Carving the Icedld - Part 3

@ blog.techevo.uk/analysis/binary/2024/03/17/carving-the-icedid-part-3.html

techevo March 17, 2024

Welcome back to this series, analysing Icedld malware artefacts.

This is part 3 in the series, you can check out part 1 and part 2 to follow along from the
beginning.

This post will focus on analysing a DLL file that was downloaded using a PowerShell script
analysed in previously in part 2.

The data for this case was published by @malware_traffic over at Malware Traffic
Analysisl. You can download all the samples from this case from here.

This analysis has really stretched my learning regarding unpacking, it has by far been the
most challenging and rewarding sample I've come across to date. If there are any errors that
you spot, I'd really welcome the feedback to understand better how this sample works.

In order to make this walk through as accessible as possible, | will once again be storing
artefacts and output in a GitHub repository here.

The GitHub repository contains the extracted shellcode as seen in the various commands for
your own experimentation, as well as the final payload.

TL;DR

This post is fairly detailed and as a result quite long. A quick overview of how the sample
executes is listed below to provide some quick insight. If you want a more guided tour of the
execution and other interesting observations, skip this section.

1. rund1132.exe executes a export on the dll.

2. The DLL routine allocates some memory and copies and unpacks data into shellcode
from the .reloc section of the DLL.

3. The unpacking consists of a 4 byte XOR as well as the supplied string on the command
line, for various stages.

4. The unpacked shellcode is patched with function addresses and creates some syscall
stubs to avoid ntd11.d11 hooks.

1/35

https://blog.techevo.uk/analysis/binary/2024/03/17/carving-the-icedid-part-3.html
https://blog.techevo.uk/analysis/pcap/2023/10/09/carving-the-icedid.html
https://blog.techevo.uk/analysis/binary/2024/01/01/carving-the-icedid-part-2.html
https://blog.techevo.uk/analysis/binary/2024/01/01/carving-the-icedid-part-2.html
https://twitter.com/malware_traffic
https://www.malware-traffic-analysis.net/2023/08/09/index.html
https://storage.googleapis.com/about:blank

5. The rund1132.exe process opens svchost .exe and injects a payload using shared
mapped views of sections and NtQueueUserThread

6. The svchost.exe process further unpacks a PE file which is then injected into memory
at a fixed location.

7. The injected payload is then executed.

8. The final payload can be downloaded from the Bazaar or GitHub

In the previous post, a PowerShell script was used to download a DLL named r.d11 from a
compromised WordPress instance.

Part of the script appended varying amounts of bytes to the file, ensuring the cryptographic
hash changes with each download. You can find a copy of the DLL file on the Malware

Bazaar, here The SHA1 hash for the copy we will be looking at in this post is:
1c6e76af95f2a17b8e518965d62b3c9d7echa6sds

For this explanation of the malware delivery, both static and dynamic analysis will be used in
conjunction.

For static analysis | am using radare22 and for dynamic analysis x64dbg?2 both are freely
available.

Binary File Triage

From the Powershell script we know there must be an export named vcab, we can use a
radare2 one-liner to show the various exports.

$ r2 -c '"iE' r.dll

2/35

https://bazaar.abuse.ch/sample/a3fa68045d0106d6db3d43df6b5997d9034f9f7d2a34148187498e4b504ebf58/
https://bazaar.abuse.ch/sample/a3fa68045d0106d6db3d43df6b5997d9034f9f7d2a34148187498e4b504ebf58/
https://bazaar.abuse.ch/sample/e1d2c95eda751901a4bdae7ba381b85f5d7965b05afe245b5cbaccce9ecfb0bc/

[Exports]
nth paddr vaddr bind type size 1lib name
demangled

1 0X00000420 Ox814e361020 GLOBAL FUNC 0 msys-edit-0.d11 t_gcc_deregister_frame
2 OX00000400 Ox814e361000 GLOBAL FUNC 0 msys-edit-0.d1l1l t_gcc_register_frame

3 0x000151e0 0x814e375de® GLOBAL FUNC 0 msys-edit-0.d1l1l tel fn_complete

4 0x000192cO 0x814e379ecO GLOBAL FUNC 0 msys-edit-0.d1ll trl_abort_internal

5 OXx00026338 0x814e38a138 GLOBAL FUNC 0 msys-edit-0.d1l1l
trl_print_completions_horizontally

6 0x000192f0 Ox814e379ef® GLOBAL FUNC 0O msys-edit-0.d11l trl_gsort_string_compare
7 OXx00016bfO Ox814e3777f0 GLOBAL FUNC 0O msys-edit-0.d1l1l tdd_history

8 0x000169a0 Ox814e3775a0 GLOBAL FUNC 0O msys-edit-0.d1l1l tppend_history

9 Ox00000880 0x814e361480 GLOBAL FUNC 0 msys-edit-0.d11 t__ _next_word

10 0Ox00000800 0x814e361400 GLOBAL FUNC O msys-edit-0.d11 t__prev_word

[TRUNCATED]
152 Ox000177a0@ 0x814e3783a0 GLOBAL FUNC O msys-edit-0.dll tistory_expand
[TRUNCATED]

430 0x00016fb0O 0x814e377bbO® GLOBAL FUNC 0 msys-edit-0.d1l1l there_history
431 0x000177a0 0x814e3783a0 GLOBAL FUNC 0 msys-edit-0.d1l1l vcab

The above output is truncated, however you can see there are 431 exports on this DLL. The
final export listed is the vcab export we already know about. You can find a full output of the
command in the GitHub repository for this blog posts, here.

As well as the export names, the virtual addresses are also quite interesting. Looking at the
export tistory_expand, ordinal 152, we can see it has the same virtual address as the vcab
export.

Given the large amount of exports | believe this is likely a legitimate DLL file that has been
modified with some additional functionality. Searching for the DLL name msys-edit-0.d11
also shows this is possibly related to the msys2 project.

Since we've looked at Exports, lets look at Imports, using the following command.
$r2 -c 'ii' r.dll

[Imports]
nth vaddr bind type 1lib name

1 0x814e391860 NONE FUNC KERNEL32.d1ll GetModuleHandleA

3/35

https://storage.googleapis.com/about:blank
https://packages.msys2.org/package/libedit?repo=msys&variant=x86_64

One import is not a lot to go off for understanding the functionality. The lack of imports is also
quite suspicious, and something that indicates this DLL should be investigated further.

Statically analysing the DLL functions proved a little harder than expected. Forcing Ghidra to
decompile the bytes was possible, but readability was not amazing.

To explore this sample further, | will be combining both static and dynamic analysis
techniques.

Debugger Setup

For the dynamic analysis parts of this you will require some working knowledge of x64dbg.
Primarily around setting breakpoints, although the commands are provided, just knowing
what a breakpoint is and how to set it should be enough. If something isn’t clear feel free to
reach out and ask!

As well as the vcab entry point being supplied on the command line, a flag /k and string
parameter were also provided as shown below.

rundll32 r.dll, vcab /k chokopai723

To look into the execution of the DLL I'll be using x64dbg. It is possible to use the x64dbg
DLL host binary, however for this analysis, debugging will be done with rund1132.exe
executable in order to mimic the execution environment precisely.

Once you have opened the binary C:\windows\System32\rund1132.exe with x64dbg
change the command line to include the additional parameters as shown in Figure 1.

& Change Command Line X

|'C:\Windows\System32\rundll32.exe" C:\Users\malware\Desktop\r.dll vcab /k chokopai723

OK Cancel

Figure 1: x64dbg - Additional command line parameters.

| find it helpful when analysing a new sample to setup breakpoints on DLL loads, which
helpfully is a built in feature.

4/35

Navigating to Options and then Preferences you can enable the settings User DLL Load
and System DLL Load.

Execute until the r.d11 is loaded and then issuing the following command in will set a
breakpoint on the vcab entry point.

bp r.vcab

We should also set some breakpoints for interesting API calls before starting, using the
following commands. These API’s specifically have been selected because virtualAlloc is
common in packed samples to aid in unpacking, and since the number of Imports was limited
to a single Kernel32.d11 library, there is a chance the sample will attempt to load more
modules manually.

bp VirtualAlloc
bp LoadLibraryA

Command Line Validity Check

The first routine to highlight during this walk through is a check that the /k was supplied on
the command line. Setting a breakpoint at ©x814e378887 and viewing the sample statically
we can see the ASCII characters 0x6B and 0x2F being moved into a memory region, as
shown in Figure 2.

5/35

Ox814e378887

mov word [rax + 1,
» argl
mov rsi, rcx

[0x814e378865]

mov byte [rax + 1,

Figure 2: radare2 - r.dll command line check routine.

An instruction at 0x0814E378AAB then copies these two bytes into the RDX register. The
command line string is then iterated over scanning for the /k flag being present. If its not
then the execution flow exits.

Memory Copy Routine

The next routine of interest is located at virtual address 0x0814E378B26.

This routine is used throughout this portion of the loader to essentially move bytes from one
location to another, much like the memcpy?# function.

The function prototype for memcpy is shown below, and this is also used by the routine within
the sample.

6/35

https://storage.googleapis.com/%60/k%60.md

In x86_64 assembly the registers RCX, RDX and R8 are used to store the destination , source
and count (size) parameters.

void *memcpy(
void *dest,
const void *src,
size_t count

)

Although the function is located at 0x0814E378B26, the primary loop that moves data
between source and destination can be seen at 9x814E378B71. The disassembly for this
routine is shown in Figure 3 below. The register RDX is used as an index to then increment as
it loops through the bytes being copied.

48ffc2 inc rdx
493bd1 cmp rdx, r9
75

movzx eax,
mov byte [rcx + rdx

Figure 3: radare?2 - Icedld memcpy shellcode routine.

Setting a breakpoint at 0x0814£378B26 will allow us to inspect the various bytes being moved
around.

bp O0x0814E378B26

If we allow execution until the memory copy routine breakpoint, we first see a call to copy the
string chokopai723 from one area on the stack to another stack based memory location.

Figure 4 shows the source address 0x0F340F0F44A, destination 0x0F340FOF5B0 and the
number of bytes 0xB

7/35

RAX 0000000000000000

RBX 0000000000000008

BCx 000000F340F0F58B0

RDX 000000F340F0F44A "chokopai/723"
RBP 0000000000000019

RSP 000000F340F0F 3D6&

RSI 000000F340F0F5B0

RDI 000000F340F0F447 "/k chokopai/23"

R8 0000000000000008

AR R e T A e T A AT n—

nFigure 4: x64dbg - Memory copy rc;ilt;';ve rég;ster usage

Allowing the execution to proceed, the debugger will break at a call to virtualalloc®. If we
examine the supplied parameters we can mock-up a call to virtualAlloc with the following
values.

VirtualAlloc(NULL, OXE27, 0Ox3000, 0x4);

Converting some of the inputs to their constants2 & makes it a little easier to understand what
is happening.

VirtualAlloc(NULL, ©xE27, MEM_COMMIT |MEM_RESERVE, PAGE_READWRITE);

Here we can see at least 0xE27 (3623) bytes of memory is being requested, to be committed
and reserved, with the page protection of Read and Write.

The value returned in the EAX register is going to be one to keep an eye on. This value is the
address of an allocated region of memory. As this value changes from execution to execution
| will refer to this as “memory region 1” throughout this post.

This allocated region of memory is then populated using the malware’s implementation of
memcpy already covered (0x0814E378B26). The routine is called a total of 3 times, the total
number of bytes copied matches the requested region size of 6xE27 (3623) bytes.

Each time, the source of the data is located in the .reloc section of the DLL.
The table below describes the source virtual address, the file physical offset, and number of
bytes copied.

Source Virtual Address File Offset Byte Count
0x0814E3949E5 Ox2B9ES5 Ox4A (74)

0x0814E394A2F 0x2BA2F 0x18F (399)

8/35

Source Virtual Address File Offset Byte Count

0x0814E394BBE 0x2BBBE 0xC4E (3150)

Table 1: Virtual Address and file offset mappings

The file offset can be calculated using the source address seen in the debugger, minus the
virtual address of the section (. reloc). Then identifying the physical address of the section
within the PE file using the headers, and adding the difference back.

Using x64dbg’s memory map tab you can save this memory region to a file, you can find a
copy of the file rund1132_memory region_1.bin in the Github repository here.

Either using the offsets identified or by dumping the memory region, we can examine the
data copied in more detail. Data mysteriously copied into un-backed memory region has
potential to be shellcode.

We can test this theory by attempting to disassemble the bytes in using this radare2 one-
liner.

Figure 5 shows the interpretation of the bytes as assembly. It appears to be junk as there is
no obvious flow of execution present.

$ r2 -AA -c 'pd' rundll32_memory_region_1.bin

9/35

https://github.com/0xtechevo/icedid_malware_loader_analysis

(inté4_t argl, inté4_t arg3, inté4_t arg7);
inté4_t @ rdi
inté4_t
inté4_t C
01 cmp ebx, ebx
push rbp
pop rsi
dx
efefefele 16 xor edx,
i sti

test cl, cl

sub ehx, edi

mov [rbx +
div dword [rax + rax
lahf

cmp
(€ cmp eax,
10PEE0O2] 3 mul byte [rbx]
xor byte [rdi +
mov dil,
add dh, al
sti
mov cs
sti
mov cl
sti
mov es
cli
mov edi,
movabs eax,

Figure 5: radare?2 - Disassembly view of allocated memory region #1

1]
ald

It's a good idea at this point to set an Access breakpoint on the memory region to see if
there are any routines that may transform it in some way.

Executing the process again will break when the process attempts to access an address
within the allocated region of memory.

The cause of this is an X0R operation at 9x0814E3784E8 as shown in Figure 6.

000000814€E3784E4 B8BC2 mov eax,edx :
000000814E3784E6 | ~ EB 12 jmp r.814E3784FA " (s G
3041 FF xor byte ptr ds:[rcx-11,al xor routine memory region 1 RAX. 0000000000000006 G
3806 cmp edx,esi RBX 0000000000000000
A 72 F5 jb r.814E3784E4 BCX 000001A200C20001
~ EB 76 jmp r.814E378567 RDX 0000000000000001
FFC2 inc edx RBP 000000299508FB79
OFB64438 2C | movzx eax,byte ptr ds:[rax+rdi+2C] byte ptr ds: [rax+rdi*1+2C]: tistory_expand+90A !;gl; 888383%83583@?%9 La
A EB EE jmp r.814E3784E8 i
000000814€3784F A 48:8049 01 | Tea rcx,qword ptr ds:[rcx+1] RDI 000000814€378BA8 r.000000814€378BA8

Figure 6: x64dbg - XOR operation memory region #1

The screenshot in Figure 6 above and in Figure 7 below show this X0R taking place both from
a dynamic and static perspective.

10/35

3041 Xxor byte
3bdé cmp edx,
72F5
eb76

inc edx
movzX eax

lea rcx,
and eax,

Figure 7: radare2 - XOR operation memory region #1

The AL register in this case is the lower 8 bytes of the EAX register.
The register pane on the right in Figure 7 shows this to contain the value 0xD6.

The address the operation is being carried out on in this case is shows as ds: [rcx-1] which
if we take a look at the value in the RCX register should contain the address of the second
byte within memory region 1, the -1 them refers to the first byte of our mystery data.

If we step through the next few operations hitting the x0R instruction we eventually see the
same 4 bytes rotating through the AL register: ©xD6B20700

This raises an interesting question, where are these bytes coming from and can locate them
within the DLL file?

We know from observing the routine, that the bytes used for the xX0R key is being set in the
EAX (AL) register.

Within the screen shot shown in Figure 7 you may notice the operation at 9x0814E3784F3,
also shown below.

movzx eax,byte ptr ds:[rax+rdi+2C]

This is the operation setting the value of the EAX/AL register prior to the xX0R operation. If we
follow the address calculated at RAX + RDI + 2C in a dump we can see the 4 bytes at the
address 0x0814E378BD4 or file offset 0x17FD4, as shown in Figure 8.

11/35

DOD17FS0 Cp 8B CA 66 3B CO 74 06 49 8B C2 C3 EB E2 48 0B [Ef;Ac.IcilieaH.
OO017F60 €8 49 OB 58 EB C2 4C 5B D1 4E 8D 0OC 02 34 ED 74 EI.EEAL<FN...:it
00O017F70 DD 48 FF C2 49 3B D1 75 02 EB DD OF B6 02 88 04 YH¥AI;Nu.&Y.9.".
0O017F80 11 EB EE 48 83 C2 04 49 3B D1 75 02 EB A4 8B 02 .&iHFfA.I:Nu.&xmc.
0O0D17F90 89 04 11 EBE EE EB 00 A5 48 8B 04 25 30 00 00 00 %..8ié.eH¢.%0...
00017FA0 _C3 qs|59 6E 69 74 00 |03 A2 5B 01 00 E5 49 03 00 AHinic).cc..&I..
00017FBO 44|00 OO o0 2F 35 03 00 00 2ZA 34 03 00 J..afdeee...®4..,
00017FCO BB 15 00 00 00 00 OC 58 03 00 »...%K..N....X..
0O0017FDO AD 1E 00 OO 43 g9 C4 E8 2F 36 000..EI%ni&/6.
O0017FEO 00O 4C 89 F9 EG 23 36 00 00 41 OF E6 LEuH=EDega. L AL
00D17FFO 1E 48 89 C7 84 DB OF 84 26 05 00 00 48 8B 55 DO .H%C,0.,.&...HcUD
00018000 45 OF B6 OF 88 5D CO 4D 89 F5 89 DS 48 29 Fi 44 E.9q.°] AM=&%@H) uD
00018010 B89 CB 48 82 55 00 4C 89 FA 4D 89 F7 49 89 F6 48 %EHSU.L%uM%: I%6H
00018020 &9 D6 EB 11 OF 1F 40 00 41 OF B6é 45 01 49 83 ¢5 =0&...R.A.9E.IfA
00018030 01 84 CO 74 33 38 D8 75 EF 429 89 F&8 48 89 F2 4C ., At380uilseH%=oL
00018040 89 E9 E8 D2 35 00 00 85 CO 75 DD 8B 55 ES 4C 03 %éeUs5... AuYc¢UeL.
00018050 65 00 85 D2 74 12 49 01 FD 41 OF Be 45 00 84 0 e..O0t.I.vA.9E. A

Figure 8: hxd - hexadecimal dump of potential configuration block

Shown in the GREEN box, is the XOR key. Also within short proximity, shown in BLUE there
are the sizes (in little endian’) of the data transferred into the first allocated memory region.

Lastly within the RED box, there is a NULL terminated string of init. This could be a useful
marker for what might turn out to be some kind of stored configuration.

If we allow the XOR routine to complete its rounds across the data, and repeat the steps from
earlier to dump, and then attempt to show the disassembly it now prints some pretty
convincing shellcode.

The file rund1132_memory region_1_xor.bin can also be found in the GitHub repository
here

$ r2 -AA -c 'pd' rundll32_memory_region_1_xor.bin

12/35

https://github.com/0xtechevo/icedid_malware_loader_analysis

(int64_t arg3, inté4_t arg4a, intéa_t argé);
inté4_t @ rdx
inté4_t
inté4_t @ r?
inté4_t @ rsp+0x30
0x00000000 8bdc mov rll, rsp

sub rsp

Xor eax

or r9

mov qword [rl1l
Xor r8d, r8d

mov qword [rl1l
mov qword [ri11
mov gword [ri1l

mov dword [
mov qword [ri1l

mov edx

mov qword [rl1l -
lea rcx, [r1l1 +
mov gword [rll +
movahbs rax

add rsp

ret

mov qword [rsp +
push rbp

push rsi

push rdi

push ri2

push ri5s

Figure 9: radare?2 - Shell code disassembly

We can validate that the x0R key is correct by applying it to the memory dump file we created
previously and comparing the output. Figure 10 shows the recipe required. You will notice the
hexadecimal output matches the instruction bytes in the disassembly above, in Figure 9.

13/35

Recipe B m B Input

[+90HUAQ3 . 0+E)(i=C>=4A+; Das; DO« ; DD_0o#0+ ; TAL2%"

XOR © W S0 Geimx0e0-74020 0255 02%.D] €0 +00, **01
£t uBoe Teo0y 018 r=¥j02% e e 0025 o Y " 100 »*
e Scheme w0l e Me uBD2Rk ™) b0 s tee « 02 Huth; L[Y? T EEL ™"
Bg|32@7@@ HEX ~ Standard 5002 00 0% e Re 305 H]yFY*. 90 XD2% H]aKe Q& " "0t +f
GedOe®L]}edo+"L]q404{0, s*.o0dw2" ")b0="E"H]zal
9EHUNWH] kb~ " €535 o wZ (e@>* 50 kd . YKs . 2o
- 9AH[A* HOOBp » 9ELhD « UP*=HOp » 200, A=HICU™ . +lot o

[] Null preserving SRR Hougp 9L prat
A)zFe 20y)0oAs 1. -+ 9EIi@y+U¢+8p 2 H[ccH[y=6UTI
o eaget 5020 s 0200« 000 o s@x o OYHSI % e T 25,
To Hex i <80+ “MFy . &Uspe +00%. % s PI@9ER0 "% " 300+ '+ G o 0
MO, x2% % ="4As 1AP e IFA = IXA 0 TAT (0 \O20 O o "L H_E#",
Delimiter Bytes per line *&Nce+J-0A% *0+AJ°" (2B« -« AOH] T#3~ &ML ES{s
Space 0 29} «+pEi&-vY9EH[I.I0C400" H)tEEQ+bs =Ci+0j<

B]7+I0si.&r0s+s H]p#(+9s$als AEIAT W0sAs; "9 C
b~"H]ZiE (MeHU+* °p2% "+ 1d Ol * 33 pe e Ge ' 00 +HID
A JI=59C% 0%y)MDH] %" 002 LApN » M= "0 = = " 02K#
OI«7+A@N2a@y)y -AsaCB]H " «3CY02« LorFodss- +91&

mec 4898 = 8

Output

|4c 8b dc 48 83 ec 68 33 c@ 49 83 c9 ff 49 89
89 53 cO ba 00 06 00 10 49 89 4b b8 49 &d 4b
48 89 5c 24 08 55 56 57 41 54 41 57 48 8b ec
08 00 00 08 44 8b c6 48 8b 48 60 48 b8 a9 a4

Figure 10: CyberChef - XOR routine.

If we remember the call to virtualAlloc previously, the region was requested with
PAGE_READWRITE protection, restricting the ability for execution. There are two possibilities for
the shellcode now, the first is it will be executed in its current location or it will be copied
somewhere else before executing.

Wherever the shellcode will be executed, the memory region will need its execute permission
set. Just as virtualAlloc was used to allocate the region, we can set a break point on
VirtualProtect as shown below.

bp VirtualProtect

Sacrificial DLL Loading

Pressing on with the unpacking, there is a call to LoadLibraryA with the parameter to load
the DLL dpx.d11 from the default c:\windows\System32 directory.

Loading the dpx.d11 library is followed by locating an exported function named
dpx.DpxCheckJobExists. Based on my loose understanding of how the function is located, |
believe this is chosen simply because it is the first function listed in the exports. This
technique would allow the malware authors to potentially swap the dpx.d11 for another fairly
easily...

14/35

The address returned from for dpx.DpxCheckJobExists is then passed to VirtualProtect$,
executed via a call ri5 instruction at 0x0814E3786BE.

The arguments passed to virtualProtect can be arranged as shown.

This function call will mark 0x158BB (5563) bytes as PAGE_READWRITE starting at the address of
dpx.DpxCheckJobExists.

VirtualProtect(dpx.CheckJobExists, Ox15BB, 0x4)

The original protection was PAGE_EXECUTE_READ, so the additional permission to allow writing
is enough to know we likely want to keep an eye on this region.

Moving on, we hit a familiar breakpoint for the malware’s memcpy routine. This time, 0x158B
bytes are being moved from the address 0x0814E39342A once again located in the .reloc
section, to the address of dpx.DpxCheckJobExists. The file offset for this data is 0x2A42A.

Rather interestingly the bytes representing the amount of data transferred ox1588B are
located in the output of Figure 8 underneath the ox4A byte.

Extracting the 0x15BB bytes from the newly copied location, we can take a look and see what
the original code for dpx.DpxCheckJobExists has been replaced with.

$ r2 -AA -c 'pd' rundll32_dpx_checkjobexists.bin

15/35

0O;
4ee3ab

0x 3 23eb6 and esp,

286925

)e722b363e mov

382a cmp byte [rdx], ch
3b31 cmp esi, [rex]
3428 xor al,

61

7364

2be5 D

034fcf add .

38e0 cmp al, a

855733 test dword [rdi +

Dx000EE026 336320 xor esp,

e4%a
Dx0000002 5 60

DxBOBBRO26 59

5f pop rdi

f222e0 and ah, al
96 xchg esi, eax

cmp eax,

8he4

mov esp, esp

Fire 11: radare2 - Dpx.CheckJobExists overwritten data

It doesn’t look shellcode, so likelihood is there will be an additional routine to de-obfuscate it.

Through setting some access breakpoints you will stumble elegantly upon yet another
routine with an XO0R instruction located at ©x0814E3786E1. This routine iterates over the
dpx.DpxCheckJobExists location using the string chokopai723 as a key for all 6x15BB bytes.

The string chokopai732 was passed into the process via the command line flag /k.

If we take a look at the dpx.DpxCheckJobExists contents shown in Figure 12, once the X0R
has been applied we get something more resembling shellcode.

$ r2 -AA -c 'pd' rundll32_dpx_checkjobexists_xor.bin

16/35

mov r8, rsp : inté4_t arg_28h

mov gqword [rax
..... 7 18 mov qword [rax +

push rbp

C push rsi
..... push rdi
: push ri2

push ri3

push ril4

push ris

lea rbp, [rsp -

sub rsp,

mov rsi, rcx ; inté4_t arg2

movaps xmmword [rax -

g mov ecx, ; inté4_t arg_20h

DODOE : mov ri15, r9 ;o argé

mov rl4, r8
""" mov rl3, rdx ; arg3
mov ecx, - inté4_t arg_20h
mov qword [

mov ecx ; inté4_t arg_20h
mov rbx, rax

mov rcx,

or rdi,
DX00BOBE : D8 mov edx,

458b6628 mov ril2d,
¢ add edx

Figure 12: rare2 - Dpx.DpxCheckJobExists shellcode

The sample then makes another call to virtualProtect, restoring the page protection on
dpx.DpxCheckJobExists back to PAGE_EXECUTE_READ.

Now the code is executable again, the sample executes the newly laid out shellcode by call
rsi operation at 9x0814E378421. This can be intercepted by setting a breakpoint on the
dpx.DpxCheckJobExists symbol.

Executing the shellcode located at dpx.DpxCheckJobExists, it uses an internal routine
labelled below as mw_resolve_api_hash_location to locate the procedure addresses for 3
API's. The use of APl hashes to resolve routines is quite common in malware, as it makes it
much harder to see what is being used.

The hash values are usually fairly static, although there a few different methods employed,
“search engine-ing” the hexadecimal values is the first step.

17/35

Special thanks to this GitHub project by hidd3ncod3s for supplying the hashes and
corresponding API routines.

From the following disassembly we can see 3 values being moved into Ecx before the
function mw_resolve api _hash_location is used. The labels in the disassembly, show the
methods being passed:

e NtCreateThreadEx (0x9a3c803e)
* RtlAllocateHeap (0x67cc0818)
e RtlFreeHeap (0xd45a1e1f)

mov r8, rsp ; inté4_t arg_28h

mov qword
mov qword

push rbp

push i
57 push
4154 push ri2

4155 push ril3
4156 push ri4
4157 push rilS5
488d6c24a0 lea rbhp,

sub rsp,

mov rsi, rcx ; arga

movaps xmmword

mov e ; inté4_t arg_20h
re ; argé

mov rl4, r8

mov rl3, rdx ; arg3

; inté4_t arg_20h

; inté4_t arg_20h

Once the API's have been resolved, the routine Rt 1A1locateheap? is called using the call
rbx instruction, and 0x3358 (13147) bytes are requested.

FFB42D8F301 45:88C4 mov r8d,rl2d

FFE42D8F304 44:8965 D8 mov dword ptr ss:[Erbp-28[, ri2d ~ s FA0
FFB42D8F308 48:8849 30 mov_rox,qword ptr ds: [rex30] BAX 00007FFE55074760 <ntd11.RE1F rectean>
FFD3 call rbx call rtlAllocateHeap BEX 00007FFB5597A9A0 <ntd11.rt1ATTocateHeap>
FFB42D8F30E 6548:880C25 60000000 mov rcx,qword ptr [ll: [60] BCX 0000011FBC370000
FFB42D8F317 48:8BD8 mov rbx, rax rbx:Rt1ATlocateHeap, rax:RtlFree BDX 0000000000000008
FFB42D8F31A 48:8945 b0 mov qword ptr ss:[Irbp-30]], rax rax:Rt1FreeHeap RBP 888883%D§BE8F§E3 -
45:33¢0 xor r8d,r8d RSP DBBEIF/E! <&Rt1Al locateHeap>
48:8851 18 mov rdx,qword ptr ds:[rex:18] RSI 000000814E360000 r.000000814E360000
48:8842 10 mov rax,aword ptr ds:[rdx+10] rax:RtlFrecHeap RDL FRFFFFEFFFFFFFEE
48:8848 30 mov rcx,quord ptr ds: [rax+30] aquord ptr ds: [rax+30]:Rt1Freetea [2s 0000000000003358
v T Je dox. TFFe4208r366 £In 00000000E000DS!
48:3BCE cmp rex, rsi BI1L 00007FFB55ABC4D0 ntd11.00007FFB55ABC4D0
v 74 05 je dpx.7FFB42D8F33C R12 0000000000003358 e e
48:8800 mov rax,quord ptr ds:[rax] rax:Rt1FreeHeap, qword ptr ds:[r | R13 ~ 000000814€3788A2 init
A EB ED jmp dpx.7FFE42D8F329 'S‘; gggggg%gg;;g;ggg
C 48:8BCB mov rcx,rbx rbx:Rt1A1locateHeap
FFB42D8F33F 48:8850 50 mov rdx,qword ptr ds:[rax+50] qword ptr ds:[rax+50]1:Rt1FreeHea | € >

Figure 14: x64dbg - RtlAllocate 0x335b Bytes

18/35

https://github.com/hidd3ncod3s/WindowsAPIhash/tree/master

Once the region is allocated, the shellcode then accesses its own processes Process
Envonrment Block aka the PEB, to retrieve the full command line given.

000001BF/5AB9850
000001BF/5AB9860
000001BF/5AB9870
000001BF/5AB9880
000001BF/5AB9890
000001BF75AB98A0
000001BF/5AB98B0
000001BF/5AB98C0
000001BF75AB98D0
000001BF/5AB98ED
000001BF/5AB98F0
000001BF75AB9900
000001BF/5AB9910
000001BF/5AB9920
000001BF/5AB9930
000001BF/5AB9940

e

(=)
=

— = E N~~~

A

[N Rl o Il S VS]

o
=
= m W

S A xE N

OWn 4CmE W I QM

MW E QW S
T~ =W x I3 o

m A~
e I B = B R e

wo 3OS

Figure 15: x64dbg - Command line copied from Process Environment Block

Probably not surprisingly, this second shellcode also implements a memcpy routine, as shown

in Figure 16.

It is first used to copy 0x1EAD (7853) bytes from 0x0814E39580cC (file offset ox2csoc within the
.reloc section) to a heap allocated region. Figure 8 above contains the value 6x1EAD within
the configuration block at offset ox17FDo.

For future reference, the screen shot below shows the destination address in the RCX register
as 0x023D5D94A0BO.

+ ([O000/FFB42D90/7D
» [(00007FFB42D90782
» [[00007FFB42D90787
» || 00007FFB42D907 88
* ([00007FFB42D90790
* ((00007FFB42D90794
* ([00007FFB42D90799
+ ((00007FFB42D9079E
» ([00007FFB42D907 A4 v
* [[00007FFB42D907 A6
* || 00007FFB42D907 AA
* ((00007FFB42D907 AF
* ([00007FFB42D907B1
+ ((00007FFB42D90783
* ((00007FFB42D90787
+ ((00007FFB42D907BA
» [[00007FFB42D907BE
+ || 00007FFB42D907C3
* ([00007FFB42D907C6H
* ((00007FFB42D907CB
* ([00007FFB42D907D0
+ ((00007FFB42D907D3
+ ((00007FFB42D907D8 ~
»e+ [[00007FFB42D907DA
» ([00007FFB42D907DF

4c:894424 18
48:895424 10
48:894C24 08
48:83EC 18 s
48:884424 20
48:890424
48:884424 28
48:894424 08
48:837C24 30
74 34 j
48:880424
48:884C24 08
8A09

8808
48:880424
48:FFCO i
48:890424
48:884424 08
48:FFCO i
48:894424 08
48:884424 30
48:FFC8
48:894424 30
EB C4 j
48:884424 20
48:83c4 18

Figure 16: ra

mov qword ptr

mov

mov gword ptr ss:[rsp+18]1,r8
mov qword ptr

ss:|rsp+10], rdx
ss:|rsp+8l, rcx
ub rsp,18

mov rax,gword ptr ss:[[rsp+20[]
mov qword ptr
mov rax,qword ptr ss:[rsp+28[]
mov qword ptr
cmp qword ptr

ss:firspd, rax

ss:|Irsp+80, rax
ss:|[rsp+30]J,0

e dpx.7FFB42D907DA

rax,qword ptr ss:|[rspll
rex,gword ptr ss:[rsp+80
cl,byte ptr ds:[rcx]

byte ptr ds:[rax],cl
rax,qword ptr ss:|[Irspl
rax

qword ptr ss:|[rspll], rax
rax,qword ptr ss:|[[rsp+8]
rax

gword ptr ss:[[rsp+8J, rax
rax,qword ptr ss:|Irsp+30[
rax

qword ptr ss:|[Irsp+30], rax
dpx. 7FFB42D9079E
rax,qword ptr ss:|[[rsp+20[
rsp,18

mW_memcpy
[gqword ptr ss:[rsp+10]]:RtlA

[qword ptr ss:[rsp+20]11:ti_p
[gword ptr ss:[rsp]]:DpxRest

number of bytes to copy comp

[qword ptr ss:[rsp]]:DpxRest
ptr source

store 1 byte in RCX LSB

ptr destination

[gqword ptr ss:[rsp]]:DpxRest
increment index 1 byte

store index back on stack

decrement number of bytes re
store bytes remaining count

[qword ptr ss:[rsp+20]]:ti_p

dare2 - DPX.dIl shellcode memory routine.

)

Sho!
RAX 0000000000000C4E
RBX 0000023D5D949850
RCX 0000023D5D94A080
RDX 000000814E£39580C
RBP 000000BCC8ABF430
RSP 000000BCC84BF328
RST 000000814£360000
RDI FFFFFFFFFFFFFFFF
B8 0000000000001EAD
R 0000000000000000
R10 0000000000000000
RI1 000000BCCS4BEF68
R1Z 0000000000003358
RI3 000000814E£378BA2
R14 000000BCCBABFS570
RIS 000000BCC84BF510
<

Default (x64 fastcall)

v

rcx 000002305094A08B0 0C
rdx 000000814E39580C r
r8 0000000000001EAD 00
r9 0000000000000000 00

1:
2:
3
4:
5: [rsp+28] 0000000000000¢

19/35

Extracting the data that was just copied reveals not too much, and you might be able to spot
a familiar pattern occurring.

Shellcode Patching

Moving on to the next call of the memcpy routine, the sample copies oxC4E (3150) bytes from
the very first allocated memory region to the tail of the data written into the heap region
previously described.

This second chunk of data being copied was originally transferred from 0x0814E394BBE (file
offset ©x2BBBE) into memory region 1, where is was then de-obfuscated.

The data copied into this heap region becomes very relevant later on. At this stage there is
some missing information so don’t dump the memory region just yet. To clarify, the first chunk
is obfuscated in some way, the second chunk is valid shellcode.

The next call the memcpy routine is used to copy a more 4 bytes containing the value
0x5B330000 into a location within the first allocated memory region. If we swap the
endianness of 0x58330000 we get 0x335B, matching the size of a previously copied segment
of shellcode... very interesting...

Next, the shellcode’s routine for locating a procedure based on its hash is used to locate
CreateThread. This location is then used to patch the shellcode that was written into the first
region of allocated memory, using the memcpy routine.

Figure 17 shows the start of the memcpy routine with the shellcode to be patched in the lower
pane. Currently, the 8 bytes to be patched contains 0xA1A2A3A4A5

20/35

v 4C:894424 18 mov qword ptr ss:[rsp+18],r8
» || 00 48:895424 10 mov qword ptr ss:[rsp+10], rdx ~ Sfimoy (L
v (|00 48:894c24 08 mov qword ptr ss:|[rsp+8],rcx RAX 0000000000000162 LT
» ||00 3/ 48:83eC 18 sub rsp,18 RBX 0000000000000000
» || 00007FFB42D907 88 48:884424 20 mov rax,qword ptr ss:|[[rsp+20] RCX 00000274 3DES01AC
» || 00007FFB42D90790 48:890424 mov qword ptr ss:|[rspl), rax RDX 000000A3D9AEBF4D0 <&CreateThread>
» || 00007FFB42D90794 48:884424 28 mov rax,qword ptr ss:[rsp+28] RBP O00000A3D9ABF530
+ || 00007FFB42D90799 48:894424 08 mov qword ptr ss:[[rsp+8J,rax 000000A3D9ABFA428
» ||00007FFB4209079€E 48:837C24 30 00 cmp qword ptr ss:[rsp+300,0 RST Eggggggéﬁgggg’ggg
v (| 00007FFB42D907 A4 v 74 34 je dpx.7FFB42D907DA
» || 00 FFB42D907 A6 48:880424 mov rax,qword ptr ss:[[rspl] 0000000000000008
. 7/FFB42D907 AA 48:884C24 08 mov rcx,qword ptr ss:[Ersp+8] E‘é 0000000000000008
. FFB42D907 AF 8A09 mov c1,byte ptr ds:[rex] R10 0000000000000161 L's"
v 07FFB42D%07B1 8808 mov byte ptr ds:[rax],cl R11 0000000000000008
» (| 00007FFB42D907B3 48:880424 mov rax,qword ptr ss:|[[rspll R12 000000A1A2A3A4A5
+ ||00007FFB42D907B7 48:FFCO inc rax <
» || 00 FFB42D907BA 48:890424 mov qword ptr ss:|Brsplll, rax
+ || 00007FFB42D907BE 48:884424 08 mov rax,qword ptr ss:[rsp+8] v | Default (x64 fastcall)
._ < > 1: rex 000002743DES8OLAC 000002743DESOLAC
B B — — 2: rdx 000000A3D9ABF4D0 <&CreateThread> (000000A3D9AB
: d pt : 18]11=[000000A3D9ABF440]1=A1A2A3A4A5
P Es8 (e (i 8 [TEpkl=l L 3: r8 0000000000000008 0000000000000008
4: r9 0000000000000008 0000000000000008
007FFBA2D90778 dpx.d11:$50778 #4FB78 <mw_memcpy> 5: [rsp+28] 0000000000000000 0000000000000000
) .)0A3DY: 00007FFB42D8F51D
1 &y Dump 2 w4 Dump 3 @y Dump 4 4 Dump 5 8 watch 1 |x=| Locals s+ Struct ﬁ Disassembly 004 0000000000000000
JDESOIAG 3302 Xor edx , edx]| 000000A3D9ABF438 | FFFFFFFFFFFEFFEE
JDEB01AS 33¢9 Xor ecx,ecx 000000A3D9ABF440 000000A1A2A3A4A5
iDES01AA 48:B8 A5A4A3A2A1000000 mov rax ,AlA2A3A4A5 000000A3D9ABF448 | FFFFFFFFFFFFFFFF
iDE801B4 FFDO €all rax 000A3D9ABF450 | 0000000000000000
30186 48: 85¢0 T e, 0004309ABF458 | 0000000000000000
DEB01BY ~ 74 05 je 2743DE801CO 000A3D9ABF460 | 000002743DEF4510
\DESO1BR 48:88C8 o el 00043D9ABF468 | 0000000200000005
}DESOLBE FFDO call rsi 000A3D9ABF4:0 0000000300000004
iIDE801CO 49:8BCF mov rcx,rls v | 000000A3D9ABF478 | EAADFOOD00000008
> <

Figure 17: x64dbg - Shell code patching routine, before patch.

Figure 18 shows the shellcode after being patched, containing the address of CreateThread
ready for it to be copied into RAX and then called.

00007FFB42D907 AA 48:884C24 08 mov rcx,qword ptr ss:[irsp+8[]
0 7FFB42D907 AF 8A09 mov cl,byte ptr ds:[rcx] " ShovjRy
0 7FFB42D907B1 8808 mov byte ptr ds:[rax],cl 7.
00007FFB42D9078B3 48:880424 mov rax,qword ptr ss:[Irspl EQ; 8888866338538%88 <&CreateThread>
00007FFB42D90787 48:FFCO inc rax RCX 000000A3D9ABF400 &"init”
0 7FFB42D907BA 48:890424 mov qword ptr ss:|Irspll, rax RDX 000000A3D9ABF4D0 <&CreateThread>
00007FFB42D907BE 48:884424 08 mov rax,qword ptr ss:[rsp+8[RBP 000000A3D9ABF530
00007FFB42D907C3 48:FFCO inc rax BSE 000000A3D9ABF428
0 7FFB42D907C6 48:894424 08 mov qword ptr ss:|[[rsp+8[, rax RSI 000000A1A2A3A4A5
0 7FFB42D907CB 48:884424 30 mov rax,qword ptr ss:[Irsp+30[] RDE (RAFAAAAAAARAAAAS
0 7FFB42D907D0 48:FFC8 dec rax
0 7FFB42D907D3 48:894424 30 mov gword ptr ss:|[rsp+300, rax Eg 388888883888838?
0 7FFB42D907D8 ~ EB ¢4 jmp dpx.7FFB42D9079E R10 0000000000000161 L'sS"
0 7FFB42D907DA 48:8B4424 20 mov rax,qword ptr ss:|[rsp+20] R11 0000000000000008
00007 FFB42D907DF 48:83c4 18 add rsp,18 R12 000000AL1A2A3A4AS
c3 ret <
44:894424 18 mov dword ptr ss:|[rsp+18J, r8d
895424 10 mov dword ptr ss:[rsp+10],edx v | Default (x64 fastcall)
> 1: rcx 000000A3D9ABF400 000000A3D9ABF400 &"init"
2: rdx 000000A3D9ABF4D0 <&CreateThread> (000000A3DIABF:
3: r8 0000000000000008 0000000000000008
4: r9 0000000000000008 0000000000000008
D7FFB42D907E3 dpx.d11:$507E3 #4FBE3 5: [rsp+28] 0000000000000000 0000000000000000
1 &4 Dump 2 k4 Dump 3 W't Dump 4 &'y Dump 5 Jﬁ' Watch 1 |x=] Locals Struct ﬁ Disassembly JOA3DOABE gggggg;ﬁgggggﬁg r
EB01AG 33D2 xor edx,edx =~ 000A3D9ABF438 | 000000A3DIABF4DO
JESD1AS 33c9 xor ecx,ecx 000A3D9ABF440 | 0000000000000000
EBO1AA 43:88 108D7D54FB7F0000 mov rax,<kernel32.CreateThread> 000A3D9ABF448 | FFFFFFFFFFFFFFFF
EBO1B4 FFDO gl rax 000A3D9ABF450 | 0000000000000000
)EBO1B6 48:85¢0 test rax,rax 0004309ABF458 | 0000000000000000
JE8O1B9 v 74 05 je 2743DE801CO 000A3D9ABF460 | 00000274 3DEF4510
)E801BB 48:88C8 mov rcx,rax rex:&"init” 000A3D9AEF468 | 0000000200000005
EBO1BE FFD6 galll rsi 000A3D9ABF470 | 0000000300000004
EB0LCO 49: 8BCF mov rox,rlS roc:& init” v 000A3D9ABF478 | BAADFOODO0000008

> <

Figure 18: x64dbg - Shell code patching routine, after patch.

The same process of locating a function, and then patching shellcode is also carried out for

additional functions.
The complete list of functions resolved and patched is:

e CreateThread
e LoadLibraryA

21/35

ReadProcessMemory
VirtualProtect
RtlAllocateHeap
NtClose
ZwCreateThreadEx

Next comes a routine that appears (at least to me), to parse the ntd11.d11 module for the
various syscall operations.

Continuing the execution again we hit another call to the memcpy routine, this time copying
0xB (11) bytes from a stack based address into a location within the first allocated memory
region.

4C 8B D1 B8 00 00 00 0O OF 05 C3

At first glance the purpose of the byte sequence is not obvious, it's certainly not an address
as previously observed. If you continue to view the disassembler during the memcpy routine,
you would have seen a patch applied to call a syscall directly.

We can quickly check the above hexadecimal opcodes using the CyberChef!@ recipe to
Disasemble X86 or use the following rasm2 command.

$ rasm2 -a x86 -b 64 -d '4C 8B D1 B8 00 00 00 00 OF 05 C3'

mov r10, rcx
mov eax, 0O
syscall

ret

This syscall related activity has a lot of similarities with what is described here over at
www.ired.team

Once the syscalls stubs have been copied over, the function zwAllocateVvirtualMemory, is
then used to request 9x3841 (14401) bytes of memory with the protection constant
PAGE_WRITECOPY, this region will be labelled and hence forth known as memory region 2.

Figure 19 shows the call to zwAllocatevirtualMemory being made. The registers rRDX and
R8 are being used to provide the address and protection flags. As can be seen in the display,
RCX contains the location of memory, which contains the location in memory that is being
altered....aka a pointer.

The address being altered here is stored in little-endian, and is ©x29E3E670000 as shown in
the lower dump 2 pane.

22/35

https://www.ired.team/offensive-security/defense-evasion/retrieving-ntdll-syscall-stubs-at-run-time
https://www.ired.team/

* ||00007FFB425CFAFD 4C:8D45 EO lea r8,qword ptr ss:[Brbp-200 A
s ||00007FFB425CFBOL 48:83C9 FF or rcx,FFEFFFFFFFFFFEFF
* (|00007FFB425CFBOS 48:8D55 58 lea rdx,qword ptr ss:|[[rbp+58] BAX 000000DDODAFE 240
RIP ey T 7 41:FFD5 call rl3 REX 00007FFB55AA2170
« ||00007FFB4 25CFBOC 85C0 test eax,eax BCX FFFFFFFFFFFFFFFF
* (| 00007FFB425CFBOE 40:0F94c7 sete dil BDX 000000DDODAFF248
* (|00007FFB425CFB12 8BC7 mov eax ,edi RBP ggggggDDgDAFF%Fg
00007FFB425CFB14 48:889c24 90000000 b d pt : 90 B3P DDUDAFF 1A
- || 0o007FrBa25crB1C 48:83c4 50 2dd rep50 o S RoTE0000ALEBS5950000
- : 2 RDI 0000000000000000
o (|00007FFB425CFB20 41:5F pop rl5
* (|00007FFB425CFB22 41:5€ pop rl4 000000DDODAFFELDO
* ||00007FFB425CFB24 41:5D pop rl3 % 0000000000000020
* (|00007FFB425CFB26 41:5c¢ pop rl2 R10 0000000000000001
* (|00007FFB425CFB28 5F pop rdi B1l 0000029e3E670000
« (| 00007FFB425CFB29 5E pop rsi g‘" """"""""""""""""
* |[00007FFB425CFB2A 5D pop rbp
* |(00007FFB425CFB2B Cc3 ret Default (x64 fastcall
« || 00007FFB425CFB2C 43:88C4 T R ult (x64 fastcall)
* |(00007FFB425CFB2F 48:8958 08 mov qword ptr ds:[rax+8],rbx 1: rcx FFFFFFFFFFFFFFFFE FF
e |[00007FFB425CFB33 4C: 8948 20 mov qword ptr ds:[rax+20],r9 2: rdx 000000DDODAFF248 0O(
* |(00007FFB425CFB37 4C:8940 18 mov qword ptr ds:[rax+18],r8 3: r8 000000DDODAFF1DO 0O(
* (| 00007FFB425CFB3B 8950 10 mov dword ptr ds:[rax+10],edx 4: r9 0000000000000020 00(
e |[00007FFB425CFB3E 55 push rbp w || 51 [rsp+20] 000000DDODAFF:
s e Z 22 ;
L4 Dump 1 &% Dump 2 Wy Dump 3 U Dump4 |y Dump5 &5 watch 1 |==| Locals 41 struct & pisassembly
Address Hex ASCIT
0000000D0DAFF248 |00 00 67 3| 9 02 00 00/ 00 00 00 00{ 00 00 00 00| L.g>evuvunennnnn
000000DDODAFF258 | 00 00 00 00| 00 00 00 00|70 47 47 3el 9 02 00 00| pGG=
0000000D0DAFF268 | 00_00 67 3| 9 02 00 00| 04 00 00 00[03 00 00 00| ..g>-.evueenn ..
0000000D0DAFF278 | 08 00 00 00|/ OD FO AD BA| 2B 1B 00 00| 5B 33 00 00| B9.%...[3..

After building the syscall routines and patching the shellcode in memory region 1, more API’s

are resolved.

¢ NtOpenProcess

e NtClose
o RtlFreeHeap

Figure 19: x64dbg - ZWProtectVirtua/Memo.ry. from R13 regqister

The malware went to a lot of trouble to generate the syscall stubs, it finally begins to use
them starting with a call via the RST register.

Setting an execution breakpoint on the region of memory containing the syscall stubs will
allow you to step through the next procedure.

Figure 20 shows the call via the RSI register, with a value of 0x5 being passed in on the RCX

register. In the disassembly view in the bottom pane, you can see the syscall ID being loaded

into RAX, the value ©x36 resolves to NtQuerySystemInformation-—

Taking a look at the documentation for NtQuerySystemInformation here provided by Geoff

11

Chappell, the value 0x5 is the constant for SystemProcessInformation. This is being used
to generate a process listings, more details can be found here

23/35

https://www.geoffchappell.com/studies/windows/km/ntoskrnl/inc/api/ntexapi/system_information_class.htm
https://tbhaxor.com/windows-process-listing-using-ntquerysysteminformation/

L] UU'L_-'U-'I—I—&"{-LJJ(UD-"U 451880V mov rdx,rax
L] 00007FF84D0D20573 B9 05000000 mov ECX:5 RAX 000001CBCED37DCO
be 007 7 FFD6 call rsi J REX 0000000000000100
e |[00007FF84DD2057A 8BD8 mov ebx,eax BRCX 0000000000000005
. JFF84DD2057C 85c0 test eax,eax BDX 000001cBCEN37DCO
. /FF84DD2057E /5 93 jne dpx./FF84DD20513 REP 00007FF86177A9A0
¢ (| 00007FF84DD20580 48:886C24 50 mov rbp,qword ptr ss:|[[r|t Rse 000000946F0/F140
« (| 00007FF84DD20585 8BC3 mov eax,ebx BRSL 000001cBCE25051cC
e } P ! RDI 00000094 6F07F1ED
s ||00007FFB4DD20587 48:8685C24 40 mov rbx,qword ptr ss:[[r
* || 00007FFB4DD2058C 48:83¢c4 20 add rsp,20 0000000000000100
* || 000 IFF84D320590 41:5E pop r'1{1 | % 000000946F07F188
e (|00007FF84DD20592 5F pop rdi B1O 000001CBCEQ20000
e ||00007FF84DD20593 5E pop rsi R1L 000000946F07EDY 8
s || 00007FFB4DD20594 c3 ret Rg gggggégggggggggg
00007 : 95 i R
il Frorstiiypechsbe ce e R14 00007FF861774760
+ ||00007FFB4DD20596 cC int3 15 000001 551804
« || 00007FF840D20597 cc int3 o IR GEGECREE
T . |
p data W' Dump 2 W' Dump 3 W'k Dump 4 W' Dump 5 'ﬁ“ Watch 1 |x=] Locals o Struct ﬁ Disassembly ’i
3CE25051C 4C: 8BD1 mov ri0,rcx A ¢
3CE25051F B8 36000000 mov eax, 30 36:'6" .
3CE250524 OF 05 i
3CE250526 c3 ret .
3CE2§0§§" 0930 agd byte ptr ds:[rax],dh g
Figure 20: x64dbg - NtQuerySystemInformation native syscall
Once the PID for explorer.exe is located, it is passed to the NtOpenProcess syscall.
Opening the rund1132.exe process in ProcessHacker we can see the handle to
explorer.exe has been opened, as shown in Figure 21.
_) rundlia2.exe (5716) Properties — O
General Statistics Performance Threads Token Modules Memory Envircnment Handles GPU Comment
[]Hide unnamed handles
Type Mame Handle™ Handle Properties x
Key HKLMYSOFTWARE \Microsoft\windows NT\Currentversio.., OxS
‘ Directory \KnownDlls 38 General | Security
File CWindows\Systern32 Oxde
Mutant \Sessions\1\BaseNamedChiects\SMO: 5716 304: Wilstagi... Oxdc Basic infarmation
Directory \Sessionsh1\BaseNamedObjects 0x54 Name: explorer.exe (2780)
Semaphore \Sessionsh1\BaseMNamedObiects\SMO: 5716: 304 WilStagi... Ox58 Type Process
Semaphore \Sessions 1\BaseMNamedObiects\SMO: 5716 304 WilStagi... OxSc .)
Key HKLM EE Object address: Oxffff8281764d5080
Key HKLMYS Y STEM\ConiralSet001\ControlyNIsiSortingiversi... Ox8c Granted access: 0x1000 (Query limited infarmation)
Key HKLMVSOFTWARE MicrosoffiyOle xOc
Key FkLM Oxal) References Quota charges
Key HKCILNSoftwarehClasses\Local Settings\Software\Microsoft Oxad Rot 519599 Paced: 4096
Key HKCL\SoftwaretClassesLocal Settings Oxad eferences 9
WindowStation \Sessionst 1\Windows\WindowStations\Winstan 108 Handles, 24 Non-paged: 3144
Desktop \Default Oxi0c
WindowStation YSessions' 1y Windows\WindowStations\Winsta Ox110
File Cwindows\Systemn32\en-USyrundll 32 exe. mui Ox114
Section Windows Theme318023633 Ox120
Section YSessionsy1\Windows\ThemeS552054757 Ox 140
Key HKLMYSYSTEMYControlSet001YControl\Session Manager Oxid4
Process explorer.exe (2780) Ox 164

Figure 21: ProcessHacker - Handle to explorer process opened.

24/35

The handle on explorer.exe is then used by a call to NtopenProcessToken. The returned
handle for the token is passed to NtQueryInformationToken before being closed with
NtClose.

The syscall NtSystemQueryInformation is then used as it was previously to generate a list
of processes running on the system.

A series of calls to NtopenProcess is then issued against all svchost .exe processes until
one can be successfully opened. As the process is running in a non-privileged context, calls
to svchost . exe processes running as NT AUTHORITY\SYSTEM are responded to with an
access denied value in EAX as shown in Figure 22

RAX 00000000C0000022 STATUS_ACCESS_DENIED
RBX 0000000000000030 0’

RCX 000001583E4503A6

RDX 0000000000000000

RBP 00000040A2A7EEDD

BRse 00000040A2A7EDCS

RSI 0000000000000000

RDI 00000040A2A7F6A0

Figure 22: x64dbg - NtOpenProcess Access Denied.

Note: The sihost.exe process is also attempted if the svchost . exe process list becomes
exhausted.

Once a handle to an svchost.exe process is opened, the token information is harvested
using NtOpenProcessToken and NtQueryInformationToken.

To determine if the target svchost . exe process is the correct architecture,
NtQueryInformationProcess is used to check the Processwow64Information details.

For each thread on the svchost . exe process the following routines are called:

e NtOpenThread
NtCreateEvent
NtDuplicateObject
NtQueueApcThread
SetEvent

Once each thread has been setup, there is a call to NtQuerySystemTime.

25/35

The shellcode residing in memory region 1, is further patched with the value 0xB18 forming
the first argument to ReadProcessMemory as shown in Figure 23.

000001583e440090 48:8BF8 mov rdi,rax

000001583E440093 4C: 8BCO mov r8,rax

000001583E440096 49:8F 1808B000000000(mov rl5,B18

000001583E4400A0 49: 8BCF mov rcx,rlh

000001583E440043 48:B8 50CC7CSH5FF87FO) mov rax,<kernel32.ReadProcessMemory=>
000001583E4400AD 44 : 8BCE mov r9d,esi

000001583E440080 48:8BD3 mov rdx, rhx

000001583E44008B3 FFDO call rax

Figure 23: x64dbg - Length value being patch'eﬁd in shellcode

Using the handle to svchost.exe, the rund1132.exe process makes a call to
NtVirtualProtect targeting the address of winHelpw from user32.d11.

Looking at the R9 register in Figure 24 you can see the value 0x40, which corresponds to the
memory protection constant PAGE_EXECUTE_READWRITE.

000001583e45078C 4c:8sD1 mov rl0,rcx A Wide EPU
000001583E45078F B8 50000000 mov_eax , 50 50: P’

000001583E450794 0F05 syscall] NtProtectVirtualMemory RAX 0000000000000050 p
000001583E450796 c3 ret RBX 0000000000000000

000001583£450797 0070 DA add byte ptr ds:[rax-26],dh BCX 0000000000000164 o0
000001583£45079A v 7E 61 jle 1583e4507FD RDX 00000040A2A7EE58 <&winHelpws
000001583E45079C F8 cle RBP ggggggigAgA;EEDg

000001583£45079D ~ 7F 00 jg 1583E45079F RSP A2A7EDC

000001583£45079F 00cB add b1,c1 T ona0n0a0anane

000001583E4507A1 4a:94 xchg rsp, rax RDS ACRER A

000001583E4507A3 894c8B D1 mov dword ptr ds:[rbx+rcx*4-2F] RS 00000040A2A7EETO

000001583E4507A7 B8 51000000 mov eax,51 IS RO 0000000000000040 Q'
000001583£4507AC 0F05 syscall RI0 0000000000000164 LU
0000015834507 A c3 ret RIL 0000000000000386 LAt
0000015834507 AF 0090 DA7EG1F8 add byte ptr ds:[rax-79£8126],d RE 8888888888888835 N
000001583E450785 v 7F 00 jg 1583E450787 R

000001583E450787 00AL 41E0744C add byte ptr ds:[rcx:4C74£0417, R Y
000001583E45078D 88D1 mov edx ,ecx R A= LEEPELCIIGL B

Figure 24: x64dbg - NtVirtualProtect WinHelpW

Payload Transfer

The rund1132.exe process then calls NtCreateSection to create a section within the
svchost . exe process. This section is then mapped into view of the rund1132.exe process
using NtMapViewOfSection.

With the section accessible to the rund1132.exe process, the memcpy implementation is
called twice. The first transfer copies 0x4A bytes, and the second transfers 0x18F bytes from
the first memory region.

You'll notice the byte sizes align with the blocks of data transferred from the . reloc section
into “memory region 17, which has been decoded and subsequently patched.

26/35

The original bytes from both winHelpw (0x4A) and winHelpA (0x18F) are copied into a
location of memory, possibly for restoring later.

Once data has been written by the rund1132.exe process, NtUnMapviewofSection is called
on the section.

Using the handle to the svchost.exe process, the section is mapped into memory using
NtMapViewOfSection.

Now comes a really interesting process, to avoid using heavily monitored API’s the
rund1132.exe process such as WriteProcessMemory.

The rund1132.exe processes calls the NtQueueApcThread routine to schedule an execution
of Rt1CopyMemory within the svchost . exe process. The source parameter is the location of
the mapped memory region of the shared section, the destination parameter contains the
address of the wWinHelpw routine within user32.d11.

Thus when the queued APC routine executes, the winHelpw routine will be replaced with
shellcode.

The setup for this can be seen in Figure 25 below.

| 0F05 syscalll NtQueueApcThread RAX 0000000000000045 'E’
c3 ret RBX 0000000000000003
0010 add byte ptr ds:[rax],dl BCX 0000000000000180 L'p'
D97E 61 fnstcw word ptr ds:[rsi+61] RDX 00007FF8617F3E80 <ntd11.Rt1CopyMemory>
F8 clc RBP 00000040A2A7EEDO
v 7F 00 jg 1583E450697 RSP 00000040A2A7EDCS
0062 12 add byte ptr ds:[rdx+12],ah byte ptr ds: [rdx+12]:memmo: RSI 0000000000000008
47:¢3 et RDI 00000040A2A7F6AQ
4c:88D1 mov rl0,rcx q
' R8 00007FF860401390 32.wWinHelpw:
B8 46000000 mov eax,46 46:'F' RO 000002A748480000 <user URAILE
0F 05 Eyscall] R10 0000000000000180 L'n'
c3 ret B11l 0000000000000346 L'
0030 add byte ptr ds:[rax],dh R12 000000000000004E 'NY

Figure 25: x64dbg - WinHelpW execution after NtDeIayExecution
The same technique is then used to copy data from the mapped section, to overwrite the
wWinHelpA routine. The shellcode at winHelpw is then scheduled to execute using the
NtQueueApcThread routine as well as Sleep and a call to NtDelayExecution.

Both the winHelpw and winHelpA locations have their memory protection restored back to
PAGE_EXECUTE_READ using NtVvirtualProtectMemory, and the section becomes unmapped in
the svchost.exe process with a call to NtUnMapviewofSection.

Execution from this point will continue from within the perspective of the svchost.exe
process.

27/35

Setting a breakpoint on the winHelpw routine, we can examine this further.

Executing WinHelpW Shellcode

$ r2 -AA -c 'pdf' svchost_user32_injected.bin

(inté4_t arg3, inté4a_t arg4, inté4_t argé);
inté4_t ' X
inté4_t
inté4_t
inté4_t @ rs
0x00000000 8hc mov rll, rsp
sub rsp,
Xor eax, eax
or r9

mov gword [rll
xor r8d, réd
mov gword [rll

mov gword [rl1l
mov gword [rll
mov dword [
mov gword [rll
mov edx,
mov gword [rll -
lea rcx, [r11 +
mov gword [rll +
movahs rax,

o
add rs
ret

Figure 26: radare?2 - svchost.exe User32.dll WinHelpW Shellcode

Calls to openProcess on the rund1132.exe process. Then ReadProcessMemory from the
rund1132.exe process, the heap allocated data previously described.

TSRS | e qword ptr ds: [<ReadProcessMemorys] | ReadProcessMemory. ~ wide FPU
I FFD4ABOCCS7 int3
.FFD‘.‘ASOCCSB\ Tnt} RAX 00007FFD4ABOCCS0 <kerne132.ReadProcessMemory>
FFD4AB0CCS9 int3 RBX 0000029055289840
'FFD4ABOCCSA int3 RCX 0000000000000470 L'e’
FFDAABOCCSE int3 RDX 0000029055289840
FFD4ABOCC5C int3 RBP 000000cD1B38F9F0
FFDAABOCCSD int3 RSP 000000CD1B38F9B8
et e RSI 0000000000003358
7FFD4ABOCCSF int3 RDI 00000238F968EF70
'FFD4ABOCCE0 int3 R& 0000023BF96SBE70
FFD4ABOCCH1 int3 RO 0000000000003358
FFD4ABOCC62 int3 R0 0000000000001FFF
7FFD4AB0CC63 int3 R11 0000000000000000
de g
’FFD4ABOCCEHS int3 R
e e RI4 0000000000000000
RIS 0000000000000470 L'e

FFD4ABOCCH/ int3 v
ESEY

et a0

Figure 27: x64dbg - ReadProcessMemo}y called from svchost.exe

28/35

As you can see from the screen shot in Figure 28, some of the data copied may contain a
similar configuration block identified with the init keyword. Further down into the bytes you
may also spot the bytes 0xD6, 0xB2, 0x07 and 0x00 which was the XOR key used within the
rund1132.exe unpacking staged.

0000023BF9638C770 | 69 6E 69 74| 00 00 00 00|00 00 00 00/ 00 00 00 00| Anit............
0000023B8F968C780 | 00 00 00 00/ 00 OO 00 00|00 00 00 00|00 00 00 00| ...veenuneoa...
0000023BF968C790 | 00 00 00 00/ 00 00 00 00|00 00 00 00|00 00 00 00| ... e oa..
0000023BF968C7A0 | 00 00 00 00| 00 00 00 00| AD AQ 2B 55/90 02 00 00| +U.

0000023BF968c7B0 | AD 1E 00 00|/ 00 00 00 00|D6 B2 07 00/ 00 00 00 Q0| 02......
0000023BF968c7c0 | 4D BF 2B 55|90 02 00 Q0|4 OC 00 00[{00 OO0 OO0 OO0 | Mz4U... . N.......
0000023BF968C7D0 | 70 57 38 21|21 F7 45 OE|OE D8 ©A EB|BE E8 0D BO| pw8!!zE..@je¥e. "
0000023BF968C7ED | 20 F6 41 46|46 90 1E 09| 0A DD 6F 68| B0 46 2E 29| OAFF....¥Yoh"F.)
0000023BF968C7F0 | E9 2D 9D AF|AE 78 FA ED|DF EA 9 8B| 8B A9 12 48| é-. ®xuiRé.. . @.H
0000023BF968C800 | 27 F1 43 44| c4 5A E7 94| C7 FO EE 81|18 5B C9 5E| "ACDAZC.CBHI..[EA

Figure 28: x64dbg - svchost.exe init configuration block

Taking a look at the shellcode that was placed at winHelpA statically in Figure 29, we can
see it contains the string dpx.d11 and will call LoadLibraryA to load it.

It then calls virtualProtect on the routine DpxCheckJobExists to allow a byte copying
routine to overwrite its contents, replicating the behaviour from earlier in the unpacking
routine.

$ r2 -AA -c 's Oxe2; pd 40' svchost_user32_injected.bin

29/35

48b8500cT7d5f.
8d4d40

a r
and d
mov

[rdi +

Figure 29: radare?2 - LoadLibraryA dpx.dll and overwrite DpxCheckJobEXists

If you are viewing this dynamically then, you will observe oxc4E (3150) bytes from the
second chunk of data copied from the rund1132.exe process into dpx.DpxCheckJobExists
routine.

A call to createThread is then issued with a base address of dpx.DpxCheckJobExists

The shellcode located at dpx.DpxCheckJobExists then kicks of a routine to XOR decode
some of the remaining data originally sourced from rund1132.exe.

Payload Decrypting

In Figure 30 below we can see the static disassembly output of the XOR routine used.

$ r2 -AA -c 's 0x57; pd 72' svchost_dpx_dpxcheckjobexists.bin

30/35

448d52 lea rl0d, [rdx - 1]

mov rax, Prcx
lea rsi, [

cqo

idiv ril4

mov rax, Prcx

movsxd rll, edx

cqo

and

add

and

sub

movsxd ax

MovzZX eax [r11 + r9]
movzx [rcx + rbx +
Xor r8 X

idiv ril4

movsxd rax

MovVZX ec: [rax + r9]
sub ré&d,

add réd,

and réd,

dec ré8d
or réd,
inc r8d

mov byte [r1l + r9], r8b
mov rcx, rsi
cmp rsi, rile

Figure 30: radare2 - XOR Routine

This routine is used to reveal the FINAL PE file payload in its original memory buffer copied
over from rund1132.exe, as shown in Figure 31 there is an MZ header and DOS stub visible.

000001AC4A052011 || AD 1E 00 00|00 34 00 00[{00 82 2D 80| 4D 5A 90 00| 4....-.MZ..
000001AC4A052021 | 03 00 00 00|04 10 FF FF| 00 00 B8 20|Cb 00 40 12| vy.., E.@.
000001AC4A052031 | 02 EB 01 00|DO 10 OE 1F|BA OE 00 B4|09 CD 21 00| .&..P...°.. .1I!.
000001Ac4A052041 | 00 00 80 B8| 01 4C CD 21|54 68 69 73|20 70 72 6F|LI!This pro
000001AC4A052051 | 67 72 61 6D| 20 63 61 GE|6E 6F 74 20|62 65 20 72| gram cannot be r
000001AC4A052061 | 75 6E 00 00|02 84 20 69| 6E 20 44 4F| 53 20 6D 6F | un.... in DOS mo

000001AC4A052071 | 64 65 2E OD|OD Oa 24 12|11 21 9 10|93 65 A8 7E|de....$. IE.. e~
000001AC4A052081 | cO 16 01 42| 6E 05 cO 82| 88 A0 BO 67|20 16 CA 7F| A..Bn.A.. g .E.
000001AC4A052091 | c1 6E 0A 05| 7F CO 4F 2083 cc 7a 0a|/ 04 83 cC 7E| An...A0 .Iz...I~
000001AC4A0520a1 | Cc1 64 0a 02| 7c 0a 02 52|69 63 68 06|/ 0E 16 25 50| Ad..|..Rich...%P
OnNnN01 ac4ans20er1 00 08 40 a9l45 00 00 641 86 07 00 9al9F &7 63 16l . @@OF. . d. ... _. C.

Figure 31: x64dbg - Decoded DOS stub header

31/35

As well as the executable file, there also resides some configuration data that is used to

allow shellcode to map the PE into the address space.

Value 0x3400 taken from payload structure and passed to Rt 1A1locateHeap The PE file is
the seemingly copied into this allocated memory region.

————= |{00007FFBO4BAFE37 v 73 27 jae dpx.7FFBO4BAFEGO
e (|00007FFBO4BAFE39 41:88C0 mov eax, r8d
. 41:8911 mov dword ptr ds:[r9],edx
e |[00007FFBO4BAFE3F 83e0 OF and eax,F
e (|00007FFBO4BAFE4?2 884C85 CO mov ecx,dword ptr ss:[[rbp+rax®4-40]
e ||00007FFBO4BAFE46 41:D3E8 shr r8d,cl
s (|00007FFBO4BAFEA9 8BC1 mov eax,ecx
e (|00007FFBO4BAFE4B 44 :88D1 mov rl0d,ecx
* (|0000/FFBO4BAFE4E 4A:8D1417 lea rdx,qword ptr ds:[rdi+rl0]
e ||00007FFBO4BAFES2 4C:03c8 add r9,rax
* ||00007FFBO4BAFESS 41:BA 02000000 mov r10d,?2
o (|00007FFBO4BAFESE ~ E9 20FFFFFF jmp dpx.7/FFBE04BAFDE0
———>+ || 00007FFBO4BAFEGD 48:8BD6 mov rdx,rsi
e ||00007FFBO4BAFEG3 49:28D1 sub rdx,r9
00007FFBO4BAFEBG 49:03p4 add rdx,rl2
* <
dword ptr ds:[dword ptr ds:[rcx+r9*%1]]=[000002728904A0BF]=0
eax=D000
. text: 00007FFBO4BAFE27 dpx.dl1:$4FE27 #4F227
g Dump 1 L4 Dump 2 L'y Dump 3 L'y Dump4 k% Dump s &5 watch 1 |x=| Locals o Struct & pisassembly
Address Hex ASCIT
000002728904A040 | 4D 5A 90 00/03 00 00 00/ 04 00 00 OO|FF FF 00 00| MZ.......... VY. .
000002728904A050 | B8 00 00 00|00 00 00 00|40 00 00 0O/ 00 00 OO OOf ,....... @.......
000002728904A060 | 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 OO ..vvvnvnnnnnn..
000002728904A070 | 00 00 00 00|00 00 00 00|00 00 0O 0O|DO 00 00 QOD...
000002728904A080 | OE 1F BA OE| 00 B4 09 CD| 21 B8 01 4C|CD 21 54 68| ..°.. .1l .LI!Th
000002728904A090 | 69 73 20 70|72 6F 67 72|61 6D 20 63| 61 6E BE 6F | is program canno
000002728904A0A0 | 74 20 62 65|20 72 75 6E| 20 69 6E 20|44 4F 53 20| t be run in DOS
000002728904A080 | 6D 6F 64 65| 2E OD OD 0A| 24 00 00 00|00 00 00 00| mode....%.......
000002728904A0C0 | 00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 OO ..vvvuvunnnnnn.
000002728904A0D0 | 00 00 00 00|00 00 00 00|00 00 OO0 00|00 00 00 Q00| «vovvunrnunnnnnn
nnnnn72eanaancn | oo nn nn ool nn nn oo ool on nn an ool on nn an nn
Figure 32: x64dbg - MZ header being copied into allocated Heap region

Pausing the debugger here, will allow you to extract the executable file before it gets mapped

into memory.

As the shellcode within the dpx.DpxCheckJobExists area executes, it calls virtualAlloc
with a base region of 6x0180000000, a size of 0x3000 (12288) bytes and a page protection
flag of 0x40 (PAGE_EXECUTE_READWRITE).

32/35

e |[00007FFB14FF8CHF int3 RAX FFEFFFEEEEEEEQQ0
jmp gword ptr ds:[<virtualAllocs] | REX 0000000000008200
¢ (|00007FFBL1AFF8C/7 int3 RCX 0000000180000000
s |[00007FFB14FFBC78 int3 RDX 0000000000009000
s |[00007FFB14FFBC79 int3 RBP ggggggggg;g;gggg
. - 7 . R5P
- [oo007rrerarracrs | | me3 RST 0000000000090
« ||0c007FFB14FF8C7C | | int3 RDL 0000020E36CE5110
e ([00007FFBL14FF8C/D int3 R& 0000000000003000
o (|00007FFB14FFS8C/E int3 RO 0000000000000004
e (|00007FFBLAFFS8CTF int3 R10 0000000000000000
s |[00007FFB14FFBC80 int3 R11 0000000000000246
s |[00007FFB14FF8CE1 int3 R%% gggg;FFB%2CD7Egg
c 7 : R FFB14FFB
Jleman = ff e
= R15 0000020E36CB5040
* |[00007FFB14FFBCE4 mov rax,rsp
e |[00007FFB14FFBCE7 mov qword ptr ds:[rax+8]1,rbx v RIP 00007EEB14EERCTO
£ >

Figure 33: x64dbg - VirtualAlloc hardcoded 0x0180000000

Once this very specific location of memory is allocated the PE file is mapped into execute,
the process for this is well documented elsewhere.

Once mapped, execution is started using a call to CreateThread using the 0x01800028D4
address as the entry point.

- Uuuu/ Frb 14 Fbouw me> S
+ (|0000/FFB14FFBDOE int3
« (| 00007FFB14FFBDOF int3
RAX 0000000180001378
- NN | nov rll,rsp CreateThread RBX 0000000180000000
* (|00007FFBl14FFBD13 sub rsp,48 RCX 0000000000000000
e || 00007FFB14FFBD17 mov rl10d,dword ptr ss:|[frsp+70] RDX 0000000000000000
s ([00007FFB14FFBD1C mov rax,qword ptr ss:[[rsp+78[] [qword ptr ss:[rs RBP 0000002409e7F960
+ (|00007FFB14FFBD21 and rl10d,10004 B3P 0000002409€e/F898
« ||00007FFB14FFBD28 | | mov qword ptr ds:[rl1-101,rax AL 0000900
« || 00007FFB14FFBD2C and quord ptr ds:[r11-18],0 RCL
« (|00007FFB14FFBD31 mov dword ptr ds:[r11-20],r10d R8 00000001800028D4
* ||00007FFB14FFBD35 mov qword ptr ds:[rll-287,r9 RQ 0000000000000000
s (|00007FFB14FFBD39 mov r9,r8 R10 0000000000000000
+ (| 00007FFB14FFBD3C mov 18, rdx B1L 0000000000000246
s ||00007FFB14FFBD3 mov rdx,rcx v || R12 0000000000000000
o || - R13 0000000000000001
< > R14 0000000000000007
o346 L3 RIS 0000000040000000
rsp=0000002409E/F898 RIP 00007FFE14FFEDLO

Figure 34: x64dbg - Create Thread hardcoded 0x0180000000

Unpacked Payload

Now we have jumped through the many hoops to unpack the final payload, we can validate
the contents by loading it into PE-Bearl2.

As you can see from Figure 35, the binary lists some imports from the WINHTTP.d11 that look
like might be worthy some additional analysis.

You can find a copy of the file svchost_icedid_unpacked.bin in the GitHub repository for
this blog post here, or on the malware Bazaar here.

33/35

https://github.com/0xtechevo/icedid_malware_loader_analysis
https://bazaar.abuse.ch/sample/a3fa68045d0106d6db3d43df6b5997d9034f9f7d2a34148187498e4b504ebf58/

E PE-bear v0.6.5.2 [C/Users/malware/Desktop/ficedid/svchost_icedid_unpacdked.bin]

File Settings View Compare Info
v IE svchost _icedid unpacked.bin X
- _ P E =p' _.._l = ﬁ .-'- !
DOS Header
0 1 2 3 4 5 6 7 8 9 A B
B Dos stub
778 48 83 EC 38 83 Fa 01 75 1F 43 83 &4
v NT Headers
788 8D 05 46 15 00 00 83 &4 24 20 00 45
Signature
798 33 ¢c9 FF 15 08 2D 00 00 B8 01 00 0O
File Header
A8 38 C3 CC cC 48 89 5C 24 08 48 £9 74
Optional Header
B8 83 EC 40 48 8B F9 FF 15 5C 2C 00 00
Section Headers
7c8 00 00 00 85 F6 74 4E FF 15 EB 2C 00
v Sections
D8 01 BA 08 00 00 00 48 8B c8 FF 15 C9
v <
=;* EP =778 Disasm: .c General DOS Hdr Rich Hdr Fil

.ﬁ dext _:_ + .u'"

.ﬁ data Offset Name Func. Count
.ﬁ pdata 27CC WINHTTP.II 11
27E0 SHELL32.dll 1
'ﬁ !’ <
.ﬁ d WINHTTP.AIl [11 entries]
Overlay Call via Name Ordinal
4100 WinHttpCloseH... -
4108 WinHttpOpen =
4110 WinHttpConnect -
4118 WinHttpQuery... -
4120 WinHttpReceiv... -
4128 WinHttpSendR... -
A1 DN WAL LT s D

Figure 35: PE Bear - Unpacked icedid payload from svchost.exe

Final Words

That'’s it for this blog post, its been quite in depth and low-level. If you want to understand
anything covered, or maybe not covered in this post feel free to reach out.

I’m planning to do a part 4 taking a look into the extracted PE file so keep an eye out for that,
and in the meantime keep evolving.

34/35

@techevo_

References

1. https://www.malware-traffic-analysis.net «

2. https://rada.re/n/ <

3. https://x64dbg.com «

4. https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy <

5. https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-

virtualalloc « <2

6. https://learn.microsoft.com/en-us/windows/win32/Memory/memory-protection-
constants «

7. https://en.wikipedia.org/wiki/Endianness «

8. https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-
virtualprotect «

9. https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-
rtlallocateheap «

10. https://gchq.github.io/CyberChef/ «

11. https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-
ntquerysysteminformation «

12. https://github.com/hasherezade/pe-bear «

35/35

https://twitter.com/techevo_
https://www.malware-traffic-analysis.net/
https://rada.re/n/
https://x64dbg.com/
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/memcpy-wmemcpy?view=msvc-170
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/Memory/memory-protection-constants
https://en.wikipedia.org/wiki/Endianness
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-rtlallocateheap
https://gchq.github.io/CyberChef/
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://github.com/hasherezade/pe-bear

