.io/tag/recruiting-scams/

