
1/16

March 28, 2024

Android Malware Vultur Expands Its Wingspan
blog.fox-it.com/2024/03/28/android-malware-vultur-expands-its-wingspan

Authored by Joshua Kamp

Executive summary

The authors behind Android banking malware Vultur have been spotted adding new technical features, which allow the malware
operator to further remotely interact with the victim’s mobile device. Vultur has also started masquerading more of its malicious
activity by encrypting its C2 communication, using multiple encrypted payloads that are decrypted on the fly, and using the guise of
legitimate applications to carry out its malicious actions.

Key takeaways

The authors behind Vultur, an Android banker that was first discovered in March 2021, have been spotted adding new
technical features.
New technical features include the ability to:

Download, upload, delete, install, and find files;
Control the infected device using Android Accessibility Services (sending commands to perform scrolls, swipe gestures,
clicks, mute/unmute audio, and more);
Prevent apps from running;
Display a custom notification in the status bar;
Disable Keyguard in order to bypass lock screen security measures.

While the new features are mostly related to remotely interact with the victim’s device in a more flexible way, Vultur still
contains the remote access functionality using AlphaVNC and ngrok that it had back in 2021.
Vultur has improved upon its anti-analysis and detection evasion techniques by:

Modifying legitimate apps (use of McAfee Security and Android Accessibility Suite package name);
Using native code in order to decrypt payloads;
Spreading malicious code over multiple payloads;
Using AES encryption and Base64 encoding for its C2 communication.

Introduction

Vultur is one of the first Android banking malware families to include screen recording capabilities. It contains features such as
keylogging and interacting with the victim’s device screen. Vultur mainly targets banking apps for keylogging and remote control.
Vultur was first discovered by ThreatFabric in late March 2021. Back then, Vultur (ab)used the legitimate software products
AlphaVNC and ngrok for remote access to the VNC server running on the victim’s device. Vultur was distributed through a dropper-
framework called Brunhilda, responsible for hosting malicious applications on the Google Play Store []. The initial blog on Vultur
uncovered that there is a notable connection between these two malware families, as they are both developed by the same threat
actors [].

In a recent campaign, the Brunhilda dropper is spread in a hybrid attack using both SMS and a phone call. The first SMS message
guides the victim to a phone call. When the victim calls the number, the fraudster provides the victim with a second SMS that
includes the link to the dropper: a modified version of the McAfee Security app.

The dropper deploys an updated version of Vultur banking malware through 3 payloads, where the final 2 Vultur payloads
effectively work together by invoking each other’s functionality. The payloads are installed when the infected device has
successfully registered with the Brunhilda Command-and-Control (C2) server. In the latest version of Vultur, the threat actors have
added a total of 7 new C2 methods and 41 new Firebase Cloud Messaging (FCM) commands. Most of the added commands
are related to remote access functionality using Android’s Accessibility Services, allowing the malware operator to remotely interact
with the victim’s screen in a way that is more flexible compared to the use of AlphaVNC and ngrok.

In this blog we provide a comprehensive analysis of Vultur, beginning with an overview of its infection chain. We then delve into its
new features, uncover its obfuscation techniques and evasion methods, and examine its execution flow. Following that, we dissect
its C2 communication, discuss detection based on YARA, and draw conclusions. Let’s soar alongside Vultur’s smarter mobile
malware strategies!

1

2

https://blog.fox-it.com/2024/03/28/android-malware-vultur-expands-its-wingspan

2/16

Infection chain

In order to deceive unsuspecting individuals into installing malware, the threat actors employ a hybrid attack using two SMS
messages and a phone call. First, the victim receives an SMS message that instructs them to call a number if they did not
authorise a transaction involving a large amount of money. In reality, this transaction never occurred, but it creates a false sense of
urgency to trick the victim into acting quickly. A second SMS is sent during the phone call, where the victim is instructed into
installing a trojanised version of the McAfee Security app from a link. This application is actually Brunhilda dropper, which looks
benign to the victim as it contains functionality that the original McAfee Security app would have. As illustrated below, this dropper
decrypts and executes a total of 3 Vultur-related payloads, giving the threat actors total control over the victim’s mobile device.

Figure 1: Visualisation of the complete infection chain. Note: communication with the C2 server occurs during every malware
stage.

New features in Vultur

The latest updates to Vultur bring some interesting changes worth discussing. The most intriguing addition is the malware’s ability
to remotely interact with the infected device through the use of Android’s Accessibility Services. The malware operator can
now send commands in order to perform clicks, scrolls, swipe gestures, and more. Firebase Cloud Messaging (FCM), a messaging
service provided by Google, is used for sending messages from the C2 server to the infected device. The message sent by the
malware operator through FCM can contain a command, which, upon receipt, triggers the execution of corresponding functionality
within the malware. This eliminates the need for an ongoing connection with the device, as can be seen from the code snippet
below.

Figure 2: Decompiled code snippet showing Vultur’s ability to perform clicks and scrolls using Accessibility Services. Note for this
(and upcoming) screenshot(s): some variables, classes and method names were renamed by the analyst. Pink strings indicate that
they were decrypted.

While Vultur can still maintain an ongoing remote connection with the device through the use of AlphaVNC and ngrok, the new
Accessibility Services related FCM commands provide the actor with more flexibility.

In addition to its more advanced remote control capabilities, Vultur introduced file manager functionality in the latest version. The
file manager feature includes the ability to download, upload, delete, install, and find files. This effectively grants the actor(s) with
even more control over the infected device.

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_1.png?ssl=1
https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_2-1.png?ssl=1

3/16

Figure 3: Decompiled code snippet showing part of the file manager related functionality.

Another interesting new feature is the ability to block the victim from interacting with apps on the device. Regarding this
functionality, the malware operator can specify a list of apps to press back on when detected as running on the device. The actor
can include custom HTML code as a “template” for blocked apps. The list of apps to block and the corresponding HTML code to be
displayed is retrieved through the vnc.blocked.packages C2 method. This is then stored in the app’s SharedPreferences. If
available, the HTML code related to the blocked app will be displayed in a WebView after it presses back. If no HTML code is set
for the app to block, it shows a default “Temporarily Unavailable” message after pressing back. For this feature, payload #3
interacts with code defined in payload #2.

Figure 4: Decompiled code snippet showing part of Vultur’s implementation for blocking apps.

The use of Android’s Accessibility Services to perform RAT related functionality (such as pressing back, performing clicks and
swipe gestures) is something that is not new in Android malware. In fact, it is present in most Android bankers today. The latest
features in Vultur show that its actors are catching up with this trend, and are even including functionality that is less common in
Android RATs and bankers, such as controlling the device volume.

A full list of Vultur’s updated and new C2 methods / FCM commands can be found in the “C2 Communication” section of
this blog.

Obfuscation techniques & detection evasion

Like a crafty bird camouflaging its nest, Vultur now employs a set of new obfuscation and detection evasion techniques when
compared to its previous versions. Let’s look into some of the notable updates that set apart the latest variant from older editions of
Vultur.

AES encrypted and Base64 encoded HTTPS traffic

In October 2022, ThreatFabric mentioned that Brunhilda started using string obfuscation using AES with a varying key in the
malware samples themselves []. At this point in time, both Brunhilda and Vultur did not encrypt its HTTP requests. That has
changed now, however, with the malware developer’s adoption of AES encryption and Base64 encoding requests in the latest
variants.

3

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_3.png?ssl=1
https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_4.png?ssl=1

4/16

Figure 5: Example AES encrypted and Base64 encoded request for bot registration.

By encrypting its communications, malware can evade detection of security solutions that rely on inspecting network traffic for
known patterns of malicious activity. The decrypted content of the request can be seen below. Note that the list of installed apps is
shown as Base64 encoded text, as this list is encoded before encryption.

{"id":"6500","method":"application.register","params":
{"package":"com.wsandroid.suite","device":"Android/10","model":"samsung GT-I900","country":"sv-
SE","apps":"cHQubm92b2JhbmNvLm5iYXBwO3B0LnNhbnRhbmRlcnRvdHRhLm1vYmlsZXBhcnRpY3VsYXJlcztzYS5hbHJhamhpYmFuay50YWh3ZWVsYXBw
O3NhLmNvbS5zZS5hbGthaHJhYmE7c2EuY29tLnN0Y3BheTtzYW1zdW5nLnNldHRpbmdzLnBhc3M7c2Ftc3VuZy5zZXR0aW5ncy5waW47c29mdGF4LnBla2Fv
LnBvd2VycGF5O3RzYi5tb2JpbGViYW5raW5nO3VrLmNvLmhzYmMuaHNiY3VrbW9iaWxlYmFua2luZzt1ay5jby5tYm5hLmNhcmRzZXJ2aWNlcy5hbmRyb2lk
O3VrLmNvLm1ldHJvYmFua29ubGluZS5tb2JpbGUuYW5kcm9pZC5wcm9kdWN0aW9uO3VrLmNvLnNhbnRhbmRlci5zYW50YW5kZXJVSzt1ay5jby50ZXNjb21v
YmlsZS5hbmRyb2lkO3VrLmNvLnRzYi5uZXdtb2JpbGViYW5rO3VzLnpvb20udmlkZW9tZWV0aW5nczt3aXQuYW5kcm9pZC5iY3BCYW5raW5nQXBwLm1pbGxl
bm5pdW07d2l0LmFuZHJvaWQuYmNwQmFua2luZ0FwcC5taWxsZW5uaXVtUEw7d3d3LmluZ2RpcmVjdC5uYXRpdmVmcmFtZTtzZS5zd2VkYmFuay5tb2JpbA==
","tag":"dropper2"}

Utilisation of legitimate package names

The dropper is a modified version of the legitimate McAfee Security app. In order to masquerade malicious actions, it contains
functionality that the official McAfee Security app would have. This has proven to be effective for the threat actors, as the dropper
currently has a very low detection rate when analysed on VirusTotal.

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_5.png?ssl=1

5/16

Figure 6: Brunhilda dropper’s detection rate on VirusTotal.

Next to modding the legitimate McAfee Security app, Vultur uses the official Android Accessibility Suite package name for its
Accessibility Service. This will be further discussed in the execution flow section of this blog.

Figure 7: Snippet of Vultur’s AndroidManifest.xml file, where its Accessibility Service is defined with the Android Accessibility Suite
package name.

Leveraging native code for payload decryption

Native code is typically written in languages like C or C++, which are lower-level than Java or Kotlin, the most popular languages
used for Android application development. This means that the code is closer to the machine language of the processor, thus
requiring a deeper understanding of lower-level programming concepts. Brunhilda and Vultur have started using native code for
decryption of payloads, likely in order to make the samples harder to reverse engineer.

Distributing malicious code across multiple payloads

In this blog post we show how Brunhilda drops a total of 3 Vultur-related payloads: two APK files and one DEX file. We also
showcase how payload #2 and #3 can effectively work together. This fragmentation can complicate the analysis process, as
multiple components must be assembled to reveal the malware’s complete functionality.

Execution flow: A three-headed… bird?

While previous versions of Brunhilda delivered Vultur through a single payload, the latest variant now drops Vultur in three layers.
The Brunhilda dropper in this campaign is a modified version of the legitimate McAfee Security app, which makes it seem harmless
to the victim upon execution as it includes functionality that the official McAfee Security app would have.

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_6.png?ssl=1
https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_7.png?ssl=1

6/16

Figure 8: The modded version of the McAfee Security app is launched.

In the background, the infected device registers with its C2 server through the /ejr/ endpoint and the application.register
method. In the related HTTP POST request, the C2 is provided with the following information:

Malware package name (as the dropper is a modified version of the McAfee Security app, it sends the official
com.wsandroid.suite package name);
Android version;
Device model;
Language and country code (example: sv-SE);
Base64 encoded list of installed applications;
Tag (dropper campaign name, example: dropper2).

The server response is decrypted and stored in a SharedPreference key named 9bd25f13-c3f8-4503-ab34-4bbd63004b6e, where
the value indicates whether the registration was successful or not. After successfully registering the bot with the dropper C2, the
first Vultur payload is eventually decrypted and installed from an onClick() method.

Figure 9: Decryption and installation of the first Vultur payload.

In this sample, the encrypted data is hidden in a file named 78a01b34-2439-41c2-8ab7-d97f3ec158c6 that is stored within the
app’s “assets” directory. When decrypted, this will reveal an APK file to be installed.

The decryption algorithm is implemented in native code, and reveals that it uses AES/ECB/PKCS5Padding to decrypt the first
embedded file. The Lib.d() function grabs a substring from index 6 to 22 of the second argument
(IPIjf4QWNMWkVQN21ucmNiUDZaVw==) to get the decryption key. The key used in this sample is: QWNMWkVQN21ucmNi (key varies

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_8.png?ssl=1
https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_9.png?ssl=1

7/16

across samples). With this information we can decrypt the 78a01b34-2439-41c2-8ab7-d97f3ec158c6 file, which brings us another
APK file to examine: the first Vultur payload.

Layer 1: Vultur unveils itself

The first Vultur payload also contains the application.register method. The bot registers itself again with the C2 server as
observed in the dropper sample. This time, it sends the package name of the current payload (se.accessibility.app in this
example), which is not a modded application. The “tag” that was related to the dropper campaign is also removed in this second
registration request. The server response contains an encrypted token for further communication with the C2 server and is stored
in the SharedPreference key f9078181-3126-4ff5-906e-a38051505098.

Figure 10: Decompiled code snippet that shows the data to be sent to the C2 server during bot registration.

The main purpose of this first payload is to obtain Accessibility Service privileges and install the next Vultur APK file. Apps with
Accessibility Service permissions can have full visibility over UI events, both from the system and from 3rd party apps. They can
receive notifications, list UI elements, extract text, and more. While these services are meant to assist users, they can also be
abused by malicious apps for activities, such as keylogging, automatically granting itself additional permissions, monitoring
foreground apps and overlaying them with phishing windows.

In order to gain further control over the infected device, this payload displays custom HTML code that contains instructions to
enable Accessibility Services permissions. The HTML code to be displayed in a WebView is retrieved from the installer.config
C2 method, where the HTML code is stored in the SharedPreference key bbd1e64e-eba3-463c-95f3-c3bbb35b5907.

Figure 11: HTML code is loaded in a WebView, where the APP_NAME variable is replaced with the text “McAfee Master
Protection”.

In addition to the HTML content, an extra warning message is displayed to further convince the victim into enabling Accessibility
Service permissions for the app. This message contains the text “Your system not safe, service McAfee Master Protection turned
off. For using full device protection turn it on.” When the warning is displayed, it also sets the value of the SharedPreference key
1590d3a3-1d8e-4ee9-afde-fcc174964db4 to true. This value is later checked in the onAccessibilityEvent() method and the
onServiceConnected() method of the malicious app’s Accessibility Service.

ANALYST COMMENT

An important observation here, is that the malicious app is using the com.google.android.marvin.talkback package name

for its Accessibility Service. This is the package name of the official Android Accessibility Suite, as can be seen from the
following link: https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback.

The implementation is of course different from the official Android Accessibility Suite and contains malicious code.

When the Accessibility Service privileges have been enabled for the payload, it automatically grants itself additional permissions to
install apps from unknown sources, and installs the next payload through the UpdateActivity.

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_10-1.png?ssl=1
https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_11.png?ssl=1
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback

8/16

Figure 12: Decryption and installation of the second Vultur payload.

The second encrypted APK is hidden in a file named data that is stored within the app’s “assets” directory. The decryption
algorithm is again implemented in native code, and is the same as in the dropper. This time, it uses a different decryption key that
is derived from the DXMgKBY29QYnRPR1k1STRBNTZNUw== string. The substring reveals the actual key used in this sample:
Y29QYnRPR1k1STRB (key varies across samples). After decrypting, we are presented with the next layer of Vultur.

Layer 2: Vultur descends

The second Vultur APK contains more important functionality, such as AlphaVNC and ngrok setup, displaying of custom HTML
code in WebViews, screen recording, and more. Just like the previous versions of Vultur, the latest edition still includes the ability to
remotely access the infected device through AlphaVNC and ngrok.

This second Vultur payload also uses the com.google.android.marvin.talkback (Android Accessibility Suite) package name for
the malicious Accessibility Service. From here, there are multiple references to methods invoked from another file: the final Vultur
payload. This time, the payload is not decrypted from native code. In this sample, an encrypted file named a.int is decrypted
using AES/CFB/NoPadding with the decryption key SBhXcwoAiLTNIyLK (stored in SharedPreference key dffa98fe-8bf6-4ed7-
8d80-bb1a83c91fbb). We have observed the same decryption key being used in multiple samples for decrypting payload #3.

Figure 13: Decryption of the third Vultur payload.

Furthermore, from payload #2 onwards, Vultur uses encrypted SharedPreferences for further hiding of malicious configuration
related key-value pairs.

Layer 3: Vultur strikes

The final payload is a Dalvik Executable (DEX) file. This decrypted DEX file holds Vultur’s core functionality. It contains the
references to all of the C2 methods (used in communication from bot to C2 server, in order to send or retrieve information) and
FCM commands (used in communication from C2 server to bot, in order to perform actions on the infected device).

An important observation here, is that code defined in payload #3 can be invoked from payload #2 and vice versa. This
means that these final two files effectively work together.

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_12.png?ssl=1
https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_13.png?ssl=1

9/16

Figure 14: Decompiled code snippet showing some of the FCM commands implemented in Vultur payload #3.

The last Vultur payload does not contain its own Accessibility Service, but it can interact with the Accessibility Service that is
implemented in payload #2.

C2 Communication: Vultur finds its voice

When Vultur infects a device, it initiates a series of communications with its designated C2 server. Communications related to C2
methods such as application.register and vnc.blocked.packages occur using JSON-RPC 2.0 over HTTPS. These requests
are sent from the infected device to the C2 server to either provide or receive information.

Actual vultures lack a voice box; their vocalisations include rasping hisses and grunts []. While the communication in older variants
of Vultur may have sounded somewhat similar to that, you could say that the threat actors have developed a voice box for the
latest version of Vultur. The content of the aforementioned requests are now AES encrypted and Base64 encoded, just like the
server response.

Next to encrypted communication over HTTPS, the bot can receive commands via Firebase Cloud Messaging (FCM). FCM is a
cross-platform messaging solution provided by Google. The FCM related commands are sent from the C2 server to the infected
device to perform actions on it.

During our investigation of the latest Vultur variant, we identified the C2 endpoints mentioned below.

Endpoint Description

/ejr/ Endpoint for C2 communication using JSON-RPC 2.0.

Note: in older versions of Vultur the /rpc/ endpoint was used for similar

communication.

/upload/ Endpoint for uploading files (such as screen recording results).

/version/app/?filename=ngrok&arch=
{DEVICE_ARCH}

Endpoint for downloading the relevant version of ngrok.

/version/app/?filename={FILENAME} Endpoint for downloading a file specified by the payload (related to the new file
manager functionality).

4

https://i0.wp.com/blog.fox-it.com/wp-content/uploads/2024/03/542e4746fdf58bc882731fa490a99ed1867a4a95_14.png?ssl=1

10/16

C2 methods in Brunhilda dropper

The commands below are sent from the infected device to the C2 server to either provide or receive information.

Method Description

application.register Registers the bot by providing the malware package name and information about the device: model,
country, installed apps, Android version. It also sends a tag that is used for identifying the dropper
campaign name.

Note: this method is also used once in Vultur payload #1, but without sending a tag. This method then
returns a token to be used in further communication with the C2 server.

application.state Sends a token value that was set as a response to the application.register command, together
with a status code of “3”.

C2 methods in Vultur

The commands below are sent from the infected device to the C2 server to either provide or receive information.

11/16

Method Description

vnc.register
(UPDATED)

Registers the bot by providing the FCM token, malware package name and information about the
device, model, country, Android version. This method has been updated in the latest version of
Vultur to also include information on whether the infected device is rooted and if it is detected
as an emulator.

vnc.status
(UPDATED)

Sends the following status information about the device: if the Accessibility Service is enabled, if the
Device Admin permissions are enabled, if the screen is locked, what the VNC address is. This
method has been updated in the latest version of Vultur to also send information related to:
active fingerprints on the device, screen resolution, time, battery percentage, network operator,
location.

vnc.apps Sends the list of apps that are installed on the victim’s device.

vnc.keylog Sends the keystrokes that were obtained via keylogging.

vnc.config
(UPDATED)

Obtains the config of the malware, such as the list of targeted applications by the keylogger and VNC.
This method has been updated in the latest version of Vultur to also obtain values related to
the following new keys: “packages2”, “rurl”, “recording”, “main_content”, “tvmq”.

vnc.overlay Obtains the HTML code for overlay injections of a specified package name using the pkg parameter. It
is still unclear whether support for overlay injections is fully implemented in Vultur.

vnc.overlay.logs Sends the stolen credentials that were obtained via HTML overlay injections. It is still unclear whether
support for overlay injections is fully implemented in Vultur.

vnc.pattern (NEW) Informs the C2 server whether a PIN pattern was successfully extracted and stored in the application’s
Shared Preferences.

vnc.snapshot (NEW)
Sends JSON data to the C2 server, which can contain:

1. Information about the accessibility event’s class, bounds, child nodes, UUID, event type, package
name, text content, screen dimensions, time of the event, and if the screen is locked.
2. Recently copied text, and SharedPreferences values related to “overlay” and “keyboard”.
3. X and Y coordinates related to a click.

vnc.submit (NEW) Informs the C2 server whether the bot registration was successfully submitted or if it failed.

vnc.urls (NEW) Informs the C2 server about the URL bar related element IDs of either the Google Chrome or Firefox
webbrowser (depending on which application triggered the accessibility event).

vnc.blocked.packages
(NEW)

Retrieves a list of “blocked packages” from the C2 server and stores them together with custom HTML
code in the application’s Shared Preferences. When one of these package names is detected as
running on the victim device, the malware will automatically press the back button and display custom
HTML content if available. If unavailable, a default “Temporarily Unavailable” message is displayed.

vnc.fm (NEW) Sends file related information to the C2 server. File manager functionality includes downloading,
uploading, installing, deleting, and finding of files.

vnc.syslog Sends logs.

crash.logs Sends logs of all content on the screen.

installer.config
(NEW)

Retrieves the HTML code that is displayed in a WebView of the first Vultur payload. This HTML code
contains instructions to enable Accessibility Services permissions.

FCM commands in Vultur

The commands below are sent from the C2 server to the infected device via Firebase Cloud Messaging in order to perform actions
on the infected device. The new commands use IDs instead of names that describe their functionality. These command IDs are the
same in different samples.

12/16

Command Description

registered Received when the bot has been successfully registered.

start Starts the VNC connection using ngrok.

stop Stops the VNC connection by killing the ngrok process and stopping the VNC service.

unlock Unlocks the screen.

delete Uninstalls the malware package.

pattern Provides a gesture/stroke pattern to interact with the device’s screen.

109b0e16 (NEW) Presses the back button.

18cb31d4 (NEW) Presses the home button.

811c5170 (NEW) Shows the overview of recently opened apps.

d6f665bf (NEW) Starts an app specified by the payload.

1b05d6ee (NEW) Shows a black view.

1b05d6da (NEW) Shows a black view that is obtained from the layout resources in Vultur payload #2.

7f289af9 (NEW) Shows a WebView with HTML code loaded from SharedPreference key “946b7e8e”.

dc55afc8 (NEW) Removes the active black view / WebView that was added from previous commands (after sleeping
for 15 seconds).

cbd534b9 (NEW) Removes the active black view / WebView that was added from previous commands (without
sleeping).

4bacb3d6 (NEW) Deletes an app specified by the payload.

b9f92adb (NEW) Navigates to the settings of an app specified by the payload.

77b58a53 (NEW) Ensures that the device stays on by acquiring a wake lock, disables keyguard, sleeps for 0,1 second,
and then swipes up to unlock the device without requiring a PIN.

ed346347 (NEW) Performs a click.

5c900684 (NEW) Scrolls forward.

d98179a8 (NEW) Scrolls backward.

7994ceca (NEW) Sets the text of a specified element ID to the payload text.

feba1943 (NEW) Swipes up.

d403ad43 (NEW) Swipes down.

4510a904 (NEW) Swipes left.

753c4fa0 (NEW) Swipes right.

b183a400 (NEW) Performs a stroke pattern on an element across a 3×3 grid.

81d9d725 (NEW) Performs a stroke pattern based on x+y coordinates and time duration.

b79c4b56 (NEW) Press-and-hold 3 times near bottom middle of the screen.

1a7493e7 (NEW) Starts capturing (recording) the screen.

6fa8a395 (NEW) Sets the “ShowMode” of the keyboard to 0. This allows the system to control when the soft keyboard
is displayed.

9b22cbb1 (NEW) Sets the “ShowMode” of the keyboard to 1. This means the soft keyboard will never be displayed
(until it is turned back on).

98c97da9 (NEW) Requests permissions for reading and writing external storage.

13/16

Command Description

7b230a3b (NEW) Request permissions to install apps from unknown sources.

cc8397d4 (NEW) Opens the long-press power menu.

3263f7d4 (NEW) Sets a SharedPreference value for the key “c0ee5ba1-83dd-49c8-8212-4cfd79e479c0” to the
specified payload. This value is later checked for in other to determine whether the long-press power
menu should be displayed (SharedPref value 1), or whether the back button must be pressed
(SharedPref value 2).

request_accessibility
(UPDATED)

Prompts the infected device with either a notification or a custom WebView that instructs the user to
enable accessibility services for the malicious app. The related WebView component was not present
in older versions of Vultur.

announcement (NEW) Updates the value for the C2 domain in the SharedPreferences.

5283d36d-e3aa-45ed-
a6fb-2abacf43d29c
(NEW)

Sends a POST with the vnc.config C2 method and stores the malware config in
SharedPreferences.

09defc05-701a-4aa3-
bdd2-e74684a61624
(NEW)

Hides / disables the keyboard, obtains a wake lock, disables keyguard (lock screen security), mutes
the audio, stops the “TransparentActivity” from payload #2, and displays a black view.

fc7a0ee7-6604-495d-
ba6c-f9c2b55de688
(NEW)

Hides / disables the keyboard, obtains a wake lock, disables keyguard (lock screen security), mutes
the audio, stops the “TransparentActivity” from payload #2, and displays a custom WebView with
HTML code loaded from SharedPreference key “946b7e8e” (“tvmq” value from malware config).

8eac269d-2e7e-4f0d-
b9ab-6559d401308d
(NEW)

Hides / disables the keyboard, obtains a wake lock, disables keyguard (lock screen security), mutes
the audio, stops the “TransparentActivity” from payload #2.

e7289335-7b80-4d83-
863a-5b881fd0543d
(NEW)

Enables the keyboard and unmutes audio. Then, sends the vnc.snapshot method with empty JSON
data.

544a9f82-c267-44f8-
bff5-0726068f349d
(NEW)

Retrieves the C2 command, payload and UUID, and executes the command in a thread.

a7bfcfaf-de77-4f88-
8bc8-da634dfb1d5a
(NEW)

Creates a custom notification to be shown in the status bar.

444c0a8a-6041-4264-
959b-1a97d6a92b86
(NEW)

Retrieves the list of apps to block and corresponding HTML code through the vnc.blocked.packages
C2 method and stores them in the blocked_package_template SharedPreference key.

a1f2e3c6-9cf8-4a7e-
b1e0-2c5a342f92d6
(NEW)

Executes a file manager related command. Commands are:

1. 91b4a535-1a78-4655-90d1-a3dcb0f6388a – Downloads a file
2. cf2f3a6e-31fc-4479-bb70-78ceeec0a9f8 – Uploads a file
3. 1ce26f13-fba4-48b6-be24-ddc683910da3 – Deletes a file
4. 952c83bd-5dfb-44f6-a034-167901990824 – Installs a file
5. 787e662d-cb6a-4e64-a76a-ccaf29b9d7ac – Finds files containing a specified pattern

Detection

Writing YARA rules to detect Android malware can be challenging, as APK files are ZIP archives. This means that extracting all of
the information about the Android application would involve decompressing the ZIP, parsing the XML, and so on. Thus, most
analysts build YARA rules for the DEX file. However, DEX files, such as Vultur payload #3, are less frequently submitted to
VirusTotal as they are uncovered at a later stage in the infection chain. To maximise our sample pool, we decided to develop a
YARA rule for the Brunhilda dropper. We discovered some unique hex patterns in the dropper APK, which allowed us to create the
YARA rule below.

14/16

rule brunhilda_dropper
{

 meta:

 author = "Fox-IT, part of NCC Group"

 description = "Detects unique hex patterns observed in Brunhilda dropper samples."

 target_entity = "file"

 strings:

 $zip_head = "PK"

 $manifest = "AndroidManifest.xml"

 $hex1 = {63 59 5c 28 4b 5f}

 $hex2 = {32 4a 66 48 66 76 64 6f 49 36}

 $hex3 = {63 59 5c 28 4b 5f}

 $hex4 = {30 34 7b 24 24 4b}

 $hex5 = {22 69 4f 5a 6f 3a}

 condition:

 $zip_head at 0 and $manifest and #manifest >= 2 and 2 of ($hex*)

}

Wrap-up

Vultur’s recent developments have shown a shift in focus towards maximising remote control over infected devices. With the
capability to issue commands for scrolling, swipe gestures, clicks, volume control, blocking apps from running, and even
incorporating file manager functionality, it is clear that the primary objective is to gain total control over compromised devices.

Vultur has a strong correlation to Brunhilda, with its C2 communication and payload decryption having the same implementation in
the latest variants. This indicates that both the dropper and Vultur are being developed by the same threat actors, as has also been
uncovered in the past.

Furthermore, masquerading malicious activity through the modification of legitimate applications, encryption of traffic, and the
distribution of functions across multiple payloads decrypted from native code, shows that the actors put more effort into evading
detection and complicating analysis.

During our investigation of recently submitted Vultur samples, we observed the addition of new functionality occurring shortly after
one another. This suggests ongoing and active development to enhance the malware’s capabilities. In light of these observations,
we expect more functionality being added to Vultur in the near future.

Indicators of Compromise

Analysed samples

15/16

Package name File hash (SHA-256) Description

com.wsandroid.suite edef007f1ca60fdf75a7d5c5ffe09f1fc3fb560153633ec18c5ddb46cc75ea21 Brunhilda
Dropper

com.medical.balance 89625cf2caed9028b41121c4589d9e35fa7981a2381aa293d4979b36cf5c8ff2 Vultur
payload #1

com.medical.balance 1fc81b03703d64339d1417a079720bf0480fece3d017c303d88d18c70c7aabc3 Vultur
payload #2

com.medical.balance 4fed4a42aadea8b3e937856318f9fbd056e2f46c19a6316df0660921dd5ba6c5 Vultur
payload #3

com.wsandroid.suite 001fd4af41df8883957c515703e9b6b08e36fde3fd1d127b283ee75a32d575fc Brunhilda
Dropper

se.accessibility.app fc8c69bddd40a24d6d28fbf0c0d43a1a57067b19e6c3cc07e2664ef4879c221b Vultur
payload #1

se.accessibility.app 7337a79d832a57531b20b09c2fc17b4257a6d4e93fcaeb961eb7c6a95b071a06 Vultur
payload #2

se.accessibility.app 7f1a344d8141e75c69a3c5cf61197f1d4b5038053fd777a68589ecdb29168e0c Vultur
payload #3

com.wsandroid.suite 26f9e19c2a82d2ed4d940c2ec535ff2aba8583ae3867502899a7790fe3628400 Brunhilda
Dropper

com.exvpn.fastvpn 2a97ed20f1ae2ea5ef2b162d61279b2f9b68eba7cf27920e2a82a115fd68e31f Vultur
payload #1

com.exvpn.fastvpn c0f3cb3d837d39aa3abccada0b4ecdb840621a8539519c104b27e2a646d7d50d Vultur
payload #2

com.wsandroid.suite 92af567452ecd02e48a2ebc762a318ce526ab28e192e89407cac9df3c317e78d Brunhilda
Dropper

jk.powder.tendence fa6111216966a98561a2af9e4ac97db036bcd551635be5b230995faad40b7607 Vultur
payload #1

jk.powder.tendence dc4f24f07d99e4e34d1f50de0535f88ea52cc62bfb520452bdd730b94d6d8c0e Vultur
payload #2

jk.powder.tendence 627529bb010b98511cfa1ad1aaa08760b158f4733e2bbccfd54050838c7b7fa3 Vultur
payload #3

com.wsandroid.suite f5ce27a49eaf59292f11af07851383e7d721a4d60019f3aceb8ca914259056af Brunhilda
Dropper

se.talkback.app 5d86c9afd1d33e4affa9ba61225aded26ecaeb01755eeb861bb4db9bbb39191c Vultur
payload #1

se.talkback.app 5724589c46f3e469dc9f048e1e2601b8d7d1bafcc54e3d9460bc0adeeada022d Vultur
payload #2

se.talkback.app 7f1a344d8141e75c69a3c5cf61197f1d4b5038053fd777a68589ecdb29168e0c Vultur
payload #3

com.wsandroid.suite fd3b36455e58ba3531e8cce0326cce782723cc5d1cc0998b775e07e6c2622160 Brunhilda
Dropper

com.adajio.storm 819044d01e8726a47fc5970efc80ceddea0ac9bf7c1c5d08b293f0ae571369a9 Vultur
payload #1

com.adajio.storm 0f2f8adce0f1e1971cba5851e383846b68e5504679d916d7dad10133cc965851 Vultur
payload #2

com.adajio.storm fb1e68ee3509993d0fe767b0372752d2fec8f5b0bf03d5c10a30b042a830ae1a Vultur
payload #3

16/16

Package name File hash (SHA-256) Description

com.protectionguard.app d3dc4e22611ed20d700b6dd292ffddbc595c42453f18879f2ae4693a4d4d925a Brunhilda
Dropper (old
variant)

com.appsmastersafey f4d7e9ec4eda034c29b8d73d479084658858f56e67909c2ffedf9223d7ca9bd2 Vultur (old
variant)

com.datasafeaccountsanddata.club 7ca6989ccfb0ad0571aef7b263125410a5037976f41e17ee7c022097f827bd74 Vultur (old
variant)

com.app.freeguarding.twofactor c646c8e6a632e23a9c2e60590f012c7b5cb40340194cb0a597161676961b4de0 Vultur (old
variant)

Note: Vultur payloads #1 and #2 related to Brunhilda dropper
26f9e19c2a82d2ed4d940c2ec535ff2aba8583ae3867502899a7790fe3628400 are the same as Vultur payloads #2 and #3 in the
latest variants. The dropper in this case only drops two payloads, where the latest versions deploy a total of three payloads.

C2 servers

safetyfactor[.]online
cloudmiracle[.]store
flandria171[.]appspot[.]com (FCM)
newyan-1e09d[.]appspot[.]com (FCM)

Dropper distribution URLs

mcafee[.]960232[.]com
mcafee[.]353934[.]com
mcafee[.]908713[.]com
mcafee[.]784503[.]com
mcafee[.]053105[.]com
mcafee[.]092877[.]com
mcafee[.]582630[.]com
mcafee[.]581574[.]com
mcafee[.]582342[.]com
mcafee[.]593942[.]com
mcafee[.]930204[.]com

References

