
1/19

Unraveling Not AZORult but Koi Loader: A Precursor to
Koi…

esentire.com/blog/unraveling-not-azorult-but-koi-loader-a-precursor-to-koi-stealer

Figure 1: CrydBrox announcement on closing the AZORult sales

Company

ABOUT ESENTIRE

eSentire is The Authority in Managed Detection and Response Services, protecting the
critical data and applications of 2000+ organizations in 80+ countries from known and
unknown cyber threats. Founded in 2001, the company’s mission is to hunt, investigate and
stop cyber threats before they become business disrupting events.

About Us →

Leadership →

Careers →

Event Calendar →

Newsroom →

EVENT CALENDAR

Jul

09

July TRU Intelligence Briefing

Jul

18

Data Connectors Phoenix

Jul

19

Elevate IT Technology Summit

https://www.esentire.com/blog/unraveling-not-azorult-but-koi-loader-a-precursor-to-koi-stealer
https://www.esentire.com/company/about-us
https://www.esentire.com/company/leadership
https://www.esentire.com/company/careers
https://www.esentire.com/company/event-calendar
https://www.esentire.com/company/newsroom

2/19

Aug

07

Black Hat USA

Aug

11

ILTACON

View Calendar →
Partners

PARTNER PROGRAM

Get Started

Want to learn more on how to achieve Cyber Resilience?

TALK TO AN EXPERT
Adversaries don’t work 9-5 and neither do we. At eSentire, our 24/7 SOCs are staffed with
Elite Threat Hunters and Cyber Analysts who hunt, investigate, contain and respond to
threats within minutes.

We have discovered some of the most dangerous threats and nation state attacks in our
space – including the Kaseya MSP breach and the more_eggs malware.

Our Security Operations Centers are supported with Threat Intelligence, Tactical Threat
Response and Advanced Threat Analytics driven by our Threat Response Unit – the TRU
team.

In TRU Positives, eSentire’s Threat Response Unit (TRU) provides a summary of a recent
threat investigation. We outline how we responded to the confirmed threat and what
recommendations we have going forward.

Here’s the latest from our TRU Team…

What did we find?

At the end of March 2024, the eSentire Threat Response Unit (TRU) detected an infection by
the stealer malware allegedly being tracked by some researchers as AZORult.

AZORult is an infostealer malware first discovered in 2016. AZORult's sales stopped at the
end of 2018 and the seller announced the end of the project, which translates from Russian
to English: "Every piece of software has its lifespan. And for AZORult, it has come to an end.
With both sadness and joy, I announce that sales are closed forever" (Figure 1).

https://www.esentire.com/company/event-calendar
https://www.esentire.com/get-started
https://www.esentire.com/what-we-do/security-operations-center
https://www.esentire.com/what-we-do/threat-response-unit

3/19

Figure 1: CrydBrox announcement on closing the AZORult sales

In early 2019, Kaspersky unveiled details indicating that AZORult had been rewritten from
Delphi to C++. Fast-forward to the beginning of 2024, Cyble and Netskope have reported on
yet another resurgence of AZORult, but this time with the code switched to .NET. However, a
detailed comparison of Netskope’s, Cyble's, and Kaspersky's samples showed no code
overlaps.

A Threat Researcher, Ernesto Fernández from Trellix, highlighted an article that identifies the
malware as Koi Loader and Koi Stealer, reflecting the analyses by Cyble and Netskope.
These findings including the Twitter post from Unit42 and some discussions with Principle
Threat Researcher at Palo Alto have led us to adopt the terms Koi Loader and Koi Stealer for
this article's discussion.

Initial Infection

The user received a phishing email about an unauthorized transaction on the sender's debit
card containing an embedded link (Figure 2). This link directed the user to download a
malicious ZIP archive named “chasebank_statement_mar.zip” (MD5:
8751223ced55a2079e876b893917a0f3). Notably, the file hashes of the archive change with
each new download.

Figure 2: Phishing email

As seen in Figure 3, we found multiple reports on the sender’s email on spam[.]org with
email subject lines such as:

Concerned about an ambiguous charge on my bank statement - seeking your help
Need your guidance with a puzzling payment on my credit card - could you advise

https://securelist.com/azorult-analysis-history/89922/
https://cyble.com/blog/sneaky-azorult-back-in-action-and-goes-undetected/
https://www.netskope.com/blog/from-delivery-to-execution-an-evasive-azorult-campaign-smuggled-through-google-sites
https://medium.com/@lcam/updates-from-the-maas-new-threats-delivered-through-nullmixer-d45defc260d1
https://twitter.com/Unit42_Intel/status/1775891118963503288
https://x.com/RussianPanda9xx/status/1775894048173437023

4/19

Uneasy about an unknown charge on my bank statement connected to your store -
could you assist
Unforeseen payment on my debit card linked to your website - looking for your
guidance
Concerned about an unforeseen charge on my account - appreciate your assistance

Figure 3: Complaint report on spam[.]org

Upon visiting the embedded malicious page that is hosted on Google Sites, we received a
CAPTCHA prompt (Figure 4).

5/19

Figure 4: CAPTCHA page on Google Sites

It’s worth noting that to receive the payload, the user would have to pass the CAPTCHA
prompt first. If the user fails the CAPTCHA prompt, the server will respond with “NO” status
(Figure 5).

Figure 5: Response from the server if the CAPTCHA prompt fails

If the user passes the CAPTCHA prompt, the server responds with “YES” status and serves
the ZIP archive.

Figure 6: Response from the server if the CAPTCHA prompt is passed

6/19

The ZIP archive includes a shortcut file (.lnk) named “chasebank_statement_mar.lnk” (MD5:
044fd3c4d97a35f80792b7edee445c48), which downloads the next stage payload from the
server, “m8hHxtkVLYPw.bat” (MD5: 099259c6d898c5d91dc3b01756e349d8), using curl.

This file is then stored in the %TEMP% folder. Additionally, it establishes persistence on the
system by creating a Scheduled Task named “0BAduEnQZG9POyK”. (Figure 7).

Figure 7: Contents of the shortcut file

Koi payloads are usually all placed within the same opendir link, as shown in Figure 8.

Figure 8: Example of the opendir hosting Koi payloads

The download batch file “m8hHxtkVLYPw.bat” contains the PowerShell command (Figure 9)
that is responsible for fetching another payload from the server “WLXUL6LWXQPB.js” (MD5:
48c7fd278ac590c9bd896ad9c7850c3a).

Figure 9: Contents of the batch script

The downloaded JavaScript file is responsible for self-replication, the script checks if its
current filename is agent.js. If not, it attempts to copy itself to the %programdata% directory
with the filename agent.js. It defines a mutex name “7z2LKLJ62LPA” and attempts to delete

7/19

any file with that name in the %temp% directory. If a file with the mutex name does not exist
(indicating that another instance may not be running), it proceeds to retrieve and execute
additional payloads via PowerShell commands, as shown in Figure 10.

Figure 10: Contents of the JavaScript file

The PowerShell script agent1.ps1 (MD5: 96b251e61f987648f69767f398324652) contains a
one-liner command that is responsible for AMSI bypass as shown in Figure 11.

Figure 11: AMSI bypass

agent3.ps1 (MD5: a3ee8655f45c72f5231ded7a4a1c7e43) contains the instructions to
download Koi loader written in C++ as well as loading the shellcode in a separate thread
along with the loader. The shellcode is responsible for allocating the memory for the loader
and jumping to the loader’s entry point (Figure 12).

Figure 12: Shellcode that is responsible for accessing the loader at the entry point

Koi Loader

Anti-VM

The Koi Loader malware is written in C. The final loader payload is extracted and decrypted
using XOR from the resource section, where the XOR key is also located.

https://arttoolkit.github.io/wadcoms/AMSI-Bypass-amsiInitFailed/

8/19

We will proceed to the decrypted Koi payload. The loader begins by implementing the anti-
CIS feature, which terminates the process if any of the languages listed in Figure 13 are
detected.

Figure 13: Anti-CIS / language check

Additionally, the loader employs an anti-VM capability. It uses EnumDisplayDevicesW to
enumerate display devices attached to the desktop, searching for device strings that match
known virtual machine display adapters (Hyper-V, VMWare, Parallels, Red Hat QXL). It then
checks for specific files related to VirtualBox (VBoxService.exe and VBoxTray.exe),
indicating the system is running inside a VirtualBox VM.

The loader further inspects certain directories and files for evidence of a VM environment.
This includes looking for specific files in the user's system and application data folders, which
may indicate automated testing or sandboxing environments, such as Recently.docx,
Opened.docx, These.docx, Resource.txt, OpenVPN.txt (Figure 14).

Figure 14: VirutalBox and file checks

9/19

Next, the loader retrieves the computer name and name of the currently logged-in user
against WILLCARTER-PC, FORTI-PC, SFTOR-PC and Joe Cage, STRAZNJICA.GRUBUTT,
Paul Jones, PJones, Harry Johnson, WDAGUtilityAccount, sal.rosenburg, and d5.vc/g
accordingly. The computer name and username values can indicate automated analysis
environments or generic usernames commonly used in virtual environments.

GlobalMemoryStatusEx is called to retrieve the system's memory status. It checks if the total
physical is greater than or equal to 3050 MB. This check is performed to determine whether
the system might be a VM or a typical end-user device, as analysis environments might
allocate less memory to each VM instance.

Interestingly, the Koi Loader performs checks on files with extensions like doc, docx, xls, and
xlsx. It verifies that these files are exactly 15 bytes in size and that their filenames contain 30
characters. Additionally, it assesses whether the total number of files matching these criteria
is 20 or fewer, and if it does, it proceeds with another check for the presence of
powershell.exe in the process's executable path.

If all these conditions are met, the loader interprets it as a sign that it might be running in a
controlled or analysis environment (Figure 15).

Figure 15: File size and filename character check

The loader creates the mutex to avoid re-infection. The mutex creation algorithm is based on
the calculations of the Volume Serial Number with other constants in the code. The
reproduced algorithm is shown in Figure 16.

Additional Analysis

10/19

Figure 16: Mutex generation algorithm

Next, the loader proceeds with setting the file attributes of agent.js that was previously
mentioned to hidden via SetFileAttributesW as well as creating the scheduled task named
“Firefox Default Browser Agent 458046B0AF4A39CB” via ITaskScheduler interface that runs
agent.js file via wscript.exe.

Command and Control

For the initial check-in, Koi Loader sends the following to the C2 as an example:

101|{GUID}|VoYGkc5R|pNL/LwrBZb5hBXeAiJ9/lLRrL0U4usTuqV2bGDMIRig=

Where “VoYGkc5R” is the hardcoded marker followed by a randomly generated Base64-
encoded string (Figure 17).

11/19

Figure 17: Initial check-in with C2

After the initial check-in, the infected machine sends another request containing the
information gathered from the machine, including OSMajorVersion, OSMinorVersion,
OSBuildNumber, Username, ComputerName, and the domain name if present. The collected
information is then XOR'ed with a randomly generated 16-character value, which is
subsequently processed via the modified MD5 algorithm and sent over to C2.

For the XOR key generation algorithm, the approach is to prepend a fixed byte sequence to
the actual input data before hashing. This customizes the MD5 hashing process, making the
output distinct from hashing the input alone with a standard MD5 algorithm. This
customization affects how the data is processed and, consequently, the final hash.

The secondary POST request format:

111|{GUID}|{XOR’ed host information}

12/19

Figure 18: Secondary POST request with the host information

Next, the loader proceeds to check if NET Framework 2.0.50727 compiler exists on the
infected host and if it exists, it downloads and executes “sd2.ps1” (MD5:
4f55be0b55ec67dfda42b88e9c743a2a) script from the server via PowerShell.

If the .NET 2.0 compiler does not exist, it then checks for the presence of .NET Framework
4.0.30319 compiler.

If this exists, the loader proceeds to download the "sd4.ps1" (MD5:
607b42bd61902ad5a5ea9f508e18a5a4) script instead (Figure 19).

Figure 19: Retrieving sd4.ps1 or sd2.ps1 scripts based on .NET Framework versions

We will analyze the "sd2.ps1" and "sd4.ps1" payloads later in this article. Now, let's return to
the command-and-control part.

13/19

If the host receives the "INIT" response from the server, it resubmits the check-in to the
server, as illustrated in Figure 17, appending the GUID value and a Base64-encoded string
to the POST request. Otherwise, the host waits for additional tasks from the C2 server, with a
one-minute sleep interval between each connection.

The list of commands/tasks is shown below:

Command Description

0x67 Executes scripts/commands via Command Prompt

0x68 Executes scripts/commands via PowerShell

0x69 Enables system shutdown privilege for the running process and performs the
shutdown

0x6A Creates a scheduled task to run agent.js and removes agent.js if present on
the host

0x6C Establishes communication with a C2 server

0x6E Performs process injection into either explorer.exe or certutil.exe based on
the subsystem value (if the subsystem is Console User Interface, the
payload is injected into certutil.exe, if it’s Graphical User Interface, the
payload is injected into explorer.exe) or writes the payload to %TEMP%
folder and directly executes it (the naming convention for the payload is
generated with PRNG)

0x70 Dynamically loads and executes a function from a DLL, in our sample, the
export function is “Release”

Koi Stealer

The retrieved scripts “sd2.ps1” and “sd4.ps1” include code for decrypting the final Koi Stealer
binary using XOR, as well as for executing the binary with “config” parameters received from
the C2 server.

The XOR key is obtained from the C2 server at the URL hxxp://91.202.233[.]209/index.php?
id=$guid&subid=px8eIkut, where $guid represents the GUID of the infected machine (refer to
Figure 20).

14/19

Figure 20: Snippet of “sd2.ps1” and “sd4.ps1” scripts

It's worth noting that the decrypted Koi Stealer payload exhibits similar anti-VM capabilities to
those previously mentioned in the loader (see Figure 21).

Figure 21: Anti-vm capabilities (Final Koi Stealer)

Koi Stealer copies sensitive data, including cookies, history, and login information, to the
%AppData% folder. For each copied file, it generates a unique GUID as a naming
convention. The files are then immediately deleted after their contents have been fully
processed (Figure 22).

Figure 22: Removing the copied files after processing

You can access the list of collected data for exfiltration on GitHub.

In the loader component, the program searches for the distinct identifier "LDR," retrieves
commands from the C2 server, decodes them from Base64, and decrypts them using XOR
with a shared secret as the key.

https://github.com/esThreatIntelligence/iocs/blob/main/Koi/data_collected.txt

15/19

Subsequently, the secondary payload is downloaded from a URL provided by the C2 server
and executed. The messages will be logged for successful or failed execution in the
errors.txt file and sent over to C2 (Figure 23).

Figure 23: Logged messages

Koi Stealer collects the build ID of the payload, in our case it’s the second position of the
previously mentioned “config”, which is “px8eIkut”, basic system information such as PC
name, current username, GUID, GPU and CPU information, total visible RAM size, screen
resolution, system configuration (system language, architecture, operating system), security
software, installed applications and save them to a system.txt.

The infostealer generates a private-public key pair and a shared secret using the
Curve25519 algorithm, then compresses the harvested data using GZip and encrypts it with
XOR, employing the shared secret as the encryption key. Subsequently, it sends the data to
the C2 server, with the POST request beginning with the public key, succeeded by a
delimiter of 0x4b, and then the encrypted, compressed data (Figure 24).

16/19

Figure 24: Transmitted data

What can you learn from this TRU Positive?

Phishing emails remain a key vector for malware distribution, demonstrating the
continuous threat of social engineering attacks and the need for ongoing vigilance.
The utilization of anti-VM capabilities by malware like Koi Loader and Koi Stealer
highlights the attempts of modern threats to evade analysis and detection by analysts
and researchers.
The case emphasizes the necessity of multi-layered security measures, including up-
to-date antivirus or Endpoint Detection and Response (EDR) tools, to detect and block
malicious activities.
Implementing Phishing and Security Awareness Training (PSAT) programs is crucial to
educate employees about emerging threats and mitigate the risk of successful social
engineering attacks.
The use of obfuscation and sophisticated delivery mechanisms by malware
underscores the importance of implementing comprehensive detection strategies,
including script logging and behavior-based detection mechanisms, to identify and
mitigate threats.

What did we do?

Our 24/7 SOC Cyber Analysts investigated the suspicious activities, notified the customer,
and isolated the affected device.

Recommendations from our Threat Response Unit (TRU) Team:

Ensure that all endpoints are protected with up-to-date antivirus software or Endpoint
Detection and Response (EDR) tool capable of detecting and blocking malicious files.

https://www.esentire.com/what-we-do/security-operations-center
https://www.esentire.com/how-we-do-it/signals/endpoint

17/19

Implement a Phishing and Security Awareness Training (PSAT) program that educates
and informs your employees on emerging threats in the threat landscape.
We recommend modifying the default 'open-with' settings for script files, ensuring they
open with a basic text editor like Notepad instead of executing.

Monitor unusual network traffic patterns, such as specific user-agent strings and data
being sent used by malware to communicate with Command and Control (C2) servers,
to identify potential compromises.

Detection Rules

You can access the detection rules here.

Indicators of Compromise

You can access the indicators of compromise here.

References

https://www.esentire.com/what-we-do/managed-vulnerability-and-risk/technical-testing/security-awareness-training-managed-phishing-training
https://github.com/RussianPanda95/Yara-Rules/tree/main/Koi
https://github.com/esThreatIntelligence/iocs/blob/main/Koi/iocs_4-4-2024.txt

18/19

eSentire Threat Response Unit (TRU)

The eSentire Threat Response Unit (TRU) is an industry-leading threat research team
committed to helping your organization become more resilient. TRU is an elite team of threat
hunters and researchers that supports our 24/7 Security Operations Centers (SOCs), builds
threat detection models across the eSentire XDR Cloud Platform, and works as an extension
of your security team to continuously improve our Managed Detection and Response
service. By providing complete visibility across your attack surface and performing global
threat sweeps and proactive hypothesis-driven threat hunts augmented by original threat
research, we are laser-focused on defending your organization against known and unknown
threats.

19/19

Cookies allow us to deliver the best possible experience for you on our website - by
continuing to use our website or by closing this box, you are consenting to our use of
cookies. Visit our Privacy Policy to learn more.

Accept

https://www.esentire.com/legal/privacy-policy

