
1/8

March 10, 2024

SysWhispers2 analysis 🙊
blog.krakz.fr/notes/syswhispers2/

This helper comes in handy when reversing samples that use SysWhispers2
to recover ntdll
call from SysWhispers2 hashes.

Readme.md #

SysWhispers
github.com/jthuraisamy/SysWhispers2 helps with evasion by generating
header/ASM files implants
can use to make direct system calls.

Various security products place hooks in user-mode API functions which allow
them to
redirect execution flow to their engines and detect for suspicious behaviour.
The functions in
ntdll.dll that make the syscalls consist of just a few
assembly instructions, so re-
implementing them in your own implant can bypass the
triggering of those security product
hooks. This technique was popularized by @Cn33liz
and his blog post has more technical
details worth reading.

Analysis #

VMray recently tweeted that Pikabot incorporates SysWhispers2
This note offers a step-by-
step guide to identify the syscalls made by malware
that utilizes SysWhispers2, a technique
that can be applied in any situation
where SysWhispers2 is present.
NB: Tools: IDA
decompiler and xdbg The analysis began with the sample PERFERENDISF.jar shared in
VMRay tweet, which is available on Malware Bazaar, with the
SHA-256:
d26ab01b293b2d439a20d1dffc02a5c9f2523446d811192836e26d370a34d1b4

We skipped to the stage 2 of the Pikabot loader, which employs SysWhispers2 to load the
malware’s core. The malware executes the following steps to perform a direct syscall:

1. Saves the return address;
2. Resolves the syscall ID from a hash (a behavior related to SysWhispers2);
3. Retrieves a stub to invoke the syscall based on the host architecture;
4. Executes the syscall and resumes program execution.

https://blog.krakz.fr/notes/syswhispers2/
https://github.com/jthuraisamy/SysWhispers2
https://github.com/jthuraisamy/SysWhispers2
https://twitter.com/Cneelis
https://outflank.nl/blog/2019/06/19/red-team-tactics-combining-direct-system-calls-and-srdi-to-bypass-av-edr/
https://twitter.com/vmray/status/1762600614163284466
https://malpedia.caad.fkie.fraunhofer.de/details/win.pikabot
https://bazaar.abuse.ch/sample/d26ab01b293b2d439a20d1dffc02a5c9f2523446d811192836e26d370a34d1b4/

2/8

Figure 1: Function used to made the direct syscall

Here are examples of direct syscalls made by the malware.

Figure 2: Example of SW2Syscall stubs

To operate SysWhispers2, it is necessary to populate the _SW2_SYSCALL_LIST structure,
which is an array containing correspondences between hashes and ntdll.dll addresses.
According to the file base.h
jthuraisamy/SysWhispers2/blob/main/data/base.h the two
structures are:

struct _SW2_SYSCALL_ENTRY

{

 DWORD Hash;

 DWORD Address;

}

Code Snippet 1:
SysWhispers2 syscall entry

The Hash field contains a hash value corresponding to a particular syscall,
and the Address
field contains the address of the corresponding function in ntdll.dll.

https://github.com/jthuraisamy/SysWhispers2/blob/main/data/base.h

3/8

struct _SW2_SYSCALL_LIST

{

 DWORD Count;

 SW2_SYSCALL_ENTRY Entries[SW2_MAX_ENTRIES];

}

Code Snippet 2:
SysWhispers2 syscall list

The malware stores a pointer to the syscall list as a global variable,
which is convenient
when we later retrieve the populated data with the debugger.

Figure 3: Reference of the _SW2_SYSCALL_LIST structure

According to the source code
See function SW2_GetSyscallNumber line 131. the function
used to get the address in ntdll from hash
ensure that _SW2_SYSCALL_LIST structure is
populated.

The most “challenging” task is now to identify a call to SW2_GetSyscallNumber
and set a
breakpoint after the SW2_PopulateSyscallList function, at which point a dump
of the list
can be made.

https://github.com/jthuraisamy/SysWhispers2/blob/main/data/base.c#L128-L141

4/8

Figure 4: Hex memory view of the _SW2_SYSCALL_LIST structure populated

Here is a clearest visualization of the memory using ImHex.

https://github.com/WerWolv/ImHex/

5/8

Figure 5: Visualization of the _SW2_SYSCALL_LIST structure populated

Mapping Hashes to Syscalls #

First, the hashes (SW2) must be listed, and then the hash must be resolved to obtain the
syscall number.

The following IDA script lists the hashes by retrieving the first (single one) function argument:

s2w_direct_call_addr = 0x04111000

for x in XrefsTo(s2w_direct_call_addr):

 syscall_hash = get_wide_dword(x.frm - 0x4) # First args of the function

 print(f"call to SW2 at:0x{x.frm:x} hash:0x{syscall_hash:x}")

Which gives the following hashes: 0x312294161, 0x228075779, 0x2553518241,
0x3309424832, 0x1605204094, 0x2236128452, 0x1881308343, 0x3327455464,
0x3319017158,
0x2249560824, 0x397169428, 0x4066245879, 0x2629212700.

Subsequently, the _SW2_SYSCALL_LIST structure was parsed to obtain the address
corresponding to each of the aforementioned hashes.

6/8

import struct

with open("syscall_entries.dmp", "rb") as f:

 # offset 0x8 is used to remove the DWORD Count of the struct _SW2_SYSCALL_LIST

 SW2_syscallList_raw = f.read()[0x8:]

NTDLL_BASE_ADDRESS = 0x77DA0000 # specifics for each sample

SW2_Entrie = namedtuple("SW2_Entrie", ["hash", "address"])

SW2_syscallList: List = []

for hash, addr_offset in struct.iter_unpack("<Li", SW2_syscallList_raw):

 print(f"0x{hash:x} 0x{addr_offset + NTDLL_BASE_ADDRESS:x}")

 SW2_syscallList.append(SW2_Entrie(hash, addr_offset + NTDLL_BASE_ADDRESS))

Next, take a snapshot of ntdll (to avoid rebasing the DLL base address)
to list the export
functions of ntdll.dll and their corresponding addresses.

The subsequent step involves taking a snapshot of ntdll.dll to obtain a list
of its export
functions along with their corresponding address.
This approach eliminates the need to
rebase the DLL base address.

import pefile

def get_section(pe: pefile.PE, section_name: str) -> pefile.SectionStructure:

 """return section by name, if not found raise KeyError exception."""

 for section in filter(

lambda x: x.Name.startswith(section_name.encode()), pe.sections

):

return section

 raise KeyError(f"{section_name} not found")

PE_FILE = "ntdll.dll"

pe = pefile.PE(PE_FILE)

text = get_section(pe, ".text")

image_base = pe.OPTIONAL_HEADER.ImageBase

section_rva = text.VirtualAddress

mapping_syscall_id_fn = []

Build a corresponding address and ntdll function name

for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:

 mapping_syscall_id_fn.append((pe.OPTIONAL_HEADER.ImageBase + exp.address,
exp.name))

Finally, map the addresses populated in the _SW2_SYSCALL_ENTRIES structure
with the
corresponding addresses exported from ntdll.dll to obtain their export names.

7/8

hashes obtained in IDA

hashes = [

 0x129D3B11,

 0xD982903,

 0x983398A1,

 0xC541D0C0,

 0x5FAD787E,

 0x85489CC4,

 0x70227CB7,

 0xC654F0E8,

 0xC5D42EC6,

 0x861592F8,

 0x17AC5314,

 0xF25DFCF7,

 0x9CB69A1C,

]

def find_syscall_by_hash(hash) -> Optional[SW2_Entrie]:

 for syscall in SW2_syscallList:

if syscall.hash == hash:

 return syscall

for addr, name in mapping_syscall_id_fn:

 for syscall in map(find_syscall_by_hash, hashes):

if addr == syscall.address:

 print(f"0x{syscall.hash:x} <-> {name.decode()}")

 break

Output for this sample of Pikabot is:

8/8

0xc5d42ec6 <-> NtAllocateVirtualMemory

0x129d3b11 <-> NtClose

0x85489cc4 <-> NtCreateUserProcess

0x70227cb7 <-> NtFreeVirtualMemory

0x17ac5314 <-> NtGetContextThread

0x5fad787e <-> NtOpenProcess

0xc541d0c0 <-> NtQueryInformationProcess

0x983398a1 <-> NtQuerySystemInformation

0xc654f0e8 <-> NtReadVirtualMemory

0x9cb69a1c <-> NtResumeThread

0xf25dfcf7 <-> NtSetContextThread

0xd982903 <-> NtSystemDebugControl

0x861592f8 <-> NtWriteVirtualMemory

0xc5d42ec6 <-> ZwAllocateVirtualMemory

0x129d3b11 <-> ZwClose

0x85489cc4 <-> ZwCreateUserProcess

0x70227cb7 <-> ZwFreeVirtualMemory

0x17ac5314 <-> ZwGetContextThread

0x5fad787e <-> ZwOpenProcess

0xc541d0c0 <-> ZwQueryInformationProcess

0x983398a1 <-> ZwQuerySystemInformation

0xc654f0e8 <-> ZwReadVirtualMemory

0x9cb69a1c <-> ZwResumeThread

0xf25dfcf7 <-> ZwSetContextThread

0xd982903 <-> ZwSystemDebugControl

0x861592f8 <-> ZwWriteVirtualMemory

The full script is available on this gist, along with the S2W_SyscallList.dmp
file in
hexadecimal format. To use the dump, replace lines 32 to 34 with the following:

import binascii

with open("SW2_SyscallList_hex.dmp", "r") as f:

 # offset 0x8 is used to remove the DWORD Count of the struct _SW2_SYSCALL_LIST

 SW2_syscallList_raw = binascii.unhexlify(f.read())[0x8:]

Resources #

https://gist.github.com/lbpierre/c9c39de0c32bb96a5e12556f75744d42

