
1/36

Matthew February 26, 2024

Advanced CyberChef Techniques for Configuration
Extraction - Detailed Walkthrough and Examples

embee-research.ghost.io/advanced-cyberchef-operations-netsupport/

CyberChef
Advanced CyberChef techniques using Registers, Regex and Flow Control

We're all used to the regular CyberChef operations like "From Base64", From Decimal and
the occasional magic decode or xor. But what happens when we need to do something more
advanced?

Cyberchef contains many advanced operations that are often ignored in favour of Python
scripting. Few are aware of the more complex operations of which Cyberchef is capable.
These include things like Flow Control, Registers and various Regular Expression
capabilities.

In this post. We will break down some of the more advanced CyberChef operations and how
these can be applied to develop a configuration extractor for a multi-stage malware loader.

What Are These Advanced Operations?

Before we dive in, let's look a quick summary of the operations we will demonstrate.

Registers
Regular Expressions and Capture Groups
Flow Control Via Forking and Merging
Merging

https://embee-research.ghost.io/advanced-cyberchef-operations-netsupport/
https://embee-research.ghost.io/tag/cyberchef/

2/36

Subtraction
AES Decryption

After demonstrating these individually to show the concepts, we will combine them all
to develop a configuration extractor for a multi-stage malware sample.

Obtaining the Sample

The sample demonstrated can be found on Malware Bazaar with

SHA256:befc7ebbea2d04c14e45bd52b1db9427afce022d7e2df331779dae3dfe85bfab

Advanced Operation 1 - Registers

Registers allow us to create variables within the CyberChef session and later reference them
when needed.

Registers are defined via a regular expression capture group, and allow us to create a
variable with unknown value that fits according to a known pattern within the code.

Registers Use Case

Below we have a powershell script utilising AES decryption.

Traditionally, this is easy to decode using CyberChef by manually copying out the key value
and pasting it into an "AES Decrypt" Operation.

Here we can see the key copied into an AES Decrypt operation.

https://bazaar.abuse.ch/sample/befc7ebbea2d04c14e45bd52b1db9427afce022d7e2df331779dae3dfe85bfab/?ref=embee-research.ghost.io

3/36

This method of manually copying out the key works effectively, however this means that the
key is "hardcoded" and the recipe will not be applicable to similar samples using the same
technique.

If another sample utilises a different key, then this new key will need to be manually updated
for the CyberChef recipe to work.

Registers Example 1

By utilising a "Register" operation, we can develop a regular expression to match on the
structure of the AES key and later access this via a register variable like "$R0"

4/36

The AES key in this case is a 44 character base64 string, hence we can use a base64
regular expression of 44-46 characters in order to extract out the AES Key.

We can later access this via the $R0 variable inside of the AES Decrypt operation.

Registers Example 2

In a previous stage of the same sample, the malware utlilises a basic subtract operation to
create ASCII char codes from an array of large integers.

5/36

Traditionally this would be decoded by manually copying out the 787 value and applying this
to a subtract operation.

However, again this causes issues if another sample utilises the same technique but a
different value.

A better method is to create another register with a regular expression that matches on the
787 value.

Here we can see an example of this, where a Register has been used to locate and store the
787 value inside of $R0. This can later be referenced in a subtract operation by referencing
$R0.

6/36

Regular Expressions

Regular expressions are frustrating, tedious and difficult to learn. But they are extremely
powerful and you should absolutely learn them in order to improve your Cyberchef and
malware analysis capability.

In the development of this configuration extractor, regular expressions are applied in 10
separate operations.

Regular Expressions - Use Case 1 (Registers)

The first use of regular expressions is inside of the initial register operation.

Here we have applied a regex to extract out a key value used later as part of the
deobfuscation process.

The key use of regex here is to be able to generically capture keys related to the decoding
process. Avoiding the need to hardcode values and allowing the recipe to work across
multiple samples.

7/36

Regular Expressions - Use Case 2 (Isolating Text)

The second use of regular expressions in this recipe is to isolate the main array of integers
containing the second stage of the malware.

The second stage is stored inside of a large array of decimal values separated by commas
and contained in round brackets.

By specifying this inside of a regex, we can extract and isolate the large array and effectively
ignore the rest of the code. This is in contrast to manually copying out the array and starting
a new recipe.

A key benefit here is the ability to isolate portions of the code without needing to copy
and paste. This enables you to continue working inside of the same recipe

Regular Expressions - Use Case 3 (Appending Values)

8/36

Occasionally you will need to append values to individual lines of output.

In these cases, a regular expression can be utilised to capture an entire line (.*) and then
replace it with the same value (via capture group referenced in $1) followed by another value
(our initial register).

The key use case is the ability to easily capture and append data, which is essential for
operations like the subtract operator which will be later used in this recipe.

9/36

Regular Expressions - Use Case 4 (Extracting Encryption Keys)

We can utilise regular expressions inside of register operations to extract encryption keys
and store these inside of variables.

Here we can see the 44 character AES key stored inside of the $R1 register.

This is effective as the key is stored in a particular format across samples. Leveraging regex
allows us to capture this format (44 char base64 inside single quotes) without needing to
worry about the exact value.

10/36

Regular Expressions - Use Case 5 (Extracting Base64 Text)

Regular expressions can be used to isolate base64 text containing content of interest.

This particular sample stores the final malware stage inside of a large AES Encrypted and
Base64 encoded blob.

Since we have already extracted the AES key via registers, we can apply regex to isolate the
primary base64 blob and later perform the AES Decryption.

11/36

Regular Expressions - Use Case 6 (Extracting Initial Characters)

This sample utilises the first 16 bytes of the base64 decoded content to create an IV for the
AES decryption.

We can leverage regular expressions and registers to extract out the first 16 bytes of the
decoded content using .{16}.

This enables us to capture the IV and later reference it via a register to perform the AES
Decryption.

12/36

Regular Expressions - Use Case 6 (Removing Trailing Null Bytes)

Regular expressions can be used to remove trailing nullbytes from the end of data.

This is particularly useful as sometimes we only want to remove null bytes at the "end" of
data. Whereas a traditional "remove null bytes" will remove null bytes everywhere in the
code.

In the sample here, there are trailing nullbytes that are breaking a portion of the decryption
process.

By applying a null byte search with \0+$ we can use a find/replace to remove these trailing
null bytes.

In this case, the \0+ looks for one or more null bytes, and the $ specifies that this must be at
the end of the data.

13/36

After applying this operation, the trailing null bytes are now removed from the end of the
data.

Flow Control Via Forking

Forking allows us to separate values and act on each of them independently as if they were
a separate recipe.

In the use case below, we have a large array of decimal values and we need to subtract 787
from every single one. A large issue here is that in order to subtract 787, we need to append
787 after every single decimal value in the below screenshot. This would be a nightmare to
do by hand.

14/36

As the data is structured and separated by commas, we can apply a forking operation with a
split delimiter of comma and a merge delimiter of newline.

The split delimiter is whatever separates the values in your data, but the merge delimiter is
how you want your new data structured.

At this point, every newline represents a new input data, and all future operations will act on
each line independently.

If we now go ahead and apply a find replace, we can see that the operation has affected
each and every line individually.

15/36

If we had applied the same concept without a fork, only a single 787 would have been added
to the end of the entire blob of decimal data.

After applying the find/replace, we can continue to apply a subtraction operation and a "From
Decimal".

This reveals the decoded text and the next stage of the malware.

16/36

Note that the "Merge Delimiter" mentioned previously is purely a matter of formatting.

Once you have decoded your content as in the screenshot above, you will want to remove
the merge delimiter to ensure that all the decoded content is together.

Here we can see the full script after removing the merge delimiter.

Flow Control - Merging

Merging is essentially an "undo" for forking operations.

After you've succesfully decoded content using a fork, you will want to make sure to apply a
Merge to ensure that the new content can be analysed appropriately.

Without a merge, all future operations would affect only a single character and not the entire
script.

17/36

AES Decryption

Cyberchef is capable of AES Decryption via the AES Decrypt operation.

To utilise AES decryption, look for the key indicators of AES inside of malware code and
align all the variables with the AES operation.

eg, make sure to align the Key, Mode and IV. Then just plug these values into CyberChef.

18/36

Eventually, you can effectively automate this using Regular Expressions and Registers as
previously shown.

19/36

Configuration Extractor Walkthrough (22 Operations)

Utilising all of these techniques, we can develop a configuration extractor for a NetSupport
Loader with 3 separate scripts that can all be decoded within the same recipe.

This requires a total of 22 operations which will be demonstrated below.

20/36

Stage 1 Decoding (7 Operations)

The initial script is obfuscated using a large array of decimal integers.

For each of these decimal values, the number 787 is subtracted and then the result is used
as an ASCII charcode.

In order to decode this component, we must

21/36

Use a Register to extract the subtraction value
Use a Regular Expression to extract the decimal array
Use Forking to Seperate each of the decimal values
Use a regular expression to append the 787 value stored in our register.
Apply a Subtract operation to produce ASCII charcodes
Apply a "From Decimal" to produce the 2nd stage
Use a Merge operation to enable analysis of the 2nd stage script.

Operation 1 - Extracting Subtraction Value

The initial subtraction value can be extracted with a register operation and regular
expression.

This must be done prior to additional analysis and decoding to ensure that the subtraction
value is stored inside of a register.

Operation 2 - Extracting the Decimal Array

The second step is to extract out the main decimal array using a regular expression and a
capture group.

The capture group ensures that we are isolating the decimal values and ignoring any script
content surrounding it.

This regex looks for decimals or commas [\d,] of length 1000 or more {1000,}. That are
surrounded by round brackets \(and \).

The inner brackets without escapes form the capture group.

22/36

Operation 3 - Seperating the Decimal Values

The third operation leverages a Fork to separate the decimal values and act on each of them
independently.

The Fork defines a delimiter at the commas present in the original code, and specifies a
Merge Delimiter of \n to improve readability.

Operation 4 - Appending the Subtraction Value

The fourth operation uses a regex find/replace to append the 787 value to the end of each
line created by the forking operation.

Note that we have used (.*) to capture the original decimal value, and have then used $1 to
access it again. The $R0 is used to access the register that can created in Operation 1.

23/36

Operation 5 - Subtracting the Values

We can now perform the subtraction operation after appending the 787 value in Operation 4.

This produces the original ASCII charcodes that form the second stage script.

Note that we have specified a space delimiter as this is what is between our decimal values
and subtraction value in operation 4.

Operation 6 - Decoding the ASCII Codes.

We can now decode the ASCII codes using a "From Decimal" operation.

This produces the original script. Though the values are separated via a newline due to our
previous Fork operation.

24/36

Operation 7 - Merging the Result

We now want to act on the new script in it's entirety, we do not want to act on each character
independently.

Hence, we will undo our forking operation by applying a Merge Operation and modifying the
"Merge Delimiter" of our previous fork to an empty space.

Stage 2 - Powershell Script With AES Encryption (8 Operations)

After 7 operations we have now uncovered a 2nd stage Powershell script that utilises AES
Encryption to unravel an additional stage.

25/36

The key points in this script that are needed for decrypting are highlighted below.

To Decode this stage, we must be able to

Use Registers to Extract the AES Key
Use Regex to extract the Base64 blob
Decode the Base64 blob
Use Registers to extract an Initialization Vector
Remove the IV from the output
Perform the AES Decryption, referencing our registers
Use Regex to Remove Trailing NullBytes
Perform a GZIP Decompression to unlock stage 3

Operation 8 - Extracting the AES Key

We must now extract the AES Key and store using a Register operation.

We can do this by applying a Register and creating a regex for base64 characters that are
exactly 44 characters in length and surrounded by single quotes. (We could also adjust this
to be a range from 42 to 46)

Now we have the AES key stored inside of the $R1 register.

26/36

Operation 9 - Extracting the Base64 Blob

Now that we have the AES key, we can isolate the primary base64 blob that contains the
next stage of the Malware.

We can do this with a regular expression for Base64 text that is 100 or more characters in
length.

We're also making sure to change the output format to "List Matches", as we only want the
text that matches our regular expression.

Operation 10 - Decoding The Base64

This is a straightforward operation to decode the Base64 blob prior to the main AES
Decryption.

27/36

Operation 11 - Extracting Initialization Vector

The first 16 bytes of the current data form the initialization vector for the AES decryption.

We can extract this using another Register operation and specifiying .{16} to grab the first
16 characters from the current blob of data.

We know that these bytes are the IV, due to this code in the original script.

Note how the first 16 bytes are taken after base64 decoding, and then this is set to the IV.

Operation 12 - Dropping the Initial 16 Bytes

The initial 16 bytes are ignored when the actual AES decryption process takes place.

Hence we need to remove them by using a Drop Bytes Operation with a length of 16.

28/36

We know this is the case because the script begins the decryption from an offset of 16 from
the data.

This can be confirmed with the official documentation for TransformFinalBlock.

Operation 13 - AES Decryption

Now that the Key and IV for the AES Decryption have been extracted and stored in registers,
we can go ahead and apply an AES Decrypt operation.

Note how we can access our key and IV via the $R1 and $R2 registers that were previously
created. We do not need to specify a key here.

(Also note that we do need to specify base64 and utf8 for the key and IV respectively, as
these were their formats at the time where we extracted them)

We can also note that ECB mode was chosen, as this is the mode specified in the script.

29/36

Operation 14 - Removing Trailing Null Bytes

The current data after AES Decryption is compressed using GZIP.

However, Gunzip fails to execute due to some random nullbytes that are present at the end
of the data after AES Decryption.

Operation 14 involves removing these trailing null bytes using a Regular expression for "one
or more null bytes \0+ at the end of the data $"

We will leave the "Replace" value empty as we just want to remove the trailing null bytes.

Operation 15 - GZIP Decompression

We can now apply a Gunzip operation to perform the GZIP Decompression.

This will reveal stage 3 of the malicious content, which is another powershell script.

30/36

Note that we know Gzip was used as it is referenced in stage 2 after the AES Decryption
process.

Stage 3 - Powershell Script (7 Operations)

We now have a stage 3 powershell script that leverages a very similar technique to stage 1.

The obfuscated data is again stored in large decimal arrays, of which the number 4274 is
subtracted from each value.

Note that in this case, there are 4 total arrays of integers.

31/36

To Decode stage 3, we must perform the following actions

Use Registers to Extract The Subtraction Value
Use Regex to extract the decimal arrays
Use Forking to Separate the arrays
Use another Fork to Separate the individual decimal values
Use a find/replace to append the subtraction value
Perform the Subtraction
Restore the text from the resulting ASCII codes

Operation 16 - Extracting The Subtraction Value with Registers

Our first step of stage 3 is to extract out the subtraction value and store it inside of a register.

We can do this by creating another register, and implementing a regular expression to
capture the value $SHY=4274. We can specify a dollar sign, followed by characters, followed
by equals, followed by integers, followed by a semicolon.

Making sure to apply a capture group (round brackets) to the decimal component, as this is
what we want to store and use later.

32/36

Operation 17 - Extracting and Isolating the Decimal Arrays

Now that we have the subtraction key, we can go ahead and use a regular expression to
isolate the decimal arrays.

Here we have chosen a regex that looks for round brackets containing long sequences of
integers and commas (at least 30). The inside of the brackets have been converted to a
capture group by adding round brackets without escapes.

We have also selected "List Capture Groups" to list only the captured decimal values and
commas.

Operation 18 - Separating the Arrays With Forking

We can now separate the decimal arrays by applying a fork operation.

The current arrays are separated by a newline, so we can specify this as our split delimiter.

In the interests of readability, we can specify our merge delimiter as a double newline. The
double newline does nothing except make the output easier to read.

33/36

Operation 19 - Separating the Decimal Values With another Fork

Now that we've isolated the arrays, we need to isolate the individual integer values so that
we can append the subtraction value.

We can do this with another Fork operation, specifying a comma delimiter (as this is what
separates our decimal values) and a merge delimiter of newline. Again, this newline does
nothing but improve readability.

Operation 20 - Appending Subtraction Values

With the decimal values isolated, we can go ahead and use a previous techniquq to capture
each line and append the subtraction key that is currently stored in $R3.

Here we can see the subtraction key appended to each line containing a decimal value.

34/36

Operation 21 - Applying the Subtraction Operation

We can now apply a subtract operation to subtract the value appended in the previous step.

This restores the original ascii charcodes so that we can decode them in the next step.

Operation 22 - Decoding the ASCII Codes

With the ASCII codes restored in their original decimal form, we can apply a from decimal
operation to restore the original text.

Here we can see the Net.Webclient string, albeit it is spaced out over newlines due to our
forking operation.

35/36

Final Result - Extracting Malicious URL's

Now that the content is decoded, we can go ahead and remove the readability step that we
added in Operation 19.

That is, we can remove the Merge Delimter that was added to improve the readability of
steps 20 and 21.

With the Merge Delimiter removed, The output of the four decimal arrays will now be
displayed.

36/36

Video WalkThrough

Watch Video At:

https://youtu.be/CIg4TXFJRK0

https://youtu.be/CIg4TXFJRK0

