
1/13

Just Carry A Ladder – Why Your EDR Let Pikabot Jump
Through

vmray.com/cyber-security-blog/why-your-edr-let-pikabot-jump-through/

Just Carry A Ladder:

– Why Your EDR Let Pikabot Jump Through

Download full report
28.02.2024

Table of Contents

Overview

https://www.vmray.com/cyber-security-blog/why-your-edr-let-pikabot-jump-through/
https://go.vmray.com/analysis-report-pikabot.pdf


2/13

Pikabot has posed significant challenges to many Endpoint Detection and Response (EDR)
systems through its employment of an advanced technique to hide its malicious activities
known as “indirect system calls” (or “indirect syscalls”). This is only one of multiple
techniques this family employs to evade detection: Pikabot distinguishes itself through the
use of extensive obfuscation techniques such as inserting irrelevant junk code, hiding strings
and even masquerading as benign applications by including their strings. Notably, the extent
of obfuscation fluctuates among different samples, with recent instances showing less
complexity. However, each variation consistently aims to evade detection by EDR systems.

Recent observations show an increase in the identification of Pikabot samples, a trend
partially attributed to the activities of the threat actor group known as TA577, as such we
believe it is important to delve into the sophisticated evasion tactics employed by this
malware family, with a particular emphasis on its use of indirect syscalls.

You can read our analysis report here:

Figure 1: Our dynamic, behavioral analysis reveals the malicious behavior of Pikabot.

https://www.vmray.com/analyses/b025e3761116/report/overview.html


3/13

Hooking

When Windows applications want to perform certain actions requiring interaction with the
Windows kernel, for example to start a new process, the operation is similar to Figure 2:

Figure 2: A simplified overview of the call sequence from sample to Windows kernel. 
Note that many details were excluded and adjusted for didactic purposes, e.g., 
kernelbase.dll was omitted for space purposes.

To monitor the behavior of applications, hooking-based EDR’s and sandbox solutions insert
hooks into Windows libraries or other process components of the malware, allowing them to
intercept function calls and extract behavioral, runtime information. As an example, consider
a script downloading an executable, placing it in the autostart folder and upon execution,
writing code into the memory of another process. If this malware sample is new, traditional
techniques based on signatures may fail to detect it, but the idea behind hooking-based
EDR’s is to capture the live behavior and determine whether the activities are benign or
indicative of malicious intent.

However, Pikabot seeks to circumvent this surveillance by executing calls to the Windows
kernel in a manner that avoids detection, thus concealing its malicious operations. The
strategy involves a sophisticated approach of interacting with system calls to communicate
with the Windows kernel indirectly.

In the following sections, we will explore the specifics of Pikabot’s evasion techniques,
including its use of indirect syscalls, and the broader implications of these tactics for
cybersecurity defense strategies. Through this analysis, we aim to provide not only insights
into past and current developments, but also how to combat future evasion techniques.

Bypassing Hooking

As malware becomes more sophisticated, so too do the methods it uses to evade detection.

Since the interception mechanism based on userland hooks operates within the malware’s
own process space, it is inherently more visible—and therefore detectable—by the malware.
This visibility allows malware developers to devise methods specifically aimed at identifying



4/13

and circumventing these hooks.

Pikabot’s evasion strategy exploits this vulnerability in hooking-based EDR systems. By
bypassing these hooks, Pikabot can carry out its malicious activities without triggering the
behavioral alarms that would normally alert the EDR to its presence. To demonstrate this, a
simple EDR using hooks is highlighted in Figure 3:

Figure 3: A simple user-land hook installed by an EDR to capture calls 
to CreateProcessW.

There have been a number of methods employed by malware to avoid detection by userland,
hooking-based EDR’s.

Detecting the Hooks

As most hooks are installed by redirecting the execution of the Windows API function by
replacing the beginning of the function call, known as the prologue, with a jump to the
monitoring code of the EDR (see Figure 4), in this method the malware inspects the bytes at
the beginning of API call instructions.



5/13

Figure 4: Native function LdrLoadDll is hooked by an antivirus software via a jump 
instruction placed at the beginning.

By analyzing these CPU instructions, the malware can determine if they have been altered
from their original state, which would indicate the presence of hooks inserted by an EDR
system. This detection mechanism allows malware to identify and react to the presence of
monitoring tools, thereby evading detection.

Removing the Hooks

Another approach taken by malware is to restore the original DLL code, effectively removing
the hooks inserted by the EDR system. One such method is to create a new, clean copy of
the library by re-loading it into memory, thereby eliminating the monitoring hooks (see Figure
5):

Figure 5: A technique involves loading a clean copy of a hooked DLL to evade the EDR 
hooking.

Calling Native Functions Directly

Some malware families, such as IcedID, employ an evasion technique based on directly
invoking the undocumented native functions (such as NtCreateProcess), which are low-level
system functions provided by the Windows Native API (see Figure 6). Microsoft did not
intend these APIs to be called directly as they are supposed to be only used by Windows
libraries internally, therefore they are not officially documented and subject to change, so
developers are advised not to rely on them. But malware authors do usually not care about



6/13

longevity of their samples, so they call these functions directly to avoid the higher-level API
functions that used to be more likely to be monitored and hooked by EDR systems, thereby
sidestepping detection mechanisms.

Figure 6: Sample calls native Windows functions directly, sidestepping the hooked 
Windows API function.

Modern EDR’s usually do not just rely on hooks created for non-native functions anymore
and instead hook some of the native functions directly.

Calling System Calls Directly

As calling native functions was widely exploited by malware and EDR’s started placing hooks
into these native functions, a new method to evade these hooks was developed which
involves directly executing system calls (syscalls), basically re-implementing the code from
the native function in the application itself (see Figure 7):

Figure 7: Sample executes syscall instruction directly to create a process, avoiding 
both the hook in the kernel32.dll library as well as the one in the native function 
in ntdll.dll.

Syscalls are the fundamental interface between an application and the operating system
kernel, and by invoking them directly, malware can perform system-level operations without
going through the API functions that are typically monitored by EDR systems.



7/13

This method is exemplified by the XLoader malware family, as demonstrated in this analysis
report (see Figure 8):

Figure 8: Direct system calls executed by an XLoader sample and detected by VMRay.

More recently, a trend towards even more sophisticated evasion techniques has been
observed in the wild: indirect syscalls.

Indirect Syscalls

This approach involves the malware making system calls in such a way that they appear to
originate from legitimate system components, like ntdll.dll, rather than from the malware
itself. By doing so, the activity blends in with legitimate system operations, making it far more
challenging for EDR systems to distinguish between benign and malicious behavior.

Indirect syscalls represent a significant evolution in malware evasion techniques. They not
only complicate the process of detection but also underscore the necessity for continuous
innovation in cybersecurity defense mechanisms. As malware developers refine their
strategies to exploit the intricacies of operating systems and detection tools, the
cybersecurity community must respond with equally sophisticated solutions to protect users
and infrastructure from these evolving threats. This ongoing battle highlights the importance
of advanced monitoring techniques, such as those based on recording transitions, which
offer a more resilient defense against the clever evasion tactics employed by malware like
Pikabot.

Diving deeper into the evasion techniques employed by the Pikabot malware family, we
reach a critical aspect of its strategy: the use of indirect syscalls. This method represents a
sophisticated approach to evade detection mechanisms that are designed to monitor and
analyze system calls. Understanding this technique sheds light on the lengths to which
malware authors will go to hide their malicious activities.

Detection of Direct Syscalls

https://www.vmray.com/analyses/_mb/5bbe0096493e/report/overview.html


8/13

Typically, direct syscalls are a straightforward method for executing system-level operations.
However, cybersecurity solutions have adapted to this by implementing mechanisms
to hook and monitor these calls directly. By analyzing the call stack, it becomes apparent
when a syscall is being made directly by a suspicious sample rather than through legitimate
system libraries like ntdll.dll. This direct approach, while effective in performing its intended
operation, leaves a clear trail that security tools can follow to identify malicious activities.

The Shift to Indirect Syscalls

In response to the detection capabilities of modern cybersecurity tools, malware developers
have evolved their techniques. Indirect syscalls emerge as a cunning solution to this
challenge. By executing a jump to a syscall instruction within ntdll.dll, malware can make it
appear as though the system call is originating from this legitimate library (see Figure 9).
This method effectively masks the true origin of the call, blending the malicious operation
with normal, expected system behavior.

Figure 9: Sample jumps to syscall instruction in ntdll.dll, thus executing an 
indirect syscall.

This approach significantly complicates the task for detection tools. Since ntdll.dll is a critical
component of the Windows operating system, used extensively by legitimate applications,
distinguishing between benign and malicious use of its syscalls becomes a complex,
nuanced task. The implication is that malware using indirect syscalls can operate under the
radar of many detection mechanisms that rely on distinguishing between normal and
abnormal syscall patterns.

A practical illustration of this technique in action is provided in our analysis, as highlighted in
our VMRay report (see Figure 10):



9/13

Figure 10: Indirect syscalls executed by Pikabot detected by VMRay Platform.

This evidence confirms that Pikabot employs indirect syscalls as part of its evasion strategy,
showcasing the malware’s sophisticated design aimed at circumventing traditional detection
methods.

Implementation

The intricate evasion mechanisms of the Pikabot malware become even more apparent
when examining the specifics of its implementation of indirect syscalls. This method
showcases a high level of sophistication in avoiding detection. The process involves several
steps, each designed to further obfuscate the malware’s activities and complicate the task of
cybersecurity defenses.

API Hashing and Selection of Zw* Functions

Initially, Pikabot undertakes the collection of Zw* native functions from ntdll.dll. Instead of
referencing these functions directly, it employs API hashing. This technique involves
calculating a unique hash for each API function name, which the malware then uses to
identify and call the desired functions (see Figure 11). This method of indirect reference
makes static analysis and detection significantly more challenging, as the actual function
names do not appear in the malware’s code.



10/13

Figure 11: API hashing code found in Pikabot sample.

Random Stub Selection for Evasion

To further enhance its evasion capabilities, Pikabot doesn’t statically rely on a single native
function for its operations. Instead, it randomly selects from the pool of collected Zw*
functions (see Figure 12). This variability adds another layer of complexity for analysis tools,
as it may appear as if the behavior is changing between executions, making the malware’s
footprint harder to identify.

Figure 12: Pikabot randomly selects a function whose syscall instruction will be 
used.



11/13

Indirect Syscall Execution

Once a suitable Zw* function is selected, Pikabot meticulously prepares the correct syscall
ID required for the intended system operation. It then jumps into the middle of the native
function, skipping the syscall ID preparation code as this was already done by the malware,
and finally lets ntdll.dll execute the syscall instruction (see Figure 13 for an overview).
This indirect execution of the syscall, bypassing the higher-level API layers, minimizes the
malware’s trace within the system and evades detection mechanisms designed to monitor
API calls. By doing so, Pikabot effectively operates beneath the radar, carrying out its
malicious activities while blending in with legitimate system processes.

Figure 13: Main execution of Pikabot regarding syscalls: getting the syscall ID for 
the API function it wants to call and jumping into the middle of a function that uses 
a syscall.

Transition-based monitoring

Whenever the malware sample and the EDR run on the same system within reach of each
other, there is room for evasion. That is why in contrast to hooking-based EDR systems or
sandboxing solutions, our method is therefore based on recording transitions, a technique
detailed in our whitepaper here. Unlike hooking, which involves inserting small pieces of
code (hooks) into the process of the malware itself, modular transitions are monitored from a
more detached, outside perspective (see Figure 14). When the code executes a call that
moves from one memory region to another—effectively transitioning across boundaries—this
activity triggers a recording mechanism. This process occurs outside the observable range of
the malware’s processes, even outside the virtual machine, rendering it invisible and,
consequently, more difficult for the malware to detect and evade.

https://www.vmray.com/resource/vmray-technology-whitepaper/


12/13

Figure 14: VMRay Platform watches the behavior from the outside without using hooks, 
thus avoiding detection and also allowing us to detect indirect syscalls as malicious 
behavior.

Conclusion

While not all EDRs are affected by the techniques outlined here, and some have the ability to
detect indirect syscalls, our research shows that there already are works exploring
alternatives to indirect syscalls, which means that hooking-based solutions have to
consistently be adapted to new techniques. Note that hooking-based sandboxing solutions–
those that use similar techniques to the ones outlined above to collect behavioral data about
samples–are also plagued by the same issues.

This analysis underscores that no matter the complexity or quantity of evasion tactics
employed, they stand little chance against our sophisticated, agentless, hook-free, transition
and behavior-based analysis engine. While Pikabot is using sophisticated techniques to
evade detection, we leverage this to our advantage by focusing on detecting these evasion
attempts, thereby unmasking the true intent of the malware.

To provide more insight into Pikabot samples, we’ve developed a config extractor now
available on our Platform. As adversaries continually seek innovative ways to distribute their
malware, the consistent updates to the VMRay Platform ensure we remain ahead, always
prepared to counteract the latest trends in malware evolution.

Hash b025e37611168c0abcc446125a8bd7cb831625338434929febadfcc9cc4c816e

C2 IPs 103.82.243.5:13785

86.38.225.105:13721

37.60.242.85:9785

89.117.23.185:2221



13/13

104.129.55.106:13783

86.38.225.106:2221

178.18.246.136:2078

154.12.233.66:2224

85.239.243.155:5000

145.239.135.24:5243

23.226.138.161:5242

104.129.55.105:2223

23.226.138.143:2083

57.128.165.176:13721

89.117.23.186:5632

Emre Güler
IT-Security Researcher | Malware Analysis @VMRay

See VMRay in action.
 Solve your malware & phishing challenges.

REQUEST FREE TRIAL NOW

https://www.vmray.com/try-vmray-products/

