
1/14

Security News April 2, 2024

Updated StrelaStealer Targeting European Countries
blog.sonicwall.com/en-us/2024/04/updated-strelastealer-targeting-european-countries/

Overview

SonicWall Capture Labs threat research team has observed an updated variant of StrelaStealer.
StrelaStealer is an infostealer malware known for targeting Spanish-speaking users and focuses on
stealing email account credentials from Outlook and Thunderbird. StrelaStealer was reported in the
wild in early November 2022. StrelaStealer has been updated with an obfuscation technique and
anti-analysis technique.

Technical Analysis

MD5: 1E37C3902284DD865C20220A9EF8B6A9

SHA256: F2D7CF39392D394D6CCD0F9372DB7D486D4CB2BB6C3BBFD0D8BFBB6117A5E211

This updated version of malware delivered via JavaScript comes in archive files as attachments in
emails. The initial vector is JavaScript which will drop the 64-bit executable file in the %userprofile%
folder and execute the malware process. We have observed that StrelaStealer is being delivered as
a 64-bit exe as well as a DLL via JavaScript. We are explaining the analysis for the 64-bit
executable in this blog. This 64-bit executable is a wrapper that will act as a loader for the actual
payload.

In the main 64-bit executable file, the data section has an encryption key, and the size of the
encryption key is 0x2714 bytes. The encoded payload is embedded in the data section at the end of
the encryption key. The size of the payload is 0x1C600. A single-byte XOR encryption is performed
to decrypt an encoded PE file from the data section.

https://blog.sonicwall.com/en-us/2024/04/updated-strelastealer-targeting-european-countries/

2/14

Figure 1: Encryption key started from 0x10th offset in the data section

Figure 2: Obfuscated Jumps

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-1-Encryption-key-started-from-0x10th-Offset-in-data-section-.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-2-obfuscated-Jump-.png

3/14

Figure 3: Graph view for obfuscated function

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-3-graph-view-for-obfuscated-function-.png

4/14

Figure 4: Another graph view of the obfuscated function

Figure 5: PEB parsing code fragments inside the jump code block

This obfuscation is quite effective. Anti-analysis techniques delay the execution, and the researcher
has to search the code fragments inside the jump blocks, which is a tedious task.

Along with jump blocks and multiple loops, there are multiple dummy functions that are not doing
anything but wasting time while analyzing the sample.

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-4-another-graph-view-of-obfuscated-function-just-to-know-complexity-.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-5-PEB-parsing-code-fragment-inside-jump-code-bock-1.png

5/14

Figure 6: Dummy functions inside nested Jumps

Figure 7: Dummy functions

Figure 8: XOR decryption to decrypt the encoded payload

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-6-Dummy-Functions-inside-nested-Jumps.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-7-Dummy-Functions-.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-8-XOR-decryption-to-decrypt-encoded-payload-1-1.png

6/14

Once it decrypts the payload, it reads the encoded API string array at the end of the encoded
payload embedded in the data section. Within the payload, the first DWORD is the size of the array
and next is the API function array. This array is of size 0x52 bytes and the encryption key used
earlier to decrypt the payload will also be used to decrypt the API array. The only difference
between the decryption of the payload and the array is malware uses an encryption key of size
0x52 bytes from the 4 offset of encryption key.

Figure 9: Encoded API array

Figure 10: Malware calculates the start offset of the encoded API string and starts decrypting it

th

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-9-Encoded-API-array-1-1.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-10-malware-calculate-the-start-offset-of-encoded-API-string-and-starts-decrypting-it.png

7/14

Figure 11: API array after an XOR decryption

It accesses the PEB structure and parses it to get the list of loaded modules in process memory.

The following is an example of the instructions set to parse the PEB.

Figure 11B: Instructions

Here InLoadOrderModuleList is a doubly-linked list that contains the loaded modules for the
process.

The malware parses this “InLoadOrderModuleList” to get the Imagebase address of kernel32.dll
with the goal of resolving the VirutalAlloc API Then the malware will parse the PE structure of
kernel32.dll to get the name of each exported function and matches them with the API string that
got decrypted earlier in 0x52 byte array. If the API name matches the exported function name, then
the malware will read the associated function RVA from the export directory and add it to the
Imagebase of kernel32.dll,. Using this method, the malware resolves each API dynamically. It will
resolve 4 APIs – here VirtualAlloc, LoadLibraryA , GetProcAddress , and MessageBoxTimeoutA.
Once its finished resolving the APIs, the malware will show the error massage box and then
continue execution.

Now, the malware calls the “VirtualAlloc” API to allocate memory in the process and start its task as
loader to load the actual payload.

The malware parses the PE file structure of the payload from the data section where
previously it decrypted the PE file and read each section header one by one.
To map the process as per section alignment, it reads the virtual address of each section and
adds it to the image base of the injected PE and copies each section of data to this offset in
memory.
The malware will not copy the PE header to the injected PE, this has been done intentionally
to evade detection from AV products.

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-11-API-array-after-a-XOR-decryption-1-1.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-11B.png

8/14

It reads the relocation section and does the fixup as it gets loaded at the different base
address in the memory.
It reads the import address table of the payload file from the data section region and resolves
the API address dynamically using the “LoadLibraryA” and “GetProcAddress” APIs and
copies these all function pointers to the IAT of the injected payload.
When the injected PE file is ready for execution, it will read the RVA of the address from the
entry point from the PE file in the data section and add the base address of the injected
payload and redirect execution to the injected code.

Figure 12: Configuration setting for the payload

The injected payload is 64-bit executable file, it will call the “GetKeyboardLayout” API and check the
lower words of the return value with the hardcoded values in binary. It tries to check if the keyboard
layout is from the following countries. If it is, then the malware will continue its execution, otherwise
it terminates itself.

Language Location (or type) Language ID

German Germany 0x0407

Spanish Spain 0x040A

Spanish Spain 0x0C0A

Catalan Spain 0x0403

Basque Spain 0x042D

Italian Italy 0x0410

Polish Poland 0x0415

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-12-Configuration-setting-for-payload-.png

9/14

Figure 13: Call to the “GetKeyboardLayout” API and check language identifiers

Now, the payload retrieves the computer name by calling the “GetComputerNameA” API and
encrypts the first 4 bytes of the computer name string using single byte XOR encryption. The
encryption key is “MIR24”, which is hardcoded in binary. It will create a Mutex with the name of this
partially encrypted computer name string. If a Mutex already exists, it will terminate it.

Figure 14: Creating a Mutex and executing its core functionality to steal data from the infected
machine

As we can see in Figure 14, it will execute the function which will steal confidential data from the
infected machine.

Here, we have found two functions in the malware. The first is used to steal data from Mozilla
Thunderbird, which is a free and open-source email client software. The other function is intended
to steal data from Outlook.

It searches for the folder path “C:\Users\<username>\AppData\Roaming\Thunderbird\Profiles\”

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-13-call-to-GetKeyboardLayout-API-and-check-language-identifiers-.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-14-create-mutex-and-execute-its-core-functionality-to-steal-data-from-infected-machine-1-1.png

10/14

All of your data such as messages, passwords and user preferences as well as changes made
while you use Thunderbird are stored in a special folder called profile.

If it finds this folder path on the system, it will call the FindFirstFileAand FindNextFileA APIs to
search for two files in the subdirectory. The first is “logins.json” (account and password) and
the second is “key4.db” (password database).
It reads the data from both of these files and appends both files’ data one after another,
starting network communication.
It establishes a connection to its server and prepares an HTTP post request with the user-
agent “Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/60.0.3112.113 Safari/537.36” and then exfiltrates this data to its server.

http[:]//45[.]9[.]74.12/server.php .

The server IP is hardcoded in binary which is “45.9.74[.]12”
Before sending data to the server, it will encrypt it with the single byte XOR encryption. The
encryption key is hardcoded in binary which is “00ca8abe-6ab2-4b10-97c8-925934cf0423”

Figure 15: Searches for the “logins.json” and “key4.db” files from the profile folder

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-15-searches-logins.json-and-key4.db-files-from-profile-folder-1-1.png

11/14

Figure 16: StrelaStealer is expecting the response from its server

We have analysed the second function statically where it reads the windows registry key,
enumerates data from it and tries to locate the ‘IMAP User’, ‘IMAP Server’ and ‘IMAP Password’
values.

The IMAP Password contains the user password in encrypted form. The malware will call the
Windows “CryptUnprotectData” API to decrypt it.

The following registry key is enumerated to steal Outlook data:

“SOFTWARE\Microsoft\Office\16.0\Outlook\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676\”

Figure 17: Outlook registry key would have been enumerated to steal data from the infected
machine

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-16-StrelaStealer-expecting-the-response-from-its-server-.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-17-Outlook-registry-key-would-have-been-enumerated-to-steal-data-from-infected-machine-1-2.png

12/14

Figure 18: Network communication with server

The archive file cannot be found in any of the popular threat intelligence sharing portals like
VirusTotal at the time of writing this blog.

Figure 19: File is not available on VirusTotal

This threat is detected by SonicWall Capture ATP w/RTDMI . Evidence of the detection by our
RTDMI engine can be seen below in the Capture ATP report for this file.

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Fig-18-Network-communication-with-server-.png
https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Figure-19-File-is-not-available-on-Virus-Total.png

13/14

Figure 20: Capture report

IOCs

Archive file
 MD5: ca4797bf995c91864c8b290ebd4e1c7b

 SHA256: 74f21472fed71aaccbd60b34615a8390725cbab6cb25bbc6a51bd723ff8bd01a

JavaScript (Initial vector)
 Md5 : C235CE3765F9B1606BDA81E96B71C23B

 SHA256 : E083662C896C47064FD47411D47459BF4B1CB26847B5D26AEDD7F9D701CABD43

Main 64-bit executable file
MD5 : 1E37C3902284DD865C20220A9EF8B6A9

 SHA256 : F2D7CF39392D394D6CCD0F9372DB7D486D4CB2BB6C3BBFD0D8BFBB6117A5E211

Injected 64-bit Payload
 MD5 : 95F51B48FB079ED4E5F3499D45B7F14E

 SHA256 : C02BB26582576261645271763A17DE925C2D90D430E723204BAEC82030DC889A

Server IP : “45[.]9.74[.]12”

Security News

The SonicWall Capture Labs Threat Research Team gathers, analyzes and vets cross-vector threat
information from the SonicWall Capture Threat network, consisting of global devices and resources,
including more than 1 million security sensors in nearly 200 countries and territories. The research
team identifies, analyzes, and mitigates critical vulnerabilities and malware daily through in-depth

https://d3ik27cqx8s5ub.cloudfront.net/blog/media/uploads/Figure-20-Capture-report-1.png
https://blog.sonicwall.com/en-us/author/securitynews/
https://blog.sonicwall.com/en-us/author/securitynews/

14/14

research, which drives protection for all SonicWall customers. In addition to safeguarding networks
globally, the research team supports the larger threat intelligence community by releasing weekly
deep technical analyses of the most critical threats to small businesses, providing critical knowledge
that defenders need to protect their networks.

